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Abstract

A special four-cycle F in a triple system consists of four triples induc-
ing a C4. This means that F has four special vertices v1, v2, v3, v4 and four
triples in the form wivivi+1 (indices are understood (mod 4)) where the wjs
are not necessarily distinct but disjoint from {v1, v2, v3, v4}. There are seven
non-isomorphic special four-cycles, their family is denoted by F . Our main re-
sult implies that the Turán number ex(n,F) = Θ(n3/2). In fact, we prove more,
ex(n, {F1, F2, F3}) = Θ(n3/2), where the Fi-s are specific members of F . This
extends previous bounds for the Turán number of triple systems containing no
Berge four cycles.

We also study ex(n,A) for all A ⊆ F . For 16 choices of A we show that
ex(n,A) = Θ(n3/2), for 92 choices of A we find that ex(n,A) = Θ(n2) and the
other 18 cases remain unsolved.

1 Introduction

A triple system H = (V,E) has vertex set V and E consists of some triples of V
(repeated triples are excluded). For any fixed family H of triple systems, the Turán
number ex(n,H) is the maximum number of triples in a triple system of n vertices
that is H-free, i.e., does not contain any member of H as a subsystem.

Our interest here is the family F of special four cycles: they have four distinct base
vertices v1, v2, v3, v4 and four triples wivivi+1 (indices are understood (mod 4)) where
the wjs are not necessarily distinct but wi 6= vj for any pair of indices 1 ≤ i, j ≤ 4.

There are seven non-isomorphic special four cycles. The linear (loose) four cycle
F1 is obtained when all wj-s are different and in F2 all wjs coincide. When two pairs
coincide we get either F3 (w1 = w2, w3 = w4) or F4 (w1 = w3, w2 = w4). The F4 is
the Pasch configuration. We define F5 with w1 = w2 = w3 (but w4 is different). In F6
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1F 2F 3F

Figure 1: The family of special four cycles F1, F2, F3 of Theorem 1

4F 5F 6F 7F

Figure 2: The family of the other four special four cycles F4, . . . , F7

we have w1 = w3 (and w2, w4 are different from w1 and from each other). When only
w1, w2 coincide we get F7. Set F = {F1, . . . , F7}. For the convenience of the reader,
the special four cycles are shown on Figure 1 and Figure 2.

Turán numbers of various members of F have been investigated before. Füredi [4]
proved that ex(n, F3) ≤ 7

2

(
n
2

)
. Mubayi [7] showed that ex(n, F2) = Θ(n5/2). Rödl and

Phelps [8] gave the bounds c1n
5/2 ≤ ex(n, F4) ≤ c2n

11/4. In fact, the upper bound
is Erdős’ upper bound [2] for ex(n,K3

2,2,2). The lower bound comes from a balanced
3-partite triple system where every vertex of the third partite class form a triple with
the edges of a bipartite C4-free graph between the first two partite classes.

We prove that ex(n,F) = Θ(n3/2), thus has the same order of magnitude as
ex(n,C4) for graphs. In fact, it is enough to exclude three of the special four cycles.

Theorem 1. ex(n, {F1, F2, F3}) = Θ(n3/2).

The family F of special four cycles is a subfamily of a wider class, the class of
Berge four cycles, where the vertices wi can be selected from the base vertices as well,
requiring only that the four triples wivivi+1 are different. Theorem 1 extends previous
similar upper bounds (Füredi and Özkahya [5], Gerbner, Methuku, Vizer [6]) where
the family of Berge four cycles were forbidden.

The appearance of the set {F1, F2, F3} is not accidental. If any of F1, F2, F3 is
missing from A ⊂ F then ex(n,A) is essentially larger than n3/2.
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• (C1) Ruzsa and Szemerédi [9] constructed triple systems on n vertices that do
not carry three triples on six vertices and have more than n2−ε triples for any
fixed ε. This provides an example which contains only F1 from F ,

• (C2) The
(
n−1
2

)
triples containing a fixed vertex from n vertices contains only

F2 from F ,

• (C3) Partition n vertices evenly into three parts, take a pairing between two
equal parts and extend each pair with all vertices of the third class to a triple.
This gives a triple system with approximately n2/9 triples and contains only F3

from F .

In Section 3 we discuss ex(n,A) for all A ⊆ F . It turns out that in 92 cases
ex(n,A) = Θ(n2) and 18 cases remain unsolved.

