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Abstract

The t-color Ramsey problem for hypergraph matchings was settled by
the well-known result of Alon, Frankl and Lovász (answering a conjecture
of Erdős). This result was the last step in a chain of special cases most
notably Lovász’s solution to Kneser’s problem. We proposed an extension
of the Erdős problem: for given 1 ≤ s ≤ t, what is the maximum number
of vertices that can be covered by a matching having at most s colors in
every t-coloring of the edges of the complete graph Kn (or hypergraph
Kr

n).
We revisit the first unknown case, r = 2, s = 2, t = 4, where we conjec-

tured that in every 4-coloring of Kn there is a bicolored matching covering
at least ⌊3n/4⌋ vertices. We prove that this is true asymptotically by ap-
plying a recent twist of a standard application of the Regularity method:
instead of lifting a (bicolored) matching of the reduced graph to regular
cluster pairs, we lift a (bicolored) basic 2-matching, a subgraph whose
connected components are edges and odd cycles. To find the bicolored
basic 2-matching with at least ⌊3n/4⌋ vertices in every 4-coloring of Kn

we use Tutte’s minimax formula.

1 Introduction

Let Kr
n denote the complete r-uniform hypergraph on n vertices, i.e. all r-sets

of an n element ground set. A matching M in a hypergraph is a set of pairwise
vertex disjoint edges, the size of M , |M | is the number of edges in M .

The Ramsey number of matchings comes from the following well-known the-
orem of Alon, Frankl and Lovász [2].
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Theorem 1.1. ([2]) Suppose n = (t−1)(k−1)+kr and a coloring of the edges
of Kr

n is given with t colors. Then there exists a monochromatic matching M
such that |M | ≥ k.

Theorem 1.1 (conjectured by Erdős [7]) is at the crossroad of combinatorics
and topology and were preceded by several notable special cases. The graph
case (r = 2) is due to Cockayne and Lorrimer [5]. The 2-color case (t = 2)
was solved in [1] and [10]. The case k = 2 is Kneser’s conjecture, solved by
Lovász [23] who introduced topological methods, then Bárány [4], Greene [9]
and Matousek [25] gave new proofs.

Theorem 1.1 is sharp. To describe briefly certain t-colorings of Kr
n, consider

partition vectors with t positive integer coordinates whose sum is equal to n.
Assuming that V (Kr

n) = {1, 2, . . . , n}, [p1, p2, . . . , pt] represents the coloring ob-
tained by partitioning V (Kr

n) into parts Ai so that |Ai| = pi for i = 1, 2, . . . , t
and the color of any edge e is the minimum j for which e has non-empty inter-
section with Aj . With this notation, the coloring

[k − 1, k − 1, . . . , k − 1, kr − 1]

shows that Theorem 1.1 is sharp.
A possible extension of Theorem 1.1 was proposed in [17] (for hypergraphs

in [11]) introducing an additional integer parameter s satisfying 1 ≤ s ≤ t. A
matching with edges colored by at most s distinct colors (out of t colors) is called
an s-colored matching. When s = 1, 2 it is natural to use the terms monochro-
matic and bicolored. The problem is to find the smallest n = n(r, k, s, t) such
that in any t-coloring of the edges of Kr

n there is an s-colored matching of size
k. For s = 1 Theorem 1.1 provides the answer. We do not risk a conjecture for
n(r, k, s, t) in general. However, the partition vector

[p, p, . . . , p, pr, pr2, . . . , prs−1, prs], (1)

(where the first t− s coordinates are p-s), suggests that in certain special cases
we have the following:

n(r, k, s, t) = kr +

⌊
(k − 1)(t− s)

1 + r + r2 + . . . rs−1

⌋
. (2)

Indeed, (2) is trivial for s = t and equivalent to Theorem 1.1 for s = 1.
Furthermore, this has been conjectured [11] and proved in the following special
cases:

• s = 2, t = 3. Proved for r = 3 by Terpai [27].

• r = 2, s = t− 1. Proved in [17].

