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Abstract

A path-matching of order p is a vertex disjoint union of nontrivial paths spanning p

vertices. Burr and Roberts, and Faudree and Schelp determined the 2-color Ramsey number
of path-matchings. In this paper we study the multicolor Ramsey number of path-matchings.
Given positive integers r, p1, . . . , pr, define R

PM (p1, . . . , pr) to be the smallest integer n such
that in any r-coloring of the edges of Kn there exists a path-matching of color i and order
at least pi for some i ∈ [r]. Our main result is that for r ≥ 2 and p1 ≥ · · · ≥ pr ≥ 2, if
p1 ≥ 2r − 2, then

R
PM (p1, . . . , pr) = p1 − (r − 1) +

r
∑

i=2

⌈

pi

3

⌉

.

Perhaps surprisingly, we show that when p1 < 2r − 2, it is possible that RPM (p1, . . . , pr)
is larger than p1 − (r − 1) +

∑r

i=2

⌈

pi
3

⌉

, but in any case we determine the correct value to
within a constant (depending on r); i.e.

p1 − (r − 1) +

r
∑

i=2

⌈

pi

3

⌉

≤ R
PM (p1, . . . , pr) ≤

⌈

p1 −
r

3
+

r
∑

i=2

pi

3

⌉

.

As a corollary we get that in every r-coloring of Kn there is a monochromatic path-

matching of order at least 3
⌊

n

r+2

⌋

, which is essentially best possible. We also determine

RPM (p1, . . . , pr) in all cases when the number of colors is at most 4.
The proof of the main result uses a minimax theorem for path-matchings derived from

a result of Las Vergnas (extending Tutte’s 1-factor theorem) to show that the value of
RPM (p1, . . . , pr) depends on the block sizes in covering designs (which can be also formulated
in terms of monochromatic 1-cores in colored complete graphs). While block sizes in covering
designs have been studied intensively before, they seem to have only been studied in the
uniform case (when all block sizes are equal). Then we obtain the result above by giving
estimates on the block sizes in covering designs in the arbitrary (non-uniform) case.

1 Introduction

One of the seminal results in graph-Ramsey theory is the following theorem of Cockayne and
Lorimer [4] which gives the r-color Ramsey number of a matching. Given positive integers
r, p1, . . . , pr let RM (p1, . . . , pr) be the smallest integer n such that in every r-coloring of the
edges of Kn, there exists a matching of color i and order at least pi for some i ∈ [r].
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Theorem 1.1 (Cockayne, Lorimer [4]). Let r ≥ 2 and let p1 ≥ p2 ≥ · · · ≥ pr ≥ 2. Then

RM (p1, . . . , pr) = p1 − (r − 1) +

r
∑

i=2

⌈pi
2

⌉

.

Theorem 1.1 is sharp, shown by the coloring [p1−1,
⌈

p2

2

⌉

−1, . . . ,
⌈

pr

2

⌉

−1] which is defined as
follows: Given integers r ≥ 2 and t1, . . . , tr ≥ 0, let n = t1 + · · ·+ tr and define [t1, t2, . . . , tr] to
be the r-coloring of Kn obtained by partitioning V (Kn) as {A1, . . . , Ar} such that |Ai| = ti for
all i ∈ [r], and coloring every edge {x, y} with the maximum j for which {x, y} has a non-empty
intersection with Aj .

We denote by Pk the path with k vertices and define a path-matching as a vertex disjoint
union of paths, each with at least 2 vertices. The order of a path-matching P is |V (P )|; i.e.
the number of vertices spanned by P . A path-matching can clearly be written as vertex disjoint
union of P2-s and P3-s. Thus the maximum order of a path-matching in a graph is equal to
the maximum order of a path-matching containing only P2 and P3 components. We note that
sometimes a path-matching is called a linear forest in the literature [3, 6].

Here we study the Ramsey problem for path-matchings: what is the order of the largest
monochromatic path-matching we can find in every r-coloring of the edges of Kn? Note that this
belongs to the part of Ramsey theory where the target graph is a large monochromatic member
of a family instead of a specified graph. Many other families have been investigated, for example
the family of connected graphs, graphs without isolated vertices, highly connected graphs, graphs
of small diameter, etc. A survey on problems of this flavor is [9].

Given positive integers r, p1, . . . , pr, define RPM (p1, . . . , pr) to be the smallest integer n such
that in any r-coloring of the edges of Kn there exists a path-matching of color i and order at least
pi for some i ∈ [r]. If p1 = · · · = pr = p, we sometimes write RPM

r (p) instead of RPM (p, . . . , p).
Burr and Roberts [3] proved that for all integers p ≥ 2, RPM (p, p) =

⌈

4p
3

⌉

−1. Later, Faudree
and Schelp [6] proved a non-symmetric version; that is, for all integers p1 ≥ p2 ≥ 2,

RPM (p1, p2) = p1 +
⌈p2
3

⌉

− 1.

(In fact, in both cases above the authors prove a stronger statement where the formula takes into
account the number of paths of odd length.) We extend these results to r-colorings with r ≥ 3.

Our main result is that we completely determine RPM provided p1 is not too small compared
to r. Note the similarity between Theorem 1.1 and Theorem 1.2.

Theorem 1.2. Let r ≥ 3 and let p1 ≥ p2 ≥ · · · ≥ pr ≥ 2 be integers with p1 ≥ 4. If p1 ≥
2r − 3−∑r

i=2 3
(⌈

pi

3

⌉

− pi

3

)

, then

RPM (p1, . . . , pr) = p1 − (r − 1) +

r
∑

i=2

⌈pi
3

⌉

.