2 Proof of Theorem 1

Assume H is a triple system with n vertices containing no subsystem from the set
F1, F2, F3. Applying the standard approach (based on [3]), we may assume that H is
3-partite with vertex partition [A1, A2, A3] where |Ai| ∈ {bn/3c, dn/3e} and contains
at least 2/9 of the triples of the original triple system.

The triples of H define a bipartite graph B = [A1, A2] as follows. If (a1, a2, a3) is
a triple of H with ai ∈ Ai then a1a2 is considered as an edge of B. Define the label
L(a1, a2) of a1a2 ∈ E(B) as the set {z ∈ A3 : a1a2z ∈ E(H)}. Then

|E(H)| =
∑

a1a2∈E(B)

|L(a1, a2)|. (1)

Lemma 1. The bipartite graph B has at most O(n3/2) edges.

Proof of Lemma 1. We denote by N(x, y) the set of common neighbors (in B) of
x, y ∈ A2 in A1. Similarly, let N(u, v) be the set common neighbors of u, v ∈ A1 in
A2.

For distinct vertices x, y ∈ A2, define the digraph D = D(x, y) with vertex set
A3. For every u ∈ A1 such that u ∈ N(x, y) and ai ∈ L(u, x), aj ∈ L(u, y), a directed
edge aiaj is defined in D(x, y). We claim that D(x, y) is a very special digraph.

Claim 1.

• (1.1) There are no multiple loops or parallel directed edges in D(x, y),

• (1.2) There is at most one loop in D(x, y),
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• (1.3) Two non-loop edges of D(x, y) either intersect or |N(x, y)| ≤ 4.

Proof. A multiple loop aiai in D(x, y) would give a C4 in B with all edges containing
ai in their labels, this corresponds to an F2 in H – a contradiction. A multiple edge
aiaj would give a C4 = (x, u1, y, u2) in B where u1, u2 ∈ N(x, y), u1 6= u2 such that
the consecutive edges of C4 contain ai, aj, aj, ai ∈ A3 in their labels. This would give
an F3 in H – a contradiction again, proving (1.1).

Two distinct loops aiai, ajaj in D(x, y) can appear in two ways. Either we have
a C4 = (x, u1, y, u2) in B where u1, u2 ∈ N(x, y), u1 6= u2 such that the consecutive
edges of C4 contain ai, ai, aj, aj ∈ A3 in their labels, this would give an F3 in H, a
contradiction. Otherwise u = u1 = u2 and we have two multiedges xu, yu both con-
taining ai, aj in their labels, this gives an F2 in H with u in its center, a contradiction
again, proving (1.2).

Suppose that there exists two non-intersecting non-loop edges aiaj, akal in D(x, y).
If these edges are defined by u1, u2 ∈ N(x, y), u1 6= u2, we have a C4 = (x, u1, y, u2)
in B with four distinct elements in their labels, giving an F1 in H, a contradiction.
Thus we may assume that u1 = u2 = u and we have xu, yu in B with ai, ak and with
aj, al in their labels. Set

M = {v ∈ N(x, y) : v 6= u, |L(v, x) ∪ L(v, y)| ≥ 2}.

We claim that |M | ≤ 2. Indeed, consider v ∈ M , there is as, at ∈ A3 such that
as 6= at and xv, yv have labels containing as, at, respectively. Observe that either
{s, t} = {i, k} or {s, t} = {j, l} otherwise there is a C4 = (x, u, y, v) with four
distinct labels, giving an F1 in H, a contradiction. This implies that |M | ≤ 4.
However, it cannot happen that for two distinct vertices v, v′ ∈ M the coincidence
of the index pairs are {i, k} and {j.l}, respectively, because it would result again in
a C4 = (x, v, y, v′) with four distinct labels, a contradiction as above. Thus |M | ≤ 2
(equality is possible with edge pairs aiak, akai or ajal, alaj), proving the claim.

Observing that every vertex of N(x, y)\ ({u}∪M) defines a loop in D(x, y), (1.1)
and (1.2) implies that |N(x, y)| ≤ 4, proving (1.3) and Claim 1. �

A cherry on x ∈ A2 is defined as an incident edge pair, ux, vx ∈ E(B) such that
u, v ∈ A1, u 6= v and L(u, x) ∩ L(v, x) 6= ∅. Let C(x, y) be the number of cherries in
the subgraph of B induced on {x, y} ∪N(x, y). We claim

C(x, y) ≥
∑

a∈V (D(x,y))

d+(a) + d−(a)− 2, (2)

because there are atleast d+(a) − 1 cherries on x with L(u, x) ∩ L(v, x) = {a} and
d−(a)− 1 cherries on y with L(u, y) ∩ L(v, y) = {a}.

