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Happy birthday Endre!

Abstract. This birthday note gives a “non-asymptotic” version of our ear-
lier result with G. N. Sarkozy and Szemerédi [3], in which Endre had the lion’s
share.

A hypergraph H with vertex set V defines the shadow graph G(H) whose
vertex set is V and whose edge set is the set of pairs of V' that are covered by some
hyperedge of H. An edge coloring C of H defines a multicoloring, the shadow
coloring C' on G(H), by assigning all colors of C to an edge zy of G(H) that
appear on some edge of H containing {z,y}. A matching in a graph is a set of
pairwise disjoint edges. A matching in a graph is perfect if it covers all vertices of
the graph.

I show that in every (r — 1)-coloring C' of the complete r-uniform hypergraph
K, there is a monochromatic perfect matching in the shadow coloring C’ (assum-
ingn>r >2and n is even).

In many applications of the Regularity Lemma we start from a “non-
asymptotic” statement and develop an “asymptotic” version of it. Here I
turn this approach upside down and start from the following result, in which
Endre had the lion’s share.

THEOREM 1 (Gyarfas, Sarkozy, Szemerédi [3]). In every (r — 1)-coloring
of the edges an almost complete r-uniform hypergraph there is an almost
perfect monochromatic matching in the shadow coloring.

Theorem 1 was conjectured by Gyarfas, Lehel, Sarkozy and Schelp [1],
where we proved that it implies for large enough n that in every (r — 1)-
coloring of the edges of the complete r-uniform hypergraph K, there is a
monochromatic Berge cycle with (1 — o(n))n vertices. The stronger conjec-
ture in [1] that for fixed r and sufficiently large n in every (r — 1)-coloring
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of the edges of the complete r-uniform hypergraph K there is a monochro-
matic Hamiltonian Berge cycle, was proved eventually by Omidi [5].

I leave it to the imagination of the reader what “almost” means in Theo-
rem 1, but state and prove here its “non-asymptotic” (and obviously sharp)
version.

THEOREM 2. Assume that n is even, n>r > 2 and C is an (r —1)-
coloring of K. Then there is a monochromatic perfect matching in the
shadow coloring C'.

It is worth noting that Omidi’s result [5] (with a quite involved proof
relying also on [4]) implies Theorem 2 for large enough n (n > 6r (r4_rl)). In

contrast, in our simple proof we need that Theorem 2 is true for n < (’;1).
Luckily, this will follow from the following Ramsey-type result for matchings
in colored complete graphs.

THEOREM 3 (Gyarfas, Sarkozy, Selkow, [2, Corollary 2.4]). In every
t-coloring of the edges of K,, with even m < 2 — 2, there is a perfect match-
ing colored with at most t — 1 colors.

ProOOF OF THEOREM 2. We assume that the colors of C' are from
[r—1] ={1,2,...,r—1}. Consider a minimal counterexample K = K, with
an (r — 1)-coloring C, first with minimal 7 then with minimal n. Note that
r > 3, since for r = 2 the theorem is trivial for all n. We collect some prop-
erties of K, the shadow graph of K.

1. No edge zy of K, receives all the » — 1 colors in C’. Otherwise we
remove z,y from the vertex set and (since the obtained hypergraph is not a
counterexample) we find a monochromatic, say red perfect matching in the
remaining K, s and this can be extended by zy to a perfect red matching
of K,, contradicting the assumption that K is a counterexample.

2. No edge zy of K, receives i <r — 3 colors in C’. This is clear for
r =3, thus r > 4. In this case by the removal of x,y we consider K’ =
Kﬁ:g on which we define an i-coloring D by assigning the color of e U {x,y}

in C' to any edge e of Kg:g Since K’ is not a counterexample, we find a
monochromatic, say red perfect matching M in the coloring D’. There is at
least one red hyperedge e in K] covering {z,y}, thus the pair z,y extends
M to a perfect red matching of K] contradicting the assumption that K is
a counterexample.

3. By 1 and 2 we may assume that every edge of K, is colored in C’
with ezactly (r — 2) colors from the set [r — 1].

4. We may assume that n > 2"~! — 2. Indeed, otherwise we can apply
Theorem 3 with ¢t = r — 1 to the coloring of K, obtained from C’ by rep-
resenting the color set [r — 1]\ 4 of an edge with a single color ¢;. From
Theorem 3 we have a perfect matching of K,, missing a color, say ¢;, which
means that the color sets of the edges of this matching all contain the color ¢
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in the coloring C’. This contradicts the assumption that K is a counterex-
ample.

For all i € [r — 1] we define X; as the set of vertices v € V(K,,) for which
all edges incident to v contain color 7 in C”.

CLAIM 4. Every vertex v of K,, belongs to at least two X;-s.

PROOF. Suppose for contradiction that for all but at most one i € [r —1]
there exists an edge vw; colored by the colors of [r — 1]\ {i} in C”. If there
is no exceptional ¢ then the hyperedge e = {v,w1,...,w,_1} of K] cannot
get a color in C, contradiction. If there is one exceptional ¢, say no edge
incident to v has color set [r — 1]\ {1} then let zy be an edge of K,, with this
exceptional color set (it exists otherwise every perfect matching has color 1).
Clearly, one can select » — 2 edges of K, incident to v with color sets

r—1]\{2}, ..., [r—=1\{r—1}

that with zy span at most r (r or r — 1) vertices. These vertices are either
inside a hyperedge or form a hyperedge of K to which no color of C' can be
assigned, a contradiction again, proving the claim. [

Let M; be a maximum matching of V(K,,) \ X; with all edges containing
color 7 in C" and set YV; = V(K,,) \ (X; UV (M;)).

Cramm 5. |X;| < |Y;| for alli e [r—1].

PRrROOF. Suppose for contradiction that for some i € [r — 1] we have |Y;|
< |X;|. Then there is a matching M/ in the complete bipartite graph [X;, Y]]
containing all vertices of Y;. Define Z; = X, \ V(M) and observe that |Z;|
is even thus has a perfect matching M/ in Z;. From the definition of X;, M;,

all edges of the perfect matching M} = M; U MU M/ of K,, contain color ¢
in C’. This contradicts the assumption that K is a counterexample. [

Using that (Tgl) < 2" — 2 Property 4, Claims 4, 5 we get

—1
(1) n+ (T ) ) <n+27'—2<nt+n=2< Y [Xi|< ) [Vl
i€lr—1] i€lr—1]
However, (1) implies that n + (7«51) < D iepr—1 il thus there exist i # j
such that |Y; NYj;| > 2. From the choice of M;, M; the color set in C” as-

signed to an edge xy with {z,y} C ¥; NY; can contain neither ¢ nor j. This
contradicts Property 3, finishing the proof. [J
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