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An Extension of Mantel’s Theorem to
k-Graphs

Zoltán Füredi and András Gyárfás

Abstract. According to Mantel’s theorem, a triangle-free graph on n points has at most n2/4
edges. A linear k-graph is a set of points together with some k-element subsets, called edges,
such that any two edges intersect in at most one point. The k-graph F k , called a fan, consists
of k edges that pairwise intersect in exactly one point v, plus one more edge intersecting each
of these edges in a point different from v. We extend Mantel’s theorem as follows: fan-free
linear k-graphs on n points have at most n2/k2 edges.

This extension nicely illustrates the difficulties of hypergraph Turán problems. The deter-
mination of the case of equality leads to transversal designs on n points with k groups—for
k = 3 these are equivalent to Latin squares. However, in contrast to the graph case, new struc-
tures and open problems emerge when n is not divisible by k.

1. TRIANGLES AND FANS. Once upon a time, 111 years ago, Mantel proposed a
problem in a Dutch journal. He (followed by four other solvers) provided a solution
and the outcome is known in graph theory as Mantel’s theorem. Let Kp denote the
complete graph on p ≥ 2 points; K3 is often called a triangle. Graphs without a Kp

subgraph are called Kp-free.

Theorem 1 (Mantel [4]). Triangle-free graphs on n points have at most n2/4 edges.

It is not easy to select the winner of the beauty contest for the nicest proof of Man-
tel’s theorem. A visit to the internet brings proofs, some presented as videos [9]. A nat-
ural proof by induction competes with the proof of Mantel, using Cauchy’s inequality.
The book of Aigner and Ziegler [1] exhibits seven different proofs, five of them for
Turán’s generalization, the flagship theorem of extremal graph theory.

Theorem 2 (Turán [6]). Kp-free graphs on n points have at most (1 − 1
p−1 )

n2

2 edges.

Analogues of Mantel’s theorem are also considered for k-graphs, where the edges
are k-element subsets of the points. Turán [7] asked about the maximum number of
edges among 3-graphs on n points that contain no tetrahedron, four triples on four
points. This is known as a notoriously difficult question, where even the asymptotic
answer is unknown (conjectured to be 5

9

(
n

3

)
).

Here we have two aims. Namely, we present a more friendly extension of Man-
tel’s theorem to k-graphs (Theorem 3). By doing so we illustrate many difficulties
one can have encountering a Turán-type problem. Since many of these questions are
unsolved, we investigate other important combinatorial structures between graphs and
hypergraphs, like multigraphs (see, e.g., [3]), and linear hypergraphs. But even then,
the solutions frequently lead to further unsolved problems.

A k-graph is called linear if any two edges intersect in at most one point. Note that
graphs are linear 2-graphs. For any integer k ≥ 2, the fan, denoted by F k, is the k-graph
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having k + 1 edges, f1, . . . , fk, and g, such that f1, . . . , fk are disjoint apart from one
common point v (the center) and an additional crossing edge g that intersects all fi in
points different from v. We prove the following extension of Mantel’s theorem.

Theorem 3. Fan-free linear k-graphs on n points have at most n2/k2 edges.

Considering all k-graphs, a different extension of Mantel’s theorem arises.

Theorem 4 (Mubayi and Pikhurko [5]). Fan-free k-graphs on n > n(k) points have
at most (n/k)k edges.

Proof of Theorem 3. We denote by V (G), E(G) the set of points and edges of a k-
graph G. The number of edges containing a point v ∈ V (G) is the degree of v, denoted
by d(v). If all points have the same degree m, the k-graph is called m-regular.