The lower bound in Theorem 1.2 comes from the extremal coloring

[

p1 − 1,
⌈p2
3

⌉

− 1, . . . ,
⌈pr
3

⌉

− 1
]

.

Note that if at least r − 3 of the terms p2, . . . , pr were congruent to 1 mod 3, then p1 ≥
2r − 3 − ∑r

i=2 3
(⌈

pi

3

⌉

− pi

3

)

reduces to p1 ≥ 3 and thus we have an exact result with no extra
conditions.

It would be natural to guess that the requirement that p1 be sufficiently large in terms of r is

unnecessary. However, in Corollary 3.5, we will prove that if say 3
2

⌊√
8r+1+1

2

⌋

> p1 ≥ · · · ≥ pr ≥ 3

with all pi being divisible by 3, then, perhaps surprisingly,

RPM (p1, . . . , pr) > p1 − (r − 1) +

r
∑

i=2

⌈pi
3

⌉

.
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Thus the complete determination of RPM (p1, . . . , pr) is still open and as we will see later, deter-
mining RPM (p1, . . . , pr) when p1 is fixed and r is large may be difficult because of the connection
with covering designs.

However, our next main result shows that in any case we can determine RPM (p1, . . . , pr) to
within a constant (depending on r).

Theorem 1.3. Let r ≥ 2 and let p1 ≥ p2 ≥ · · · ≥ pr ≥ 2 be integers. Then

RPM (p1, . . . , pr) ≤
⌈

p1 −
r

3
+

r
∑

i=2

pi
3

⌉

.

We get the following corollary of Theorem 1.3 in the case where all the pi-s are equal (stated
here using the inverse formulation).

Corollary 1.4. Let r ≥ 2 be an integer. Every r-coloring of Kn contains a monochromatic

path-matching of order at least 3
⌊

n
r+2

⌋

.

This is sharp if n is divisible by r+2 as shown by the extremal coloring
[

3n
r+2 ,

n
r+2 , . . . ,

n
r+2

]

.

We note that establishing Theorem 1.2 requires a bit more technical work than Theorem
1.3; however, since Theorem 1.2 is tight in many more cases than Theorem 1.3, it is worth it.
However, if one was only interested in Corollary 1.4, Theorem 1.3 would suffice.

2 Covering designs, 1-cores, and a deficiency formula for

path-matchings

The proof of Theorems 1.2 and 1.3 are based on a minimax theorem on path-matchings derived
from a result of Las Vergnas (which provides an analogue of Tutte’s 1-factor theorem for path-
matchings). Interestingly, when we apply this minimax theorem to r-colored complete graphs,
we need a suitable estimate on block sizes in covering designs (which can be also formulated as
an estimate on the sizes of 1-cores in colored complete graphs).

We describe all of this in detail in the following subsections.

2.1 Ramsey numbers of covering designs

A covering design is a family of sets called blocks in an n-element set V such that each pair of
V is covered by at least one block. If all blocks have the same size p, then C(n, p) is used to
denote the minimum number of blocks in a covering design. The asymptotics of C(n, p) for fixed
p was determined by Erdős and Hanani [5] and the breakthrough of R. M. Wilson [18] provided
equality with constructing block designs for every admissible n ≥ n0(p).

One can formulate the inverse problem of finding C(n, p) as a Ramsey problem. For given
r, p find the smallest n = Rr(p) such that every covering design on n vertices with r blocks must
contain a block of size at least p. Mills [13] determined the asymptotic of Rr(p)/p for r ≤ 13 and
this ratio is also known for values of r in the form q2 + q + 1 or q2 + q when PG(2, q) exists (see
the excellent survey of Füredi [7, Chapter 7]). This problem was also studied, using a different
formulation by Horák and Sauer [10]. However, there is no conjecture for the limit of Rr(p)/p
for general r.

For our goals we consider covering designs with variable block sizes, which leads to the off-
diagonal case of the Ramsey number Rr(p). In the next section we will obtain estimates for this
Ramsey number.

2.2 Ramsey numbers of 1-cores

The Ramsey number of covering designs can be reformulated in graph theoretic language as
the Ramsey number of graphs with minimum degree at least one, i.e. graphs without isolated
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vertices. With a slight abuse of the original definition, we say that G is a 1-core if G has minimum
degree at least one. (The k-core of a graph G was defined by Seidman [17] as the largest connected
subgraph of G with minimum degree at least k, subsequently many papers [1] and textbooks [2]
define it without the connectivity condition.) To see that the Ramsey number of the family of
1-cores is the same as the Ramsey number of a covering design, given an r-coloring of Kn, we
can replace the 1-core of color i with a clique of color i (allowing for edges to have multiple
colors) without changing the size of the 1-core and thus each clique corresponds to a block in the
covering design language.

Given positive integers r, p1, . . . , pr, let R1C(p1, . . . , pr) be the smallest integer n such that
in every r coloring of the edges of Kn, there exists a 1-core of color i and order at least pi for
some i ∈ [r]. Equivalently, R1C(p1, . . . , pr) is the smallest integer n such that the edges of Kn

cannot be covered with cliques of order p1 − 1, . . . , pr − 1. If p1 = · · · = pr = p, we write R1C
r (p)

instead of R1C(p, . . . , p). We also note that Observation 2.1 and Proposition 2.2 apply with R1C

in place of RPM .
First note the following which essentially means that we can assume pi ≥ 3 for all i ∈ [r].