Claim 2. For any two distinct vertices x, y ∈ A2, C(x, y) ≥ |N(x, y)| − 4.
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Proof. It is certainly true for |N(x, y)| ≤ 4. Otherwise, using (1.3) from Claim 1,
we have pairwise intersecting edges in D(x, y).
Case 1. The edges of D(x, y) form a triangle (edges oriented two ways are allowed)
plus at most one loop. Therefore D(x, y) has at most seven edges thus 5 ≤ |N(x, y)| ≤
7. by (1.1) of Claim 1, d+(a) ≤ 2 for any vertex of the triangle. There are at least
|N(x, y)|−1 edges on the triangle, so there exists at least |N(x, y)|−4 vertices a with
d+(a) ≥ 2 resulting in at least |N(x, y)| − 4 cherries on x.
Case 2. All edges of D(x, y) (apart from a possible loop) contain a ∈ A3. For every
u ∈ N(x, y) (apart from one possible vertex which defines a loop) either ux or uy
has label a. Thus

∑
a∈V (D(x,y)) d

+(a) + d−(a) ≥ |N(x, y)| − 1 so (2) results in at least

|N(x, y)| − 3 cherries on x or on y, completing the proof of Claim 2. �

Claim 3.
∑

x,y∈A2
C(x, y) ≤

(|A1|
2

)
.

Proof. Every cherry counted on the left hand side is on some pair of A1. At most
one cherry can be on any (u, v) ∈ A1, otherwise (by (1.1) in Claim 1) we have one of
F2, F3. �

Applying Claims 2, 3 we get∑
x,y∈A2

(|N(x, y)| − 4) ≤
∑

x,y∈A2

C(x, y) ≤
(
|A1|

2

)
,

thus ∑
x,y∈A2

|N(x, y)| ≤ 4

(
|A2|

2

)
+

(
|A1|

2

)
≤ O(n2).

By convexity we get

|A1|
( |E(B)|
|A1|
2

)
≤
∑
u∈A1

(
d(u)

2

)
=
∑

x,y∈A2

|N(x, y)| ≤ O(n2),

therefore |E(B)| = O(n3/2), proving Lemma 1. �

To finish the proof of Theorem 1, we need to show that the presence of labels does
not affect strongly the edge count of Lemma 1. Let B∗ denote the subgraph of B
with the edges of at least three-element labels.

Proposition 1. If H is {F1, F2, F3}-free then B∗ is C4-free.

Proof. Assume C = (x, u, y, v, x) is a four-cycle in B∗. From the definition of B∗

there are three distinct elements, say a, b, c from the labels of three edges of C. The
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only way to avoid F1 is that the fourth edge has label {a, b, c}. However, the same
argument forces that all labels on C are equal to {a, b, c} giving (many) F3’s. �

We can consider B∗ as a bipartite multigraph obtained as the union of |A3| simple
bipartite graphs as follows. Set

E(z) = {(u, x) : u ∈ A1, x ∈ A2, (u, x, z) ∈ E(H) and |L(u, x)| ≥ 3},

then E(B∗) = ∪z∈A3E(z).

Proposition 2. For every z ∈ A3 there is no path in B∗ with four edges such that
its first and last edge is in E(z).

Proof. Suppose that edges e1, e2, e3, e4 form such a path for some z ∈ A3. Since each
edge of B∗ has multiplicity at least three, we can replace e2 by f2 and e3 by f3 so
that f2 ∈ E(z1), f3 ∈ E(z2) and z1, z2 are distinct and both different from z. Then
the four triples of H,

e1 ∪ {z}, f2 ∪ {z1}, f3 ∪ {z2}, e4 ∪ {z}

form an F1, contradiction. �

For any vertex x ∈ A2 let L(x) denote the subset of A3 that appears in some of
the labels on edges of B∗ incident to x.

Proposition 3. For distinct vertices x1, x2, x3, x4 ∈ A2,

|L(x1) ∩ L(x2) ∩ L(x3) ∩ L(x4)| ≤ 1.

Proof. Suppose on the contrary that we have z1, z2 ∈ A3 such that for i = 1, 2, 3, 4,
ei = {z1, xi, u2i−1}, fi = {z2, xi, u2i} are all triples of H.

An F1 is formed by the triples ei, fi, ej, fj if there is a pair i, j such that
u2i−1, u2i, u2j−1, u2j are all different. Thus, we may assume that for any pair 1 ≤ i <
j ≤ 4 there is an equality between elements u2i−1, u2i, u2j−1, u2j.