• s = t−1, n =
∑t−1

i=1 r
i: In every t-coloring of Kr

n there is a perfect matching
missing at least one color. (For r = 2 follows from the previous item.)
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Perhaps (2) is true in some other cases. However, it cannot be true in
all cases. Indeed, for s = 2, t = 6, the partition vector [p, p, p, p, p, 2p] with
p = ⌊k−1

2 ⌋ gives a lower bound on n(2, k, 2, 6) asymptotic to 7k
2 which is larger

than the ∼ 10k
3 obtained from (2) (based on [p, p, p, p, 2p, 4p]).

In this paper we address the smallest unknown graph case, s = 2, t = 4 and
show that (2) (provided by [p, p, 2p, 4p]) is asymptotically true in this case as
well. In fact, we prove asymptotically the following conjecture [17].

Conjecture 1.2. Every 4-coloring of Kn contains a bicolored matching covering
at least ⌊3n/4⌋ vertices.

Our tool for the proof is the notion of a basic 2-matching: a collection of
vertex-disjoint odd cycles and edges. Our main result is the proof of Conjecture
1.2 in a weaker form, for basic 2-matchings instead of (ordinary) matchings.

Theorem 1.3. Every 4-coloring of Kn contains a basic bicolored 2-matching
covering at least ⌊3n/4⌋ vertices.

Note that Theorem 1.3 is weaker than Conjecture 1.2 but still best possible.
Its advantage is that a rather standard application of the Regularity method
allows us to derive from Theorem 1.3 the following asymptotic version of Con-
jecture 1.2.

Theorem 1.4. For every η > 0 there is an n0 = n0(η) such that if n ≥ n0, then
every 4-coloring of Kn contains a bicolored matching covering at least

(
3
4 − η

)
n

vertices.

A slight deviation from the standard applications, where matchings of the
reduced graph are lifted to regular cluster-pairs of the original graph, is the
presence of odd cycle components in the basic 2-matching appearing in Theorem
1.3. This method was used recently in [6] and in [22] and in our opinion it
will find many future applications. The details of proving Theorem 1.4 from
Theorem 1.3 are described in Section 3.

For the reader familiar with fractional matchings, we note that the size of
a maximum fractional matching is equal to the size of a maximum 2-matching:
the maximum sum of edge weights 0, 1, 2 with sum of weights at most two at
each vertex. Thus a 2-matching (in contrast to a basic 2-matching) may contain
odd paths with weights one, and those in the reduced graph cannot be lifted
with the method described. Fortunately, it follows from a result of Tutte [29]
that there exists a basic 2-matching with as many vertices as the size of any
maximum 2-matching (or maximum fractional matching).

We define the 2-deficiency of G, def2(G), as the number of vertices uncovered
by any maximum basic 2-matching of G. The formula for def2(G) is due to
Tutte [29]. There are several different forms, see for example Problem 7.37 in
[23], Theorem 2.2.6 in [28]. Let q(G) denote the number of isolated vertices of
a graph.

Lemma 1.5. (Tutte)
def2(G) = max{q(V (G) \X) − |X| : X ⊂ V (G)}.

A set X achieving the maximum in Lemma 1.5 is called a Tutte set.
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2 Proof of Theorem 1.3

Let G be a 4-colored Kn with vertex set V , where the colors are 1, 2, 3 and 4.
Assume indirectly that the 2-deficiency of the graphs obtained as the union of
edges in any two colors is at least ⌈n/4⌉ + 1 = p + 1.

2.1 Partition by Tutte sets of complementary color pairs.

We apply Lemma 1.5 for the graphs G12, G34 determined by the edges of G
with colors (1, 2) and (3, 4), respectively, and denote the corresponding Tutte
sets by X1 for G12 and Y1 for G34. Let A1, B denote the set of isolated vertices
in V \X1, V \ Y1, respectively. We may assume wlog that |B| ≥ |A1|.

Set
B1 = B \X1, B

′
1 = V \ (A1 ∪B1 ∪X1 ∪ Y1).