Observation 2.1. For all integers r ≥ 2 and p1 ≥ p2 ≥ · · · ≥ pr ≥ 2, RPM (p1, . . . , pr) =
RPM (p1, . . . , pr, 2) = RPM (p1, . . . , pr, 1) and similarly for R1C .

Next we have the following result when p1 = · · · = pr = 3.

Proposition 2.2. Let r ≥ 2 be an integer. Then RPM
r (3) = R1C

r (3) is the smallest integer n

such that
(

n

2

)

> r. In other words, RPM
r (3) = R1C

r (3) =
⌊√

8r+1+1
2

⌋

+ 1.

Proof. If
(

n
2

)

> r, then in every r-coloring of Kn, some color must be used more than once. If
(

n
2

)

≤ r, then there exists an r-coloring of Kn where each color is used at most once.

We now give estimates on R1C(p1, . . . , pr) where the focus is on the off-diagonal case, which
to the best of our knowledge has not been studied.

In the language of covering designs, we have R1C
r (p) ≤ n if and only if C(n, p−1) > r. So the

vast literature on covering designs gives upper bounds on R1C
r (p). A simple lower bound given

by Erdős and Hanani [5] is C(v, p− 1) ≥
(

v
2

)

/
(

p−1
2

)

= v(v−1)
(p−1)(p−2) . A more refined lower bound is

the so-called Schönheim bound [15] , which says C(v, p− 1) ≥
⌈

v
p−1

⌈

v−1
p−2

⌉⌉

.

This first Observation is just a generalization of the Erdős-Hanani lower bound in the non-
uniform case. It says that if the total number of edges in cliques of orders p1 − 1, . . . , pr − 1
respectively is less than the number of edges in Kn, then it is not possible to cover Kn with
those cliques. While this Observation is almost trivial, there are situations where this is the best
estimate to use.

Observation 2.3. Let n, r ≥ 2 and let p1 ≥ p2 ≥ · · · ≥ pr ≥ 2 be integers. If

r
∑

i=1

(

pi − 1

2

)

<

(

n

2

)

, (1)

then R1C(p1, . . . , pr) ≤ n.

The next bound is essentially a non-uniform generalization of results in [10] and [13]. Again
there are situations where this next bound is the best estimate to use. This result can be seen
to be tight when a projective plane of order q exists, ℓ ∈ {0, 1} and p1 = · · · = pr =

⌈

(q+1)n
q2+q+ℓ

⌉

.

Proposition 2.4. Let n, r ≥ 2 and let p1 ≥ p2 ≥ · · · ≥ pr ≥ 2 be integers. If there exists an
integer 1 ≤ t ≤ r − 1 such that

p1 ≤
⌈

n+ t− 1

t

⌉

and

r
∑

i=1

(pi − 1) < (t+ 1)n, (2)

then R1C(p1, . . . , pr) ≤ n.

4



We say that a vertex sees a color if it is incident with an edge of that color.

Proof. Suppose there exists an integer 1 ≤ t ≤ r− 1 such that p1 ≤
⌈

n+t−1
t

⌉

and
∑r

i=1(pi− 1) <
(t+1)n and consider an r-edge coloring of a complete graph on a set V of vertices where |V | = n.
For all i ∈ [r], let Si be the 1-core of color i and suppose for contradiction that |Si| ≤ pi − 1 for
all i ∈ [r]. So for all i ∈ [r], there exists at least n− pi + 1 vertices which do not see color i.

So on average, the number of colors a vertex does not see is at least

∑r

i=1(n− pi + 1)

n
= r −

∑r

i=1(pi − 1)

n
> r − (t+ 1).

This implies some vertex v sees at most t colors. So v is contained in a monochromatic 1-core of
order at least 1 +

⌈

n−1
t

⌉

=
⌈

n+t−1
t

⌉

contradicting the original assumption.

Now we come to our main result of this section. We note that this result can be seen to be
tight in certain cases, such as when either of the first two terms are the maximum.

Theorem 2.5. Let r ≥ 2 and let p1 ≥ p2 ≥ · · · ≥ pr ≥ 2 be integers. Then

R1C(p1, . . . , pr) ≤ max

{

p1,

⌈

p1 + p2 + p3
2

⌉

− 1,

⌈

p1
3

− r

3
+

r
∑

i=1

pi
3

⌉}

.

Proof. Consider an r-edge coloring of a complete graph on a set V of vertices where

|V | = n = max

{

p1,

⌈

p1 + p2 + p3
2

⌉

− 1,

⌈

p1
3

− r

3
+

r
∑

i=1

pi
3

⌉}

. (3)

For all i ∈ [r], let Si be the 1-core of color i and suppose for contradiction that |Si| ≤ pi − 1
for all i ∈ [r].

Consider the partition V = X1 ∪ X2 ∪ X3, where for i ∈ [2], Xi is the set of vertices which
are incident with edges of exactly i different colors and X3 is the set of vertices incident with
edges of at least 3 different colors. Note that every vertex is incident with edges of at least two
different colors (i.e. X1 = ∅); otherwise there is a monochromatic 1-core on n vertices, but by
(3) and the indirect assumption, we have p1 ≤ n ≤ p1 − 1, a contradiction.

