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The Turán number of Berge-K4 in triple systems
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Abstract

A Berge-K4 in a triple system is a configuration with four vertices

v1, v2, v3, v4 and six distinct triples {eij : 1 ≤ i < j ≤ 4} such that

{vi, vj} ⊂ eij for every 1 ≤ i < j ≤ 4. We denote by B the set of Berge-

K4 configurations. A triple system is B-free if it does not contain any

member of B. We prove that the maximum number of triples in a B-free
triple system on n ≥ 6 points is obtained by the balanced complete 3-

partite triple system: all triples {abc : a ∈ A, b ∈ B, c ∈ C} where A,B,C

is a partition of n points with
⌊n

3

⌋

= |A| ≤ |B| ≤ |C| =
⌈n

3

⌉

.

1 Introduction

Extending the notion of Berge paths and cycles, Gerbner and Palmer [7] intro-
duced the notion of Berge-G hypergraphs as follows. A hypergraph H = (V, F )
is called Berge-G if G = (V,E) and there exists a bijection g : E(G) 7→ E(H)
such that for e ∈ E(G) we have e ⊂ g(e). For a fixed G, let B(G) denote the
family of Berge-G hypergraphs. For a family F of r-uniform hypergraphs, the
Turán number exr(n,F) is the largest number of edges in an r-uniform hyper-
graph on n vertices that does not contain any member from a family F as a
subhypergraph.

Many asymptotic results are known for exr(n,B(G)), Győri and G. Y. Ka-
tona [11], Győri, Lemons [12], Gerbner and Palmer [7], Füredi and Özkahya
[4], Gerbner, Methuku and Vizer [6], Palmer, Tait, Timmons and Wagner [16],
Grósz, Methuku, Tompkins. [9]. Results of Alon and Shikhelman [1], Gerbner
and Palmer [8] also imply bounds for exr(n,B(G)).

In case of G = K3 a spectacular sharp result is that ex3(n,B(K3)) = ⌊n2

8 ⌋ for
n ≥ 3. This was proved (among other results) independently by Győri [10] and
by Frankl, Füredi and Simonyi [3] with an elegant reduction to Mantel’s theo-
rem. For t ≥ 13, Maherani and Shahsiah [13] determined exactly ex3(n,B(Kt)).

Here we focus on ex3(n,B(K4)) and from now on B = B(K4). We refer to
3-uniform hypergraphs as triple systems. A (special case of a) result of Mubayi
[14] is that ex3(n,B) is asymptotic to the maximum number of triples in a
3-partite triple system on n vertices, i.e.

ex3(n,B) ∼ f(n) =
⌊n

3

⌋

⌊

n+ 1

3

⌋⌊

n+ 2

3

⌋

.

∗Renyi Institute of Mathematics, Budapest, Hungary
†Research supported in part by NKFIH Grant No. K116769.

1

http://arxiv.org/abs/1807.11211v1


Mubayi’s result was sharpened by Pikhurko [17] who proved that ex3(n,B) =
f(n), for large enough n. In fact, both results were proved in a stronger form,
only one specific member of B was forbidden, the expansion, where the bijection
g maps each edge e ∈ K4 to a triple e∪ve so that the vertices ve are all different
and different from the vertices of K4 as well. Thus the expansion of K4 has six
triples on ten vertices, it is the largest member of B.

We prove that ex3(n,B) is equal to f(n) for every n ≥ 6. For the small
cases, ex3(3,B) = 1, ex3(4,B) = 4 are obvious, ex3(5,B) = 5 will be proved in
Theorem 10.

Theorem 1. For n ≥ 6, ex3(n,B) = f(n).

The proof of Theorem 1 does not use that all configurations of B are excluded.
In fact, the exclusion of the “maximal” member, the extension ofK4, is not used.
This gives the following corollary.

Corollary 2. Let B∗ denote the expansion of K4. Then ex3(n,B \B∗) = f(n)
for n ≥ 6.