Assume that G is a fan-free linear k-graph with n points. For any point v ∈ V (G),
set Nv := (∪e�ve) \ {v} (the open neighborhood of v), and Bv := V (G) \ Nv. Let � =
�(G) be the maximum degree of G and select v ∈ V (G) such that d(v) = �. Then
|Nv| = (k − 1)� and |Bv| = n − (k − 1)�. Since G is fan-free, every edge of G must
intersect Bv. This and the inequality d(x) ≤ � imply

|E(G)| ≤
∑
x∈Bv

d(x) ≤ �|Bv| = �(n − (k − 1)�). (1)

On the other hand, obviously

|E(G)| ≤ n�

k
. (2)

If � ≤ (n/k) we immediately get |E(G)| ≤ n2/k2 from (2).
If � > (n/k) then (1) and the geometric–arithmetic mean inequality imply

|E(G)| ≤ �(n − (k − 1)�) ≤ 1

4
(n − (k − 2)�)2 <

1

4

(
n − (k − 2)n

k

)2

= n2

k2
.

Thus in both cases |E(G)| ≤ n2/k2 as claimed.

2. EXTREMAL CONFIGURATIONS. It is interesting to see when we have equal-
ity in the bounds of the theorems of the previous section. Graphs (or k-graphs) attaining
equality are called extremal configurations. In Theorem 2, the only extremal configu-
ration is the balanced complete (p − 1)-partite graph: the points of G are divided into
p − 1 groups, each with n

p−1 points and we have all edges joining two points from dif-
ferent groups. In particular, for p = 3, the only extremal configuration in Theorem 1
is the balanced complete bipartite graph with even number of vertices. The extremal
k-graphs of Theorem 3 must satisfy k|n; this is assumed in the next subsection.

Transversal designs. The complexity of extremal configurations grows with k; they
are the transversal designs, defined as follows. Assume that n is a multiple of k. A
transversal design T (n, k) is a linear k-graph on n points where the points are parti-
tioned into k groups, each containing n/k points and where each pair of points from
different groups belongs to exactly one edge. Note that for k = 2, T (n, 2) is the com-
plete bipartite graph with n/2 points in its partite classes. The next case, k = 3, is
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already more interesting. Assume that X, Y, Z are the groups of a transversal design
T (n, 3) with points xi ∈ X, yi ∈ Y, zi ∈ Z for i = 1, 2, . . . , n/3. Consider the n

3 × n

3
matrix A defined with aij = zk where zk is the (unique) point of Z for which xiyj zk is
an edge of T (n, 3). Each row and column of A contains different zi’s; such a matrix is
called a Latin square (of order n/3). For the interested reader we note that in general,
transversal designs T (n, k) are equivalent to k − 2 mutually orthogonal Latin squares.
The investigation of these combinatorial structures goes back to Euler. For a nice (and
high-level) introduction, see van Lint and Wilson [8].

Proposition 1. Any T (n, k) is a fan-free linear k-graph with n2/k2 edges.

Proof. Suppose that some T (n, k) contains a k-fan F with center v in group i. Since
the crossing edge g of F must have a point in group i different from v, g can intersect
at most k − 1 edges from the k edges of F containing v. This is a contradiction.

Theorem 5. Equality holds in Theorem 3 only if G is a transversal design T (n, k).

Proof. We continue the proof of Theorem 3. If equality holds, then inequalities (1)
and (2) are equalities. From (2) we have that n = km and G is an m-regular k-graph. It
is left to show that |E(G)| = m2 implies that G is a transversal design with k groups.
Since G is m-regular, we have |Bv| = km − (k − 1)m = m for every v ∈ V (G).

Claim 1. For every v ∈ V (G), Bv is a strongly independent set, i.e., every edge inter-
sects it in at most one point.

To prove the claim, assume that x, y ∈ Bv and that there is an edge e ∈ E(G) con-
taining x, y. Then (1) cannot be an equality, since e is counted from both x and y. This
is a contradiction, proving the claim.

Applying the claim for the points of an arbitrary edge e = {v1, v2, . . . , vk}, we
get the strongly independent sets Bv1, . . . , Bvk

. These sets must be pairwise disjoint,
because if x ∈ Bvi

∩ Bvj
then Bvj

∪ {vi} ⊆ Bx , contradicting the fact that |Bvj
| =

|Bx |. Thus V (G) can be partitioned into k groups of size m, each forming a strongly
independent set. The m2 edges of G cover m2

(
k

2

)
pairs in V (G) and this is equal to(

mk

2

) − k
(
m

2

)
, the number of pairs of V (G) not covered by the groups Bv1, . . . , Bvk

.
Thus each pair of points from different groups is covered exactly once, proving that G

is a transversal design with k groups of size m.