Note that

|V | = n ≤
r

∑

i=1

|Si| − |X2| − 2|X3|, (4)

since the vertices in X2 are counted twice in the sum
∑r

i=1 |Si|, and the vertices in X3 are counted
at least three times in the sum

∑r

i=1 |Si|.
Claim 1. |X2| ≤ p1 − 1.

Proof. Since the graph induced by X2 is locally 2-colored (i.e. each vertex sees at most two
colors), either there exists a color i such that every vertex in X2 sees color i, in which case by
the indirect assumption, |X2| ≤ pi − 1 ≤ p1 − 1, or there are a total of at most three colors used
on X2. We now show that the latter is impossible (because of the choice of n).

Suppose there is no color seen by every vertex in X2 and let i, j, k be the three colors used
on X2. In this case, it can be easily seen that X2 contains a set of three vertices {a, b, c} such
that ab has color i, ac has color j and bc has color k. Since every edge incident with a has color
i or j, every edge incident with b has color i or k, and every edge incident with c has color j or
k, it is the case that for all v ∈ V \ {a, b, c}, v sends at least two of the colors i, j, k to {a, b, c}.
So, regardless of whether X3 = ∅ or not, every vertex in V sees at least two of the colors i, j, k
and thus

2n ≤ |Si|+ |Sj |+ |Sk| ≤ |S1|+ |S2|+ |S3| ≤ p1 + p2 + p3 − 3,

contradicting the choice of n.

5



Now by Claim 1 we have
|X3| = n− |X2| ≥ n− p1 + 1. (5)

Then from (4) and (5) we get

n ≤
r

∑

i=1

|Si| − |X2| − 2|X3| ≤
r

∑

i=1

pi − n− |X3| − r ≤
r

∑

i=1

pi − n− (n− p1 + 1)− r

which, by (3), implies

3

⌈

p1
3

− r

3
+

r
∑

i=1

pi
3

⌉

≤ 3n ≤ p1 − (r + 1) +
r

∑

i=1

pi,

a contradiction.

3 Large monochromatic path-matchings

3.1 Deficiency formula for path-matchings

The deficiency formula for path-matchings can be derived from a special case of a result of Las
Vergnas [11]. Recall that a path-matching can always be written as vertex disjoint union of P2-s
and P3-s, so the maximum order of a path-matching in a graph is equal to the maximum order
of a path-matching containing only P2 and P3 components. Let f, g be integer-valued functions
on the vertex set V of a graph G such that 0 ≤ g(v) ≤ 1 ≤ f(v) for all v ∈ V . A (g, f)-factor is a
subgraph F of G satisfying g(v) ≤ dF (v) ≤ f(v) for all v ∈ V . Las Vergnas [11] gave a necessary
and sufficient condition for the existence of a (g, f) factor of a graph. If g ≡ 1, f ≡ 2 then the
existence of a (g, f)-factor is equivalent to the existence of a perfect path-matching; that is, a
path-matching covering all vertices of G. In this case the condition simplifies and can be stated
as follows. Let qG(S) denote the number of isolated vertices of a graph G in a set S ⊂ V (G).

Theorem 3.1 (Las Vergnas [11]). There exists a perfect path-matching in G if and only if
2|X | ≥ qG(V (G) \X) for all X ⊂ V (G).

This result is “self-refining” in the sense that one can easily derive from it the minimax
formula for the deficiency of path-matchings (see [12, Exercise 3.1.16] in which Berge’s formula
is derived from Tutte’s theorem). Let pd(G) be the path-matching deficiency of G, the number
of vertices uncovered by any path-matching of maximum order in G.

Corollary 3.2. pd(G) = max{qG(V (G) \X)− 2|X | : X ⊂ V (G)}.

We call a set X achieving the maximum in Corollary 3.2 an LV set.

3.2 1-cores and path-matchings

Our main general result shows that the Ramsey numbers for path-matchings are tied to the
Ramsey numbers for 1-cores in a fundamental way. First, given positive integers r ≥ 2, p1 ≥
p2 ≥ · · · ≥ pr ≥ 2, and d, let

fd(p1, . . . , pr) = max{R1C(p1 − dx1, . . . , pr − dxr) +

r
∑

i=1

xi : 0 ≤ xi <
pi
d

for all i ∈ [r]}, (6)

where the xi’s are integers.

Theorem 3.3. Let r ≥ 2 and let p1 ≥ p2 ≥ · · · ≥ pr ≥ 2 be integers. Then

RPM (p1, . . . , pr) = f3(p1, . . . , pr).

6



For instance this result says RPM (6, 6, 6, 6, 6) = max{R1C(6, 6, 6, 6, 6), R1C(6, 6, 6, 6, 3) +
1, R1C(6, 6, 6, 3, 3) + 2, R1C(6, 6, 3, 3, 3) + 3, R1C(6, 3, 3, 3, 3) + 4, R1C(3, 3, 3, 3, 3) + 5}.

The following example provides the lower bound in Theorem 3.3.

Example 3.4. Let r, p1, . . . , pr, x1, . . . , xr be integers with r ≥ 2, p1 ≥ p2 ≥ · · · ≥ pr ≥ 2, and
for all i ∈ [r], 0 ≤ xi <

pi

3 . If n = R1C(p1 − 3x1, . . . , pr − 3xr) +
∑r

i=1 xi, then there exists an
r-coloring of Kn−1 such that for all i ∈ [r], the largest path-matching of color i has order at most
pi − 1.