Note that Pikhurko’s result and Corollary 2 shows that there is no unique
minimal subset B′ ⊂ B for which ex3(n,B

′) = f(n) for large enough n.
Assume that H is a triple system and A is a proper nonempty subset of

V (H). The trace of H is a multigraph GH(A) (multiloops allowed) on vertex
set V (H)\A. Every triple xyz ofH with x, y ∈ A, z ∈ V (H)\A defines a loop on
z with label {x, y} and every triple xyz of H with x ∈ A, y, z ∈ V (H)\A defines
an edge yz with label {x}. If H is clear from the context, we use simply G(A)
instead of GH(A). The label of a loop or an edge is denoted by ℓ(v, v), ℓ(v, w),
respectively. Let µ(v), µ(e) denote the multiplicity of a loop vv and an edge
e, respectively. When |A| = 1, the trace is a simple graph, usually called the
link of A. In a triple system the degree of a vertex v is the number of triples
containing v and denoted by d(v).

Theorem 1 is proved by combining induction on n with ex(m,K4) = ⌊m2

3 ⌋
(Turán theorem) applied to a subgraph of G = G(A) where A is a triple in
a suitable Berge-triangle of a B-free Hn. I have been recently informed by D.
Gerbner that a different approach [5] also implies Theorem 1 for n ≥ 9.

2 Proof of Theorem 1 and its corollary

Proof. We prove Theorem 1 by induction. The base case n = 6 (together with
ex3(5,B) = 5) is proved in Theorem 10. Assuming the theorem is true for
n− 1 ≥ 6, let Hn be a B-free triple system with n vertices and f(n) + 1 edges.
From this we will get a contradiction.

We can apply induction if for some vertex v of Hn, d(v) ≤ f(n)− f(n− 1).
Indeed, then deleting v and the triples containing v we get a B(K4)-free triple
system H ′ with n−1 vertices and more than f(n−1) edges, contradiction. Thus
we may assume that the minimum degree δ = δ(Hn) is larger than f(n)−f(n−
1). The actual values of f(n)− f(n− 1) are stated in the next observation.

Observation 3.

f(n)− f(n− 1) =







k2 + 2 if n = 3k
k2 if n = 3k + 1
k2 + k if n = 3k + 2.

2



Two specific members of B(K3) are K
3
4 −e, three triples within four vertices

and the tight path, with triples abc, bcd, cde on vertex set {a, b, c, d, e}.

Proposition 4. Hn contains either a K3
4 − e or a tight path.

Proof. If the statement is not true then the trace G = G({v}) of any vertex
v ∈ V (Hn) contains no triangles or P4-s, thus G must be a star forest. Therefore
f(n) − f(n − 1) < δ ≤ n − 2 and from Observation 3 we get contradiction for
every n ≥ 6 except for n = 7. However, in this case we have f(7)+1 = 13 triples
in H7 thus there exists a vertex of degree at least six. Applying the argument
to this vertex we get a contradiction.

Using Proposition 4, we can select a Berge-triangle B in Hn such that

E(B) = {123, 12x, 23y}

where x, y ∈ V (Hn) \ [3]. If there exists K3
4 − e in Hn then we assume x = y,

otherwise x 6= y.
Consider G = G(B) = G({1, 2, 3}), the trace of Hn on V (Hn) \ [3]. By

our assumptions, there is a loop on x with label {1, 2} and a loop on y with
label {2, 3}. If x = y then there is a double loop on x with labels {1, 2}, {2, 3},
respectively. Set Z = V (G) \ {x, y}.

We partition Z into eight sets ZI where I ⊆ [3]; a vertex v belongs to ZI if
the union of the labels on the edges containing v is I.

Vertices of Z∅ are isolated in G. Vertices of Z1, Z2, Z3 cannot be incident
to loops or multiple edges of G. Edges between Zij and Zik are not multiedges
and labeled with i for any choice of three different indices.

Proposition 5. Assume that z ∈ Z and e1, e2, e3 are distinct edges of G con-
taining z. Then the sets ℓ(e1), ℓ(e2), ℓ(e3) have no distinct representatives.

Proof. Indeed, otherwise {1, 2, 3, z} would span a member of B: the pairs of
{1, 2, 3} are covered by the three triples of the Berge-triangle B and the pairs
1z, 2z, 3z can be covered by the triples containing the three ei-s. This is a
contradiction.

We collect some consequences of Proposition 5.

Proposition 6. The following properties hold.

• 1. Loops and non-loop edges in Z have multiplicity at most two.

• 2. Double loops in Z form one-vertex components in G (inside Z123).

• 3. Multiple edges within Z are inside some Zij.