Moreover, set X ′
1 = V \ (A1 ∪B1 ∪B′

1). Note that P1 = {A1, B1, B
′
1, X

′
1} forms

a partition of V .
Using the indirect assumption and Lemma 1.5, we have

|A1| ≥ |X1| + p + 1 and |B| ≥ |Y1| + p + 1. (3)

Note that the edges within A1 and the edges in [A1, B1], [A1, B
′
1] are all in

colors 3 and 4 and the edges within B1 and the edges in [B1, B
′
1] are all in colors

1 and 2.

Lemma 2.1. A1 ∩B = ∅ and A1 ⊆ Y1.

Proof. Note that A1∩B = A1∩B1, since A1 is disjoint from X1. First we show
that |A1 ∩ B1| ≤ 1. Indeed, otherwise suppose that v, w ∈ A1 ∩ B1. Then the
color of the edge (v, w) must be in {3, 4} ∩ {1, 2} = ∅, a contradiction. Suppose
next that {v} = A1 ∩B1. Using (3) and |B| ≥ |A1|, we have

|B \ (A1 ∪X1)| ≥ |B| − 1 − |X1| ≥ |A1| − 1 − |X1| ≥ p ≥ 1,

thus there exists w ∈ B \ (A1 ∪X1) so the color of the edge (v, w) must be in
{3, 4} ∩ {1, 2} = ∅, a contradiction. If there exists v ∈ A1 \ Y1 then for any
w ∈ B1, (v, w) cannot have a color, implying A1 ⊆ Y1. �

From Lemma 2.1 we can write Y1 \X1 = A1 ∪Z where Z = Y1 \ (A1 ∪X1).
Then, using (3), we get

|B| ≥ |Y1| + p + 1 ≥ |A1| + |Z| + p + 1 ≥ |X1| + |Z| + 2p + 2, (4)

implying
|B1| ≥ |Z| + 2p + 2. (5)

Now (3), (5) and Lemma 2.1 imply

X ′
1 = X1∪Z = V \(A1∪B1∪B′

1) ≤ n−(|A1|+|B1|) ≤ n−(|X1|+|Z|)−(3p+3),
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from which we conclude that

|X ′
1| ≤

n− 3p− 3

2
. (6)

From the above we observe the following properties.

(i) A1 spans a complete graph in colors 3 and 4.

(ii) B1 spans a complete graph in colors 1 and 2.

(iii) [A1, B1] is a complete bipartite graph in colors 3 and 4.

(iv) [A1, B
′
1] is a complete bipartite graph in colors 3 and 4.

(v) [B1, B
′
1] is a complete bipartite graph in colors 1 and 2.

(vi) |X ′
1| ≤

n−3p−3
2 .

We can repeat the same argument for the graph pairs G13, G24 and G14, G23

to obtain partitions P2 = {A2, B2, B
′
2, X

′
2} and P3 = {A3, B3, B

′
3, X

′
3} of V

and get the analogue properties (i)-(vi). We will show that this is impossible
simultaneously.

Since the definition of Aj depends on which of q(V \ Xj) and q(V \ Yj) is
the smaller, we have to distinguish two possibilities. We say that three color
pairs with a common color (as (1, 2), (1, 3) and (1, 4)) are star-type, otherwise
(as (1, 2), (1, 3) and (2, 3)) they are triangle-type.

Let X ′′
i = X ′

i ∪B′
i. Then (3) and (5) imply

|X ′′
i | ≤ n− 3p− 3. (7)

2.2 Properties of AB atoms.

The three partitions Pi determine 43 atoms, sets obtained as intersections of
three sets, one from each Pi. (We use the product notation for these intersec-
tions, for example A1B

′
2X

′
3 is an atom.) First we consider the (eight) atoms

with only the Ai, Bi sets and we call these AB-atoms. Some restrictions on
these are described in the following claims. We have two cases.

Case 1: The coloring of the Ai-s is triangle-type, say wlog (3, 4) for A1,
(1, 3) for A2 and (1, 4) for A3 (and then the coloring of the Bi-s is star-type).

Claim 1. |A1A2A3| ≤ 1 and if equality holds then we cannot have a non-empty
atom with exactly two A-s.