Proof. Set t = R1C(p1 − 3x1, . . . , pr − 3xr) and start with an r-coloring of Kt−1 such that for
all i ∈ [r], the largest 1-core of color i has order at most pi − 3xi − 1 which must exist by the
definition of R1C(p1 − 3x1, . . . , pr − 3xr). For all i ∈ [r], add a set Xi of vertices such that
|Xi| = xi and color all edges incident with Xi with color i. This gives a coloring of Kn−1 such
that for all i ∈ [r], the largest path-matching of color i has order at most pi−3xi−1+3xi = pi−1
(by Corollary 3.2 for instance).

The following proof is inspired by Petrov’s [14] non-inductive proof of Theorem 1.1 (for
another similar proof see [19]).

Proof of Theorem 3.3. The lower bound follows from Example 3.4.
For the upper bound, consider an r-edge coloring of a complete graph on a vertex set V with

|V | = n = f3(p1, . . . , pr).
For all i ∈ [r], let Gi the subgraph induced by the edges of color i. Suppose, for contradiction,

that for all i ∈ [r] the largest path-matching in Gi has order at most pi− 1. For all i ∈ [r], apply
Corollary 3.2 to get an LV set Xi and corresponding independent set Si such that

|Si| ≥ 2|Xi|+ n− (pi − 1), (7)

and note that since |Si| ≤ n− |Xi|, we have

0 ≤ |Xi| <
pi
3
.

Let X = ∪r
i=1Xi and let Y = V \X . For all i ∈ [r] we have

|Si ∩ Y | ≥ |Si| − (|X | − |Xi|) ≥ 2|Xi|+ |V | − (pi − 1)− (|X | − |Xi|) = |Y | − (pi − 3|Xi| − 1).

In other words, the largest 1-core of color i in the graph Gi[Y ] has order at most pi − 3|Xi| − 1.
We have by the definition of n,

|Y | = n− |X | ≥ n−
r

∑

i=1

|Xi| ≥ R1C(p1 − 3|X1|, . . . , pr − 3|Xr|)

so Y contains a 1-core of color i and order at least pi − 3|Xi| for some i ∈ [r], contradicting our
original assumption.

Now we obtain lower bounds on RPM (p1, . . . , pr) as a corollary of Theorem 3.3.

Corollary 3.5. Let r, p1, . . . , pr be integers with r ≥ 2, p1 ≥ p2 ≥ · · · ≥ pr ≥ 2 and let s be the
number of pi’s which are divisible by 3. Then the following hold:

(i) RPM (p1, . . . , pr) ≥ p1 − (r − 1) +
∑r

i=2

⌈

pi

3

⌉

,

(ii) RPM (p1, . . . , pr) ≥ R1C
s (3) +

∑r

i=1(
⌈

pi

3

⌉

− 1) =
⌊√

8s+1+1
2

⌋

+ 1 +
∑r

i=1(
⌈

pi

3

⌉

− 1).

Note that under certain circumstances, such as all pi being divisible by 3 and p1 < 3
2

⌊√
8r+1+1

2

⌋

,

we have
⌊
√
8r + 1 + 1

2

⌋

+ 1 +
r

∑

i=1

(
⌈pi
3

⌉

− 1) > p1 − (r − 1) +
r

∑

i=2

⌈pi
3

⌉

.

For instance, we have RPM
10 (6) > 6− (10− 1) + (10− 1) · 2 = 15.
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Proof. (i) This follows from the fact that

max{R1C(p1 − 3x1, . . . , pr − 3xr) +

r
∑

i=1

xi : 0 ≤ xi <
pi
3

for all i ∈ [r]}

≥ R1C(p1, p2 − 3(
⌈p2
3

⌉

− 1), . . . , pr − 3(
⌈pr
3

⌉

− 1)) +

r
∑

i=2

(
⌈pi
3

⌉

− 1) ≥ p1 +

r
∑

i=2

(
⌈pi
3

⌉

− 1),

where the last inequality holds since in general we have R1C(a1, . . . , ar) ≥ a1 for all a1 ≥ · · · ≥ ar.
(ii) This follows from the fact that

max{R1C(p1 − 3x1, . . . , pr − 3xr) +

r
∑

i=1

xi : 0 ≤ xi <
pi
3

for all i ∈ [r]}

≥ R1C(p1 − 3(
⌈p1
3

⌉

− 1), p2 − 3(
⌈p2
3

⌉

− 1), . . . , pr − 3(
⌈pr
3

⌉

− 1)) +

r
∑

i=1

(
⌈pi
3

⌉

− 1)

= R1C
s (3) +

r
∑

i=1

(
⌈pi
3

⌉

− 1) =

⌊
√
8s+ 1 + 1

2

⌋

+ 1+

r
∑

i=1

(
⌈pi
3

⌉

− 1)

where the last equality holds by Proposition 2.2.

Now we show how Theorem 3.3 implies the result for two colors (which follows from the result
of Faudree and Schelp [6]). However, the proof of their result is lengthy and relies on the 2-color
Ramsey number of paths determined in [8]. Therefore the short proof below is perhaps of some
interest.

Note that since a graph or its complement is connected, we clearly have

R1C(p1, p2) = max{p1, p2}. (8)

Corollary 3.6. Let p1 ≥ p2 ≥ 2 be integers. Then

RPM (p1, p2) = p1 +
⌈p2
3

⌉

− 1.

Proof. By (8), we have for all 0 ≤ x1 < p1

3 , 0 ≤ x2 < p2

3 ,

R1C(p1− 3x1, p2− 3x2)+x1+x2 ≤ max{p1− 3x1, p2− 3x2}+x1+x2 ≤ p1+x2 ≤ p1+
⌈p2
3

⌉

− 1.