• 4. Assume v1v2, v2v3 are double edges in Zij. Then no further edges or
loops can be on v1 or on v3.

Proof. Properties 1-3 are immediate consequences of Proposition 5. By sym-
metry, it is enough to prove property 4 for i = 1, j = 2 and for v3. Suppose
v1v2, v2v3 are double edges in Z12 and v3z ∈ E(G) where z 6= v2 and w.l.o.g.
the label of z is {1}. Then we have a member of B(K4) spanned by {1, 2, v2, v3}
shown by the assignments

1v2 7→ 1v1v2, 1v3 7→ 1v3z, 2v2 7→ 2v1v2, 2v3 7→ 2v2v3, v2v3 7→ 1v2v3, 12 7→ 123,

3



leading to contradiction.

Let G∗ be the simple graph obtained from G by replacing its multiple edges
by single edges and removing all loops. Obviously |E(G∗)| = |E(G)| − s(G)
where

s(G) =
∑

v∈V (G)

µ(v, v) +
∑

e∈E(G)

(µ(e)− 1).

The surplus subgraph S of G has vertex set V (G) and its edges are the
(possible multiple) loops and multiple edges. The connected components of S
are called blocks. A block Q is a bad block if s(S[Q]) > |V (Q)|, otherwise it is a
good block. For example, a block containing a single loop is good, a block which
has a double edge with a loop on both ends is bad.

We use the bad blocks to determine the bad connected components of G,
defined similarly: a connected component C is a bad component if s(G[C]) >

|V (C)|, otherwise it is a good component.

Proposition 7. Every bad component contains at least one bad block.

Proof. In a connected component C the blocks Q1, . . . , Qm are vertex disjoint.
If all blocks are good, then

s(G[C]) =
m
∑

i=1

s(G[Qi]) ≤
m
∑

i=1

|V (G[Qi])| ≤ |V (C)|

thus C would be a good component, contradiction.

Lemma 8. With a suitable choice of the Berge-triangle B, a bad component C
is one of the following.

• 1. A triple loop on x, implying y = x, s(C) = 3, |V (C)| = 1.

• 2. An m-star on x, defined as follows. There is a double loop on x

(labeled by {1, 2}, {2, 3} consequently y = x). There are m− 1 ≥ 2 double
edges xz1, xz2, . . . , xzm−1. The set {z1, . . . , zm−1} is independent in G,
i.e. contains no edges of G. Thus s(C) = m+ 1, |V (C)| = m ≥ 3.

• 3. A double loop, s(C) = 2, |V (C)| = 1.

• 4. A dumbbell: a double edge with single loops on both ends or a double
loop on one end, s(C) = 3, |V (C)| = 2.

Proof. We prove the following statements.

• 1. For any choice of B, a bad component C not containing x or y is a
dumbbell.

Assume C is a bad component not containing x or y. Consider any bad
block Q in C. By proposition 6 (2 and 3), Q is either a double loop
component in Z123 or Q is inside some Zij , say inside Z12. Clearly Q must
contain some double edges and by Proposition 6 (4) the double edges of
Q form a star. If the star has one double edge then both ends must be a
loop otherwise Q is not bad. We claim that this is the only possibility for
a bad block. Indeed, if the star has at least two double edges, then there
must be at least one loop at an endpoint of the star and this is excluded
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in Proposition 6 (4). Thus every bad block is a dumbbell. However the
dumbbells are connected components at the same time, since any edge,
say zz1 with label {1} touching the dumbbell z1z2, would define a member
of B spanned by {1, 2, z1, z2} with the following assignments:

12 7→ 123, z1z2 7→ 1z1z2, 1z1 7→ 1z1z, 2z1 7→ 12z1, 1z2 7→ 12z2, 2z2 7→ 2z1z2.

• 2. Assume there exists a K3
4 in Hn. Then, for some choice of B ⊂ K3

4

and x ∈ V (B), the bad component containing x is a triple loop.

Assume that x contains a triple loop, i.e. {1, 2, 3, x} spans K3
4 (and x =

y). If the triple loop is not a component of G then there exists an edge
xz ∈ E(G) say with label {1}.

We claim that no vertex of Z has a loop. Indeed, suppose that z1 ∈ Z has
a loop (z1 = z is possible). By symmetry, we may assume that the label
of the loop is either {1, 2} or {2, 3}. In both cases {1, 2, 3, x} would span
a member of B with the following assignments.