Proof. Indeed, otherwise if we have two vertices v, w ∈ A1A2A3, then the edge
(v, w) cannot have a color (it must have color {3, 4}∩{1, 3}∩{1, 4}). The proof
of the second half of the statement is similar. �

Claim 2. We cannot have two non-empty atoms with exactly two A-s, say
A1A2B3 and A1B2A3.
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Proof. Indeed, otherwise if v ∈ A1A2B3 and w ∈ A1B2A3, then the edge (v, w)
cannot have a color (it must have color {3, 4} ∩ {1, 3} ∩ {1, 4}). �

Claim 3. For every non-empty atom with exactly two B-s, say A1B2B3 we
have |A1B2B3| ≤ 1 and if equality holds then |B1B2B3| = 0.

Proof. Indeed, otherwise if v, w ∈ A1B2B3, then the edge (v, w) cannot have
a color (it must have color {3, 4}∩ {2, 4}∩ {2, 3}). The proof of the second half
of the statement is similar. �

These claims allow the following possibilities.

• Case 1.a: |A1A2A3| = 1. Then |B1B2B3| = 0. Claim 1 implies that
there are no atoms with exactly two A-s. Claim 3 implies that X ′′

2 ∪X ′′
3

covers B1, apart from at most two one-vertex atoms (B1B2A3, B1A2B3).

• Case 1.b: |A1A2A3| = 0, |B1B2B3| ̸= 0. Claim 3 implies that no atom
has exactly two B-s. Claim 2 implies that at most one atom has exactly
two A-s, say B1A2A3.

• Case 1.c: |A1A2A3| = |B1B2B3| = 0 and there exists an atom with
exactly two A-s, say B1A2A3. From Claim 2 no other atoms have two
A-s. From Claim 3 the atoms with exactly two B-s have at most one
vertex (but A1B2B3 cannot exist). Then X ′′

1 ∪X ′′
3 covers B2, apart from

at most one one-vertex atom (B1B2A3).

• Case 1.d: |A1A2A3| = |B1B2B3| = 0 and no atom has exactly two A-s.
Now, apart from at most two vertices (from the possible one-vertex atoms
B1A2B3, B1B2A3), B1 is covered by X ′′

2 ∪X ′′
3 . Note that here all atoms

can be empty.

Case 2: The coloring of the Ai-s is star-type, say wlog (3, 4) for A1, (1, 3)
for A2 and (2, 3) for A3 (and then the coloring of the Bi-s is triangle-type).
Similarly as in Case 1 we get the following claims, their proofs are left to the
reader.

Claim 4. |B1B2B3| ≤ 1 and if equality holds then we cannot have a non-empty
atom with exactly two A-s.

Claim 5. We cannot have two non-empty atoms with exactly two B-s.

Claim 6. For every non-empty atom with exactly two A-s, say A1A2B3, we
have |A1A2B3| ≤ 1.

These claims allow the following possibilities.

• Case 2.a: |B1B2B3| = 1. Claim 4 implies that there are no atoms with
exactly two A-s. Claim 5 implies that we have at most one atom with
exactly two B-s, say A1B2B3. Now apart from the vertex in B1B2B3,
X ′′

2 ∪X ′′
3 covers B1.
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• Case 2.b: |B1B2B3| = 0. Claim 5 implies that at most one atom, say
A1B2B3 is non-empty among the atoms with exactly two B-s. By Claim
6 at most three one-vertex atom has exactly two A-s. The atom A1A2A3

can exist but apart from one vertex (the atom B1A2A3), X ′′
2 ∪X ′′

3 covers
B1. (As in Case 1.d, all atoms can be empty here.)

In Cases 1.a, 1.c, 1.d, 2.a and 2.b some Bi is covered by ∪j ̸=iX
′′
j apart from

at most two vertices, say B1 ⊆ X ′′
2 ∪X ′′

3 , apart from at most two vertices of B1.
Using (5) and (7) we get

|X ′′
2 | + |X ′′

3 | ≤ 2n− 6p− 6 and 2p− 1 ≤ |B1| − 2.

However, we claim that 2n−6p−6 < 2p−1, contradicting the fact that X ′′
2 ∪X ′′

3

covers all but at most two vertices of B1. Indeed, this is equivalent to

n

4
− 5

8
< p =

⌈n
4

⌉
.