Truncated designs. What happens when n is not divisible by k? Turán [6] proved that
the unique extremal configuration for Kp-free graphs on n points is the following graph
(the Turán-graph): n points are divided into p − 1 groups as evenly as possible and the
edges are all pairs of points from different groups. Considering the same question for
fan-free k-graphs, we can answer only in the case n ≡ −1 (mod k) for general k, as
far as the maximum number of edges is concerned. A truncated design is obtained
from a transversal design by removing one point (and all edges containing it).

Theorem 6. Assume that k ≥ 2, n = k(m + 1) − 1, and G is a fan-free k-graph with
n points. Then |E(G)| ≤ m2 + m. Truncated designs obtained from T (n + 1, k) are
extremal configurations.

Proof. It follows from Proposition 1 that any truncated design obtained from T (n +
1, k) is a fan-free linear k-graph with m2 + m edges. To show that |E(G)| ≤ m2 + m
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whenever G is a fan-free linear k-graph with n = km + k − 1 points, we follow the
argument of the proof of Theorem 3 using the same notations.

If � ≤ m, we immediately get from (2) that

|E(G)| ≤ ((m + 1)k − 1)m

k
= m2 + m − m

k
< m2 + m.

If � ≥ m + 1, then (1) and the geometric–arithmetic mean inequality imply

|E(G)| ≤ �(n − (k − 1)�) ≤ 1

4
(n − (k − 2)�)2

≤ 1

4
((m + 1)k − 1 − (k − 2)(m + 1))2 = m2 + m + 1

4
.

Thus in both cases |E(G)| ≤ m2 + m.

3. EXTREMAL TRIPLE SYSTEMS. In this section, we refer to linear 3-graphs as
triple systems.

Extensions of triangle-free graphs. To find all extremal configurations for k =
3, n ≡ −1 (mod 3), we need a special case of a theorem of Andrásfai, Erdős, and
Sós, stated here as a lemma.

Lemma 1 (Andrásfai, Erdős, and Sós [2]). Assume that a nonbipartite graph G has
n points and contains no triangles. Then the minimum degree of G is at most 2n/5.

The following graph, the blown up five-cycle, Ct
5, shows that Lemma 1 is sharp

when n ≡ 0 (mod 5). Take a five-cycle and replace its points with disjoint t-element
sets of points, A1, . . . , A5 and replace its edges by complete bipartite graphs [Ai, Ai+1]
for i = 1, . . . , 5 (mod 5).

There is an easy way to generate fan-free triple systems from triangle-free graphs.
Consider a graph G with a proper edge-coloring, i.e., let the edge set of G be parti-
tioned into d matchings (pairwise disjoint edges) M1, . . . , Md . The extension of G,
T (G), is the triple system obtained by extending V (G) with d new points v1, . . . , vd

and extending every edge of Mi with the point vi , for i = 1, . . . , d.

Proposition 2. Assume that G is a triangle-free graph with a proper edge coloring.
Then T (G) is a fan-free triple system.

Proof. No fan in T (G) can be centered at vi since three edges of Mi cannot be inter-
sected by any edge of Mj for j �= i. If a fan in T (G) is centered at w ∈ V (G) with
triples ww1v1, ww2v2, ww3v3, then its crossing edge must be of the form wiwjvk with
three different indices. Thus w, wi, wj is a triangle in G, contradicting the assump-
tion.

An important special case of proper edge colorings is the 1-factorization, where
all of the d matchings cover all points of the graph. Graphs having 1-factorizations
are obviously d-regular but the converse statement is not true: odd cycles are easy
examples. The most famous example is the Petersen graph.

We will apply Proposition 2 to two triangle-free nonbipartite graphs. One of them is
the Wagner graph, C∗

8 , the eight-cycle with its long diagonals; the other is C2
5 , defined

earlier in this section.
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Extremal triple systems for n ≡ −1 (mod 3).