Thus by Theorem 3.3 we have RPM (p1, p2) = f3(p1, p2) ≤ p1 +
⌈

p2

3

⌉

− 1.

3.3 The proofs of Theorem 1.2 and Theorem 1.3

We obtain the proofs by combining using Theorem 2.5 to get an appropriate upper bound on
f3(p1, . . . , pr) at which point the result follows from Theorem 3.3. So the proof just reduces to
checking some technical inequalities which we first collect here.

Fact 3.7. Let r ≥ 3 and let a1 ≥ a2 ≥ · · · ≥ ar ≥ 2 be integers with a1 ≥ 3.

(i)
⌈

2a1

3 − r
3 +

∑r

i=1
ai

3

⌉

≥
⌈

a1+a2+a3

2

⌉

− 1

(ii) a1−(r−1)+
∑r

i=2

⌈

ai

3

⌉

≥
⌈

a1

3 − r
3 +

∑r

i=1
ai

3

⌉

if and only if a1 ≥ 2r−3−∑r

i=2 3
(⌈

ai

3

⌉

− ai

3

)

.

(iii) a1 − (r − 1) +
∑r

i=2

⌈

ai

3

⌉

≥
⌈

a1+a2+a3

2

⌉

− 1 +
∑r

i=4(
⌈

ai

3

⌉

− 1) if and only if a1 ≥ 2 +
(

a2 − 2
⌈

a2

3

⌉)

+
(

a3 − 2
⌈

a3

3

⌉)

. In particular, this holds when a1 ≥ 4.
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Proof. (i) First note that
⌈

2a1

3 − r
3 +

∑r

i=1
ai

3

⌉

≥ a1 +
a2

3 + a3

3 − 1 and since a1 ≥ 3, we have

a1 +
a2

3 + a3

3 − 1 ≥ a1+a2+a3−1
2 ≥

⌈

a1+a2+a3

2

⌉

− 1

(ii) Since a1−(r−1)+
∑r

i=2

⌈

ai

3

⌉

is an integer, a1−(r−1)+
∑r

i=2

⌈

ai

3

⌉

≥
⌈

a1

3 − r
3 +

∑r

i=1
ai

3

⌉

is equivalent to a1 − (r − 1) +
∑r

i=2

⌈

ai

3

⌉

≥ a1

3 − r
3 +

∑r

i=1
ai

3 which holds precisely when

a1 ≥ 2r − 3−∑r

i=2 3(
⌈

ai

3

⌉

− ai

3 ).

(iii) Since a1 − (r − 1) +
∑r

i=2

⌈

ai

3

⌉

is an integer, a1 − (r − 1) +
∑r

i=2

⌈

ai

r

⌉

≥
⌈

a1+a2+a3

2

⌉

−
1+

∑r

i=4(
⌈

ai

3

⌉

− 1) is equivalent to a1 +
⌈

a2

3

⌉

+
⌈

a2

3

⌉

≥ a1+a2+a3

2 +1 which holds precisely when

a1 ≥ 2 +
(

a2 − 2
⌈

a2

3

⌉)

+
(

a3 − 2
⌈

a3

3

⌉)

.

Note that if a1 ≥ 4, we have a1 ≥ 2 + 2
(

a1 − 2
⌈

a1

3

⌉)

≥ 2 +
(

a2 − 2
⌈

a2

3

⌉)

+
(

a3 − 2
⌈

a3

3

⌉)

where the last inequality holds since a1 ≥ a2 ≥ a3.

Proof of Theorem 1.2 and Theorem 1.3. Let r ≥ 3 and let p1 ≥ · · · ≥ pr ≥ 2 (note that we
already dealt with the case when r = 2 in Corollary 3.6). Let x1, . . . , xr be integers with
0 ≤ xi < pi

3 for all i ∈ [r]. We have p1 ≥ · · · ≥ pr, but it might not be the case that
p1 − 3x1 ≥ · · · ≥ pr − 3xr, so we let q1 ≥ · · · ≥ qr be integers and we let π be a permutation on
[r] such that pπ(i) − 3xπ(i) = qi for all i ∈ [r].

To prove Theorem 1.3, we note that by Theorem 2.5 we have

R1C(p1 − 3x1, . . . , pr − 3xr) ≤ max

{

q1,

⌈

q1 + q2 + q3
2

⌉

− 1,

⌈

q1
3

− r

3
+

r
∑

i=1

qi
3

⌉}

≤
⌈

2q1
3

− r

3
+

r
∑

i=1

qi
3

⌉

=

⌈

2pπ(1)
3

− 2xπ(1) −
r

3
+

r
∑

i=1

(
pi
3
− xi)

⌉

.

where the second inequality is by applying Fact 3.7.(i) (with ai = qi) to the second term in the
maximum (the inequality is trivial for the other two terms in the maximum).