Therefore from now on we may assume that Case 1.b holds, thus |A1A2A3| =
0, |B1B2B3| ≥ 1 and at most one further nonempty AB-atom exists (with ex-
actly two A-s, say B1A2A3).

2.3 Properties of ABB′ atoms.

The ABB′ atoms are the ones in which A,B,B′ parts can be selected from the
partitions Pi. There are 33 ABB′ atoms, we need two more claims about these
atoms to finish the proof. The first one is an extension of Claim 2 and the
second is similar to Claim 3.

Claim 7. We cannot have two nonempty ABB′ atoms with exactly two A-s
(where the two A-s are different).

Proof. Indeed, otherwise if wlog A1, A2 and A1, A3 are the two A-s, for any of
the four choices (B2 or B′

2 from P2, B3 or B′
3 from P3), say v ∈ A1A2B3 and

w ∈ A1B
′
2A3, the edge (v, w) cannot have a color: by (i) (applied to A1) it must

have a color from {3, 4}; by (iv) (applied to [A2, B
′
2]) it must have a color from

{1, 3} and by (iii) (applied to [A3, B3]) it must have a color from {1, 4}). �
Claim 8. If |B1B2B3| > 0 then we cannot have a non-empty ABB′ atom with
exactly one A.

Proof. Let wlog A1 be the only A. From the condition we have v ∈ B1B2B3.
Then, for any of the four choices (B2 or B′

2 from P2, B3 or B′
3 from P3), say

w ∈ A1B
′
2B3, the edge (v, w) cannot have a color: by (iii) (applied to [A1, B1])

it must have a color from {3, 4}; by (v) (applied to [B2, B
′
2]) it must have a color

from {2, 4}; by (ii) (applied to B3) it must have a color from {2, 3}. �
Thus, since we are in Case 1.b, the only non-empty atoms containing an A

could be B1A2A3 and perhaps B′
1A2A3. Then X ′

2 ∪ X ′
3 covers A1, i.e. A1 ⊂

X ′
2 ∪X ′

3. Using property (vi) and (3) we get

|X ′
2| + |X ′

3| ≤ n− 3p− 3 and p + 1 ≤ |A1|.
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However, we claim that n−3p−3 < p+1, contradicting A1 ⊆ X ′
2∪X ′

3. Indeed,
this is equivalent to

n− 4

4
< p =

⌈n
4

⌉
.

�

3 From basic 2-matchings to matchings via reg-
ularity

Here we outline how to prove Theorem 1.4 from Theorem 1.3 via the standard
Regularity method based on the Regularity Lemma [26] and the Blow-up Lemma
[19, 20]. The material of this section is fairly standard by now (see for example
[8, 12, 13, 14, 15, 16, 18, 22, 24] for similar techniques) so we omit some of the
details.

3.1 Perturbation

As in many applications of the Regularity Lemma, one has to handle irregular
pairs. This translates to a small number of exceptional (or missing) edges in
the reduced graph. Thus first we need an “ε-perturbed” version of Theorem 1.3.

Lemma 3.1. For every η > 0 there exist an ε > 0 and an n0 such that every
4-coloring of a graph G with |V (G)| = n ≥ n0 and |E(G)| ≥ (1− ε)

(
n
2

)
contains

a bicolored basic 2-matching covering at least
(
3
4 − η

)
n vertices.

Proof. Basically we have to follow the same proof as for complete graphs with
minor modifications, so we omit some of the details.

We will need the following two standard, well-known tools about ε-perturbed
graphs (see e.g. [14]). ∆(G) denotes the maximum degree of a graph G, H the
complement of a graph H.

Lemma 3.2 (Lemma 9 in [14]). Let G be a graph with |V (G)| = n and |E(G)| ≥
(1− ε)

(
n
2

)
. Then G has a subgraph H with at least (1−

√
ε)n vertices such that

∆(H) <
√
εn.