Theorem 7. Assume that G is a linear fan-free triple system with n = 3m + 2 points.
Then G has at most m2 + m edges. Equality holds only in the following cases.

(7.1) G is a truncated design obtained from a transversal design T (3m + 3, 3),

(7.2) m = 3, G is the extension of a 1-factorization of C∗
8 ,

(7.3) m = 4, G is the extension of a 1-factorization of C2
5 .

Proof. We use the notation of the proof of Theorem 6. Assume that G is a fan-free
linear 3-graph, |V (G)| = 3m + 2, |E(G)| = m2 + m.

From (2) it follows that � ≥ m + 1. The inequality (1) would give |E(G)| < m2 +
m if any vertex of v ∈ V (G) has degree larger than m + 1. Thus �(H) = m + 1.
Suppose d(x) = m + 1 = �. Then for B := Bx one has |B| = m, all points of Bx

have degree m + 1, and Bx is a strongly independent set. It follows that Ny = Nx for
each y ∈ B, implying dH (w) = m for all w ∈ W := V (G) \ B.

Define the graph G∗ on point set W , where w1, w2 ∈ W is an edge in G∗ if and only
if w1w2v is an edge of the 3-graph G for some v ∈ B. Then G∗ is m-regular and can
be written as the union of m matchings of size m + 1. If G∗ is bipartite, then it must
be isomorphic to Km+1,m+1 with one matching removed; thus G is a truncated design
obtained from three groups of size m + 1, the first possibility in Theorem 7.

We claim that G∗ is a triangle-free graph. Indeed, if w1, w2, w3 form a triangle in
G∗, then G contains the edges

e = w1w2v3, f = w1w3v2, g = w2w3v1

for vi ∈ Bv. Because dG(v1) = m + 1, there is an edge h = v1w1w4. Then e, f, g, h

form a fan with center w1 and with crossing edge g, a contradiction.
Thus we may suppose that G∗ is a nonbipartite triangle-free graph. Applying

Lemma 1 to our graph G∗, we get m ≤ 2(2m + 2)/5; thus m ≤ 4. We leave it to the
reader to check that there are no m-regular nonbipartite triangle-free graphs on 2m + 2
points for m = 1, 2, but for m = 3, 4 there are unique ones: C∗

8 , C
2
5 . Moreover, both

graphs have 1-factorizations. Extending them with the points of B, we get the second
and third possibilities in Theorem 7.

Remark. Theorem 7 seemingly provides two exceptional extremal configurations.
However, this is not right: there are three! The explanation is that the Wagner graph
has two nonisomorphic 1-factorizations (and C2

5 has only one).

4. CONCLUSION. It does not seem easy to find, for every n �≡ 0 (mod k), the max-
imum number of edges in fan-free linear k-graphs on n points, let alone give a descrip-
tion of all extremal k-graphs attaining this maximum. We could answer the former
question only in the case n ≡ −1 (mod k) in Theorem 6 and the latter in the subcase
k = 3 in Theorem 7. The study of the remaining cases might reveal some (possibly
infinitely many) exceptional extremal configurations. We conjecture that the extremal
number is m2 for m > m(k) and n �≡ −1 (mod k).

We conclude with a conjecture that generalizes Theorems 3 and 4 as well: If n =
km, m > m(k), 1 ≤ � ≤ k, then an F k-free k-graph on n points with more than m�

edges has two edges intersecting in at least � points.
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Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
gyarfas.andras@renyi.mta.hu

268 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 127

http://www.youtube.com/watch?v=WgddUjZVyj4
mailto:furedi.zoltan@renyi.mta.hu
mailto:gyarfas.andras@renyi.mta.hu

	Triangles and fans.
	Extremal configurations.
	Transversal designs.
	Truncated designs.

	Extremal triple systems.
	Extensions of triangle-free graphs.
	Extremal triple systems for n-18mu(mod6mu3).

	Conclusion.