1x 7→ 1xz, 12 7→ 12z1, 13 7→ 123, 23 7→ 23x, 2x 7→ 12x, 3x 7→ 13x,

1x 7→ 1xz, 12 7→ 12x, 13 7→ 123, 23 7→ 23z1, 2x 7→ 23x, 3x 7→ 13x,

proving the claim.

Consider G′ = G(1, 2, x), now vertex 3 plays the role of x. If the triple
loop on 3 is not a component of G′, there exists 3z′ ∈ E(G′) (z = z′ is
possible). The label of this edge can be one of {x, 1, 2}. For all the three
choices {1, 2, 3, x} spans a member of B with the following assignments
(the first assignment shows the choices).

3x 7→ 3xz′, 2x 7→ 23x, 1x 7→ 1xz, 23 7→ 123, 13 7→ 13x, 12 7→ 12x; (1)

13 7→ 13z′, 2x 7→ 23x, 1x 7→ 1xz, 23 7→ 123, 3x 7→ 13x, 12 7→ 12x;

23 7→ 23z′, 2x 7→ 23x, 1x 7→ 1xz, 3x 7→ 13x, 13 7→ 123, 12 7→ 12x,

leading to contradiction. Thus in G or in G′ the triple loop is the (bad)
component containing x.

• 3. Assume that Hn contains K3
4 − e but does not contain K3

4 . Then, for
some choice of B ⊂ K3

4 − e and x ∈ V (B), the bad component containing
x is a double loop or a dumbbell or an m-star.

Starting from aK3
4−e, we have a double loop on x, with labels {1, 2}, {2, 3}

(again, x = y in this case). We determine first the block Q containing x.
If no multiedge is incident to x then Q is the double loop on x. Suppose
we have a double edge xz with label {i, j} in E(G).

We claim that no other loops or edges can be incident to z. Indeed, a loop
on z must be labeled with {i, j} and the label of an edge on zz1 must be
{i} or {j}, say {i}, because of Proposition 5. Therefore {i, j, x, z} would
span a member of B. Indeed, iz 7→ ijz if we have a loop on z, iz 7→ izz1 if
we have an edge zz1. Then jz 7→ jxz, xz 7→ ixz and the triple {ix, jx, ij}
has obviously a bijection to 123, 12x, 23x. Thus we get a contradiction.
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Therefore Q consists of a double loop and some (at least one) double edges
on x. If Q is a component of G we have a star or a dumbbell as a bad
component. Otherwise there exists z ∈ Z different from all vertices of the
star, such that xz ∈ E(G), w.l.o.g. with label {1}.

As in the previous case, we consider G′ = G(1, 2, x), now vertex 3 plays
the role of x. With the argument of the previous paragraph we get that
a star on 3 is the bad block Q of G′. If Q is a component of G′ we have
the star or a dumbbell as a bad component. Otherwise there exists z′ ∈ Z

different from all vertices of the star such that 3z′ ∈ E(G′), implying
3z′w ∈ E(Hn) where w ∈ {x, 1, 2}. However, for all choices of w we get a
contradiction exactly as in (1).

• 4. Assume that Hn does not contain K3
4 − e. Then a bad component on x

(or on y) is a dumbbell on xy.

Suppose there is a double edge zz′ in some Zij , say in Z12 which is
incident to a loop, say zz. We can define B = {12z, 1zz′, 2zz′} and
G′′ = G({1, 2, z}). Now z′ can be in the role of x, it has a double loop,
thus there is a K3

4 − e in Hn, contradiction. The same argument elimi-
nates a double edge from x or from y to a loop on z for z ∈ Z. Likewise,
a double edge xy with label {1, 2} or label {2, 3} can be eliminated this
way.

It is impossible to have a double edge from x or from y to a double edge
in Z. Indeed, assume that there are double edges xz, zz′ with z, z′ ∈ Z.
Let the label of xz be w.l.o.g. {1, i}, the label of zz′ must be also {1, i}.
Then {1, i, x, z} spans a member of B with assignment

1i 7→ 123, 1x 7→ 12x, ix 7→ ixz, 1z 7→ 1zz′, iz 7→ izz′, xz 7→ 1xz,

giving contradiction.

By a similar argument