Lemma 3.3 (Lemma 10 in [14]). Assume ∆(G) <
√
εn for a graph G and

H = [A,B] is a bipartite subgraph of G with 2
√
εn < |A| ≤ |B|. Then H is a

connected subgraph of G. Moreover, if only 2
√
εn < |B| and A ̸= ∅ are assumed

then there is a subgraph H ′ which is connected and covers A and all but at most√
εn vertices of B.

To prove Lemma 3.1 we proceed similarly as in the proof of Theorem 1.3
with some straightforward modifications. Assume that we have a 4-coloring of
a graph G with |V (G)| = n ≥ n0 and |E(G)| ≥ (1−ε)

(
n
2

)
, where ε is sufficiently

small compared to η.
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First we apply the trimming lemma, Lemma 3.2, for G and we remove at
most

√
εn vertices such that in the remaining graph G′ on n′ ≥ (1 −

√
ε)n

vertices for every vertex the number of non-neighbors is less than
√
εn. Then

for G′ we proceed as in the proof of Theorem 1.3. Again we assume indirectly
that in G′ for the union of any two colors the deficiency is at least

n′ − 3n

4
+ ηn+ 1 ≥ (1−

√
ε)n− 3n

4
+ ηn+ 1 =

n

4
+ (η−

√
ε)n+ 1 = p+ 1. (8)

Throughout the proof complete graphs have to be replaced by almost complete
graphs, where the number of non-neighbors is less than

√
εn. Instead of proving

that a set S is non-empty we need that |S| ≥
√
εn.

The perturbed proof of Theorem 1.3: We proceed for G′ as in the proof
of Theorem 1.3. Lemma 2.1 is identical but the proof is slightly different. First
we show that |A1 ∩B1| <

√
εn. Indeed, otherwise we can select v, w ∈ A1 ∩B1

such that (v, w) is an edge in G′. Then the color of this edge (v, w) must be in
{3, 4} ∩ {1, 2} = ∅, a contradiction. Suppose next that v ∈ A1 ∩ B1. Using (3)
and |B| ≥ |A1|, we have

|B \ (A1 ∪X1)| ≥ |B| −
√
εn− |X1| ≥ |A1| −

√
εn− |X1| ≥ p+ 1−

√
εn ≥

√
εn,

(using ε ≪ η) and thus there exists w ∈ B \ (A1 ∪ X1) such that (v, w) is an
edge in G′. Then the color of this edge (v, w) must be in {3, 4} ∩ {1, 2} = ∅,
a contradiction. If there exists v ∈ A1 \ Y1 then we select a w ∈ B1 such that
(v, w) is an edge in G′. Then this edge again cannot have a color, implying
A1 ⊆ Y1.

Inequalities (4), (5), (6) remain valid and imply properties (i)-(v) with com-
plete replaced by almost complete and property (vi) becomes

|X ′
1| ≤

n′ − 3p− 3

2
≤ n− 3p− 3

2
.

Claims 1, 2, 3 are modified as follows.

Claim 9. |A1A2A3| <
√
εn and if it is > 0, then for every atom with exactly

two A-s, say B1A2A3, we have |B1A2A3| <
√
εn.

Claim 10. We cannot have two atoms with exactly two A-s, say A1A2B3 and
A1B2A3, such that |A1A2B3| ≥

√
εn and |A1B2A3| ≥

√
εn.

Claim 11. For every atom with exactly two B-s, say A1B2B3, |A1B2B3|<
√
εn

and if it is > 0, then |B1B2B3| <
√
εn.

Then we proceed similarly with the possible cases.

• Case 1.a’: 0 < |A1A2A3| <
√
εn. Then |B1B2B3| <

√
εn. Claim 9

implies that for every atom with exactly two A-s, say B1A2A3, we have
|B1A2A3| <

√
εn. Claim 11 implies that X ′′

2 ∪X ′′
3 covers B1, apart from

at most 4
√
εn vertices.
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• Case 1.b’: |A1A2A3| = 0, |B1B2B3| ≥
√
εn. Claim 11 implies that no

atom has exactly two B-s. Claim 10 implies that there is at most one
atom with exactly two A-s, say B1A2A3, for which |B1A2A3| ≥

√
εn.