So we have

R1C(p1 − 3x1, . . . , pr − 3xr) +

r
∑

i=1

xi ≤
⌈

2pπ(1)

3
− 2xπ(1) −

r

3
+

r
∑

i=1

pi
3

⌉

≤
⌈

p1 −
r

3
+

r
∑

i=2

pi
3

⌉

,

and thus by Theorem 3.3, RPM (p1, . . . , pr) = f3(p1, . . . , pr) ≤
⌈

p1 − r
3 +

∑r

i=2
pi

3

⌉

as desired.
Next we prove Theorem 1.2. The lower bound follows from Corollary 3.5.(i). For the upper

bound, we set m := max
{

q1,
⌈

q1+q2+q3
2

⌉

− 1,
⌈

q1
3 − r

3 +
∑r

i=1
qi
3

⌉}

and note that by Theorem
2.5, we have

R1C(p1 − 3x1, . . . , pr − 3xr) +

r
∑

i=1

xi ≤ m+

r
∑

i=1

xi

∗
≤ max

{

p1 − (r − 1) +

r
∑

i=2

⌈pi
3

⌉

,

⌈

p1 + p2 + p3
2

⌉

− 1 +

r
∑

i=4

(
⌈pi
3

⌉

− 1),

⌈

p1
3

− r

3
+

r
∑

i=1

pi
3

⌉}

≤ p1 − (r − 1) +
r

∑

i=2

⌈pi
3

⌉

,

where the last inequality follows by Fact 3.7.(ii) and Fact 3.7.(iii) (with ai = pi). It remains to

justify the inequality
∗
≤ above.

Case 1 (m = q1) Set J = [r] \ {π(1)}. We have

R1C(p1 − 3x1, . . . , pr − 3xr) +

r
∑

i=1

xi ≤ pπ(1) − 2xπ(1) +
∑

j∈J

xj ≤ pπ(1) − 2xπ(1) +
∑

j∈J

(
⌈pj
3

⌉

− 1)

≤ p1 − (r − 1) +

r
∑

i=2

⌈pi
3

⌉

.
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Case 2 (m =
⌈

q1+q2+q3
2

⌉

− 1) Set J = [r] \ {π(1), π(2), π(3)}. We have

R1C(p1 − 3x1, . . . , pr − 3xr) +

r
∑

i=1

xi ≤
⌈

pπ(1) − xπ(1) + pπ(2) − xπ(2) + pπ(3) − xπ(3)

2

⌉

− 1 +
∑

j∈J

xj

≤
⌈

pπ(1) + pπ(2) + pπ(3)

2

⌉

− 1 +
∑

j∈J

(
⌈pj
3

⌉

− 1)

≤
⌈

p1 + p2 + p3
2

⌉

− 1 +

r
∑

i=4

(
⌈pi
3

⌉

− 1).

Case 3 (m =
⌈

q1
3 − r

3 +
∑r

i=1
qi
3

⌉

) We have

R1C(p1 − 3x1, . . . , pr − 3xr) +

r
∑

i=1

xi ≤
⌈

pπ(1)

3
− xπ(1) −

r

3
+

r
∑

i=1

pi
3

⌉

≤
⌈

p1
3

− r

3
+

r
∑

i=1

pi
3

⌉

.

3.4 Small values of pi and small number of colors

We now determine the Ramsey number of path-matchings for at most 4 colors.

Corollary 3.8.

(i) For all integers p1 ≥ p2 ≥ 2, RPM (p1, p2) = p1 +
⌈

p2

3

⌉

− 1.

(ii) For all integers p1 ≥ p2 ≥ p3 ≥ 2 such that (p1, p2, p3) 6= (3, 3, 3), RPM (p1, p2, p3) =
p1 +

⌈

p2

3

⌉

+
⌈

p3

3

⌉

− 2. Furthermore RPM (3, 3, 3) = 4.

(iii) For all integers p1 ≥ p2 ≥ p3 ≥ p4 ≥ 2 such that (p1, p2, p3, p4) 6∈ {(3, 3, 3, 3), (4, 3, 3, 3)},
RPM (p1, p2, p3, p4) = p1 +

⌈

p2

3

⌉

+
⌈

p3

3

⌉

+
⌈

p4

3

⌉

− 3. Furthermore RPM (3, 3, 3, 3) = 4 and
RPM (4, 3, 3, 3) = 5.

Proof. Note that by Observation 2.1, we may assume that p1 ≥ p2 ≥ p3 ≥ p4 ≥ 3.
(i), (ii) If p1 ≥ 4, we may apply Theorem 1.2. Otherwise p1 ≤ 3 in which case we are done

by Observation 2.2.
(iii) If p1 ≥ 5 = 2·4−3, then we may apply Theorem 1.2. So suppose p1 ≤ 4. If (p1, p2, p3, p4) ∈

{(4, 4, 4, 4), (4, 4, 4, 3), (4, 4, 3, 3)}, then we may still apply Theorem 1.2. If p1 = p2 = p3 = p4 = 3,
then we may apply Observation 2.2. So we only have to check the case where (p1, p2, p3, p4) =
(4, 3, 3, 3) which is easily seen by direct inspection.

Scobee [16] determined the Ramsey number R(m1P3,m2P3,m3P3) = m2 +m3 + 3m1 − 2 for
m1 ≥ m2 ≥ m3 and m1 ≥ 2 with a difficult (20 page) proof. This implies Corollary 3.8(ii) when
all pi’s are divisible by 3.

We now prove a result about RPM
r (p) when p = 4, 5 (we already determined RPM

r (3) in
Observation 2.2). To do so, we first establish the following.

Proposition 3.9. For all integers r ≥ 2, R1C
r (4) ≤ r + 3, R1C

r (5) ≤ r + 4, and R1C
r (6) ≤ r + 5.

Recall that in the language of covering designs, we have R1C
r (p) ≤ v if and only if C(v, p−1) >

r.