Let us call an equality u2i−1 = u2i horizontal, an equality u2i = u2j or u2i−1 = u2j−1
(for i 6= j) vertical, finally an equality u2i−1 = u2j (for i 6= j) diagonal. The terms to
distinguish equalities refer to an arrangement of the vertices ui into a 4 × 2 matrix
with u2i−1, u2i in row i. Observe the following facts.

1. F3 or F2 is formed by the triples ei, fi, ej, fj if the pair i 6= j have both horizontal
equalites holding. Thus, at most one horizontal equality may hold.

2. If there is pair i 6= j such that both vertical equalities hold, then a C4 can be
found in B∗ contradicting to Proposition 1. Similarly,
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3. if there is pair i 6= j such that both diagonal equalities hold, we get a contra-
diction with Proposition 1.

4. We get a four edge path contradicting to Proposition 2 if there are is a pair i, j
such that exactly one vertical equality holds, that is u2i = u2j and u2i−1, u2j−1
are different and different from u2i as well. (Symmetrically, if there are xi, xj

such that u2i−1 = u2j−1 and u2i, u2j are different and different from u2i−1 as
well.)

Facts 1–4 imply that there exists a triple of indices, i, j, k such that we have
exactly one diagonal equality on each pair of them. These are either in the form
u2i−1 = u2k, u2i = u2j−1, u2j = u2k−1 defining a six-cycle in B on the vertices
xi, xj, xk, u2i, u2j, u2k, giving (three) F1, for example ei, fk, fj, ej, or in the form u2i−1 =
u2k, u2i = u2j−1, u2j−1 = u2k that implies horizontal equality u2i−1 = u2i, a contradic-
tion. This proves Proposition 3. �

By Propositions 1, 2 the simple bipartite graph B(z) with edge set E(z) has no
cycles or paths with four edges. Therefore each component of B(z) is a double star.
Thus each B(z) can be written as the union of two graphs, S(z), T (z) where each
vertex of S(z) ∩ A2 and each vertex of T (z) ∩ A1 has degree one in B(z). Set

S = ∪z∈A3S(z), T = ∪z∈A3T (z).

By the definition of S, for every vertex x ∈ A2, we have |L(x)| = dS(x) where dS(x)
is the degree of vertex x in the (multi) graph S. By Proposition 3∑

x∈A2

(
|L(x)|

2

)
≤ 3

(
|A3|

2

)
therefore ∑

x∈A2

(
dS(x)

2

)
≤ 3

(
|A3|

2

)
.

Applying the same argument symmetrically for vertices of A1 and for the graph
T , we get ∑

u∈A1

(
dT (u)

2

)
≤ 3

(
|A3|

2

)
.

By the convexity argument, |E(B∗)| = |E(S)|+ |E(T )| = O(n3/2). By Lemma 1, we
also have |E(B)| = O(n3/2). Thus by (1) and the definition of B∗,

|E(H)| =
∑

a1a2∈E(B)

|L(a1, a2)| ≤ 2|E(B)|+ |E(B∗)| = O(n3/2),

concluding the proof of Theorem 1.
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3 Concluding remarks

Theorem 1 determines the order of magnitude (Θ(n3/2)) for the 16 subsets of F
containing F1, F2, F3 and we pointed out that for all other choices A ⊂ F , ex(n,A)
must be essentially larger. In this section we summarize what we know about these
cases. There is a trivial case, when A is empty and ex(n,A) =

(
n
3

)
. Furthermore, as

mentioned before, ex(n, F2) = Θ(n5/2) was proved by the first author (see in Mubayi
[7]). Thus we have 27 − 24 − 2 = 110 cases to consider. It turns out that in 92 cases
the order of magnitude is Θ(n2) (see Subsection 3.1) and only the remaining 18 cases
are left unsolved (see Subsection 3.2).

A simple but useful lemma compares Turán numbers of closely related triple sys-
tems. Assume G is a triple system and v, w ∈ V (G) is covered by e ∈ E(G). The
triple system obtained from G by removing e and adding the triple v, w, x where
x /∈ V (G) is called a fold out of G. For example F7 is a fold out of F3, F6 is a fold
out of F4.

Lemma 2. (Fold out lemma.) If G is a triple system and G1 is a fold out of G then
ex(n,G1) ≤ ex(n,G) + (|V (G)| − 2)

(
n
2

)
.