The other cases are modified similarly; the details are left to the reader.
Then in all cases except Case 1.b’, a Bi is covered by ∪j ̸=iX

′′
j apart from at

most 4
√
εn vertices, say B1 ⊆ X ′′

2 ∪ X ′′
3 , apart from at most 4

√
εn vertices of

B1. Using (5) and (7) we get

|X ′′
2 | + |X ′′

3 | ≤ 2n− 6p− 6 and 2p− 4
√
εn ≤ |B1| − 4

√
εn.

However, we claim that 2n − 6p − 6 < 2p − 4
√
εn, contradicting the fact that

X ′′
2 ∪X ′′

3 covers all but at most 4
√
εn vertices of B1. Indeed, this is equivalent

to

n

4
− 3

4
+

√
εn

2
< p =

n

4
+ ηn−

√
εn

(using the fact that η is sufficiently large compared to ε).
Therefore we may assume again that we are in Case 1.b’, thus |B1B2B3| ≥√

εn and perhaps for one of the atoms with exactly two A-s, say B1A2A3, we
have |B1A2A3| ≥

√
εn.

Next we consider again the ABB′ atoms (say A1B2B
′
3). Claims 7 and 8 are

modified as follows.

Claim 12. We cannot have two atoms with exactly two A-s where the two
A-s are different, say A1A2B3 and A1B

′
2A3, such that |A1A2B3| ≥

√
εn and

|A1B
′
2A3| ≥

√
εn.

Claim 13. If |B1B2B3| ≥
√
εn, then we cannot have a non-empty atom with

exactly two B-s, say A1B
′
2B3.

Since we are in Case 1.b’, the only atoms containing an A and with size at
least

√
εn could be B1A2A3 and perhaps B′

1A2A3. Then X ′
2 ∪ X ′

3 covers A1

apart from at most 4
√
εn vertices (A1B2A3, A1B

′
2A3, A1A2B3 and A1A2B

′
3).

Using property (vi) and (3) we get

|X ′
2| + |X ′

3| ≤ n− 3p− 3 and p− 4
√
εn ≤ |A1| − 4

√
εn.

However, we claim that n− 3p− 3 < p− 4
√
εn, a contradiction. Indeed, this is

equivalent to

n− 3

4
+
√
εn < p =

n

4
+ ηn−

√
εn

(using the fact that η is sufficiently large compared to ε). This finishes the
perturbed proof of Theorem 1.3 and thus Lemma 3.1. �
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3.2 Regularity

Next we give the standard tools from the Regularity method. Let e(X,Y )
denote the number of edges between X and Y in a graph G. For disjoint X,Y ,
we define the density

d(X,Y ) =
e(X,Y )

|X| · |Y |
.

For two disjoint subsets A,B of V (G), the bipartite graph with vertex set A∪B
which has all the edges of G with one endpoint in A and the other in B is called
the pair (A,B).

A pair (A,B) is ε-regular if for every X ⊂ A and Y ⊂ B satisfying

|X| > ε|A| and |Y | > ε|B|

we have
|d(X,Y ) − d(A,B)| < ε.

A pair (A,B) is (ε, δ)-super-regular if it is ε-regular and furthermore,

deg(a) ≥ δ|B| for all a ∈ A,

and deg(b) ≥ δ|A| for all b ∈ B.

We need a 4-edge-colored version of the Szemerédi Regularity Lemma.1

Lemma 3.4. For every integer m0 and positive ε, there is an M0 = M0(ε,m0)
such that for n ≥ M0 the following holds. For any n-vertex graph G, where
G = G1 ∪G2 ∪G3 ∪G4 with V (G1) = V (G2) = V (G3) = V (G4) = V , there is
a partition of V into ℓ + 1 clusters V0, V1, . . . , Vℓ such that

• m0 ≤ ℓ ≤ M0, |V1| = |V2| = · · · = |Vℓ|, |V0| < εn,

• apart from at most ε
(
ℓ
2

)
exceptional pairs, all pairs Gs|Vi×Vj are ε-regular,

where 1 ≤ i < j ≤ ℓ and 1 ≤ s ≤ 4.