Proof. We have C(r + 3, 3) ≥ (r+3)(r+2)
3·2 > r for all r, and thus R1C

r (4) ≤ r + 3. We have

C(r + 4, 4) ≥ (r+4)(r+3)
4·3 > r for all r, and thus R1C

r (5) ≤ r + 4. Finally, we have C(r +
5, 5) ≥

⌈

r+4
4

⌈

r+3
3

⌉⌉

> r for all r such that r 6∈ {4, 8}. However, in the case when r = 4 and
r = 8, it is known (see [13] for instance) that C(9, 5) = 5 > 4 and C(13, 5) = 10 > 8. Thus
R1C

r (6) ≤ r + 5.
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Proposition 3.10. For all r ≥ 2, RPM
r (4) = r + 3 and RPM

r (5) = r + 4.

Proof. By Proposition 3.9 and Theorem 3.3, we have

RPM
r (4) = max{R1C

s (4) + r − s : s ∈ [r]} = max{s+ 3 + r − s : s ∈ [r]} = r + 3

and

RPM
r (5) = max{R1C

s (5) + r − s : s ∈ [r]} = max{s+ 4 + r − s : s ∈ [r]} = r + 4.

4 Conclusion

We have determined RPM (p1, . . . , pr) exactly unless p1 ≤ 2r − 4 − ∑r

i=2 3
(⌈

pi

3

⌉

− pi

3

)

and we
have determined RPM (p1, . . . , pr) to within a constant (depending on r) in every case. It would
certainly be interesting to solve these remaining cases exactly, although Corollary 3.5 gives some
evidence that this remaining case where p1 is fixed and r is large could be challenging.

In particular, we think the following problem is worth focusing on.

Problem 4.1. For all integers r ≥ 5 and p ≥ 6 such that p ≡ 0 mod 3 or p ≡ 2 mod 3, determine
RPM

r (p) exactly.

Note that the case when r ≤ 4 follows from Observation 3.8. The case when p = 2 is trivial,
the case p = 3 is Observation 2.2, the cases p = 4, 5 follow from Proposition 3.10, and the case
p ≡ 1 mod 3 follows from Theorem 1.2. Also note that by Theorem 1.2 we may assume r ≥ p+4

2
when p ≡ 0 mod 3 and we may assume r ≥ p+ 2 when p ≡ 2 mod 3.

It already seems non-trivial to determine RPM
r (6) for all r ≥ 5, because in order to do so, one

needs to compute (or appropriately bound) R1C(p1, . . . , pa, pa+1, . . . , pr) where p1 = · · · = pa = 6
and pa+1 = · · · = pr = 3 for all 0 ≤ a ≤ r.

Another question relates to our estimates on R1C(p1, . . . , pr). We think of p1 − (r − 1) +
∑r

i=2

⌈

pi

3

⌉

as being the “standard” value of RPM (p1, . . . , pr), but of course we know there are

examples where RPM (p1, . . . , pr) > p1 − (r − 1) +
∑r

i=2

⌈

pi

3

⌉

. However, all such examples stem

from the fact that R1C
s (3) =

⌊√
8s+1+1

2

⌋

+ 1 (see Corollary 3.5). In every other case we know of,

we have R1C(p1, . . . , pr) ≤ p1 − (r − 1) +
∑r

i=2

⌈

pi

3

⌉

(and in many cases it is much smaller). So
this raises the following question.

Question 4.2. Under what circumstances do we have R1C(p1, . . . , pr) ≤ p1−(r−1)+
∑r

i=2

⌈

pi

3

⌉

?
Is this always true when none of p1 ≥ · · · ≥ pr are divisible by 3? Is this always true when
p1 ≥ · · · ≥ pr ≥ 4?

One case in which we are confident the above is true is when p = p1 = · · · = pr ≥ 4 (and we
proved it for 4 ≤ p ≤ 6 in Proposition 3.9).

Another reason it seems to be difficult to determine RPM (p1, . . . , pr) exactly in all cases is
that the lower bound examples are not necessarily unique. We have multiple examples where
RPM (p1, . . . , pr) = R1C(p1, . . . , pr) and in those cases the lower bound for RPM (p1, . . . , pr)
comes from the extremal coloring [p1 − 1,

⌈

p2

3

⌉

− 1, . . . ,
⌈

pr

3

⌉

− 1] whereas the lower bound
for R1C(p1, . . . , pr) comes from a covering design. For instance, we have RPM (5, 5, 5) = 7 =
R1C(5, 5, 5). The extremal coloring [4, 1, 1] provides a lower bound for RPM (5, 5, 5), whereas
a lower bound for R1C(5, 5, 5) comes from partitioning the vertices of K6 into A1, A2, A3 with
|Ai| = 2 and coloring edges in Ai and in [Ai, Ai+1] with color i.

Another example is RPM (4, 3, 3, 3) = 5 = R1C(4, 3, 3, 3). Coloring the edges of a K4 by
coloring a triangle with colors 2,3,4 and coloring the other edges with color 1 provides a lower
bound for RPM (4, 3, 3, 3); whereas coloring a triangle with color 1 and coloring the other edges
with three different colors provides the lower bound for R1C(4, 3, 3, 3) > 4.

On the other hand we have many examples where RPM (p1, . . . , pr) > R1C(p1, . . . , pr), such
as RPM (4, 4, 4) = 6 > 5 = R1C(4, 4, 4). So this raises the following question.
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Question 4.3. Under what circumstances do we have RPM (p1, . . . , pr) = R1C(p1, . . . , pr)?
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