Proof. Suppose that a triple system H has n vertices and has more than ex(n,G) +
(|V (G)|−2)

(
n
2

)
triples. A triple of H is called bad if it contains a pair of vertices that

covered by at most |V (G)| − 2 triples of H, otherwise it is a good triple. Then H
has more than ex(n,G) good triples thus contains a copy of G with all triples good.
By definition, any pair of vertices in any triple of this copy of G is in more than
|V (G)| − 2 triples of H so some of them is suitable to define the required fold out G1

of G. �

3.1 When ex(n,A) = Θ(n2)

Here we collect all cases of A ⊂ F when we can prove that ex(n,A) = Θ(n2).

Proposition 4. Assume that A ⊂ F \F2 and A∩{F1, F3, F7} 6= ∅. Then ex(n,A) =
Θ(n2).

Proof. The first condition ensures that the members of A cannot be pierced by one
vertex, thus Construction (C3) shows that ex(n,A) = Ω(n2). On the other hand, F7

is a fold out of F3 and F1 is a fold out of F7 thus by Lemma 2 (and by the second
condition of the proposition)

ex(n, F1) ≤ ex(n, F7) + O(n2) ≤ ex(n, F3) + O(n2) ≤ 7

2

(
n

2

)
+ O(n2)

where the upper bound of ex(n, F3) is Füredi’s result [4]. �
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Proposition 5. Assume that A ⊂ F \ F3 and A ∩ {F1, F7} 6= ∅. Then ex(n,A) =
Θ(n2).

Proof. To show that ex(n, F ) = Ω(n2), consider the Construction (C3), it contains
only F3 from F . The upper bound follows by the argument of Proposition 4. �

Proposition 6. Assume that {F2, F3} ⊂ A ⊂ {F2, F3, F4, F5, F7}. Then ex(n,A) =
Θ(n2).

Proof. To show that ex(n,A) = Ω(n2), consider

• (C4) Steiner triple systems without F4 (the Pasch configuration), they do not
contain any member of A.

The upper bound follows from [4] since F3 ∈ A. �

Proposition 7. Assume that {F2, F3, F6} ⊂ A ⊂ {F2, F3, F5, F6, F7}. Then ex(n,A) =
Θ(n2).

Proof. To show that ex(n,A) = Ω(n2), consider

• (C5) Steiner triple systems without F6 (projective Steiner triple systems), they
do not contain any member of A.

The upper bound follows again from [4] since F3 ∈ A. �
Note that Proposition 4 covers 56 cases, Proposition 5 adds 24 further cases,

Propositions 6, 7 add 8 plus 4 further cases. These 92 cases are the ones when
ex(n,A) = Θ(n2) follows from known results.

3.2 Unsolved cases

The 18 unsolved cases are grouped as follows.

• 1. ex(n, {A ∪ F6}) where A ⊆ {F2, F4, F5} ( 8 cases )

• 2. ex(n, {F2, F5}), ex(n, F5)

• 3. ex(n, {F2, F4, F5}), ex(n, {F4, F5})

• 4. ex(n, {F2, F4}), ex(n, F4)

• 5. ex(n,A) where {F2, F3, F4, F6} ⊆ A ⊆ {F2, F3, F4, F5, F6, F7} (4 cases)
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The upper bounds for the unknown cases can be compared by using Lemma 2.
For example, observing that F6 is a fold out of F4 and of F5, moreover F5 is a fold
out of F2, Lemma 2 implies

Proposition 8. Let A be any subset of {F2, F4, F5}. Then

ex(n, F6) ≤ ex(n, {A ∪ F6}) ≤ ex(n, F6) + 7

(
n

2

)
.

A lower bound Ω(n2) for the first four groups of unknown cases can be obtained
from Construction (C3). Lower bounds for the fifth group of unknown cases can be
given by well studied functions introduced in [1]. Let ex(n, (6, 3)) be the maximum
number of triples in a triple system that does not contain three triples inside any six
vertices. Since all members of F except F1 contain three triples inside six vertices
an almost quadratic lower bound of Construction (C1) comes from [9] for the four
unsolved cases in group 5. A quadratic upper bound is from [4] since F3 ∈ A. Thus
we get

Proposition 9. If {F2, F3, F4, F6} ⊆ A ⊆ {F2, F3, F4, F5, F6, F7} then

ex(n, (6, 3)) ≤ ex(n,A) = O(n2)

.

In fact, the lower bound of Proposition 9 can be changed to ex(n, (7, 4)) (the maximum
number of triples in a triple system that does not contain four triples inside any seven
vertices).
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