Our other main tool is the Blow-up Lemma (see [19, 20]). It basically says
that super-regular pairs behave like complete bipartite graphs from the point of
view of bounded degree subgraphs. Actually we will need the following conse-
quence of the Blow-up Lemma.

Lemma 3.5. For every δ > 0 there exist an ε > 0 and n1 such that the
following holds. Let G be a bipartite graph with bipartition V (G) = V1∪V2 such
that |V1| = |V2| = n ≥ n1, and let the pair (V1, V2) be (ε, δ)-super-regular. Then
G contains a perfect matching.

Note that to prove this lemma directly is much easier than the Blow-up
Lemma. Furthermore, an easier approximate version of this lemma would suffice
as well, but for simplicity we use this lemma.

1For background, this variant and other variants of the Regularity Lemma see [21].
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Proof of Theorem 1.4: With these preparations now we are ready to prove
Theorem 1.4 from Lemma 3.1. Let η > 0 be given as in Theorem 1.4. Let

ε ≪ η (9)

(where α ≪ β means that α is sufficiently small compared to β), let m0 be suf-
ficiently large compared to 1/ε and n0 (from Lemma 3.1). Then M0 is obtained
from Lemma 3.4. Suppose we have a 4-coloring of a complete graph with vertex
set V , |V | = n, where we assume that this is a sufficiently large integer com-
pared to M0 and n1 (from Lemma 3.5). We apply Lemma 3.4 with ε. We obtain
a partition of V , that is V = ∪0≤i≤ℓVi. We define the following reduced graph
GR: The vertices of GR are p1, . . . , pℓ, and there is an edge between vertices pi
and pj if the pair (Vi, Vj) is ε-regular in all 4 colors. The edge pipj is colored
with a majority color in K(Vi, Vj). Thus GR is a (1 − ε)-dense 4-colored graph
on ℓ vertices. Applying Lemma 3.1 with η/2 to GR, we find a 2-colored (say in
colors 1 and 2) basic 2-matching M (its connected components are odd cycles
and single edges) in GR covering at least

(
3
4 − η

2

)
ℓ vertices.

We “lift” M back to the original graph and we remove some vertices from
each cluster to achieve super-regularity in the color (1 or 2) of the cluster pair
corresponding to M for each edge of M . Then we remove some more vertices
from each cluster to achieve that we have exactly the same number of vertices
left in each cluster corresponding to M . We may assume that this number
is even by removing one more vertex from each cluster if necessary. From ε-
regularity and (9) the total number of vertices left in the clusters corresponding
to vertices of M is still at least

(
3
4 − η

)
n.

Next we show that there is a perfect matching in colors 1 and 2 in the origi-
nal graph on the remaining vertices in the clusters corresponding to M and thus
finishing the proof of Theorem 1.4. For a single edge in M , Lemma 3.5 immedi-
ately implies that we can span the two corresponding clusters with a matching
in the color of the edge (1 or 2). Finally, let the clusters V 1, V 2, . . . , V 2t+1, t ≥ 1
correspond to an odd cycle in M . For each cluster V i we find a random bipar-
tition V i = V i

1 ∪ V i
2 with |V i

1 | = |V i
2 |, 1 ≤ i ≤ 2t + 1. Then (V i

1 , V
i+1
2 ) is still

super-regular (with slightly weaker parameters) with high probability in the
color (1 or 2) of the (V i, V i+1) edge for each 1 ≤ i ≤ 2t + 1, where 2t + 2 = 1.
Indeed, regularity follows from the standard Slicing Lemma (Fact 1.5 in [21]),
while the minimum degree condition follows from the Chernoff bound (see [3]).
Using Lemma 3.5 we find a spanning matching in (V i

1 , V
i+1
2 ) in the color (1 or

2) of the (V i, V i+1) edge for each 1 ≤ i ≤ 2t + 1, where 2t + 2 = 1. This spans
all the vertices of the odd cycle finishing the proof. �
Acknowledgement: We are thankful to Louis DeBiasio for helpful conversa-
tions; in particular he suggested that fractional matchings might help to prove
Theorem 1.4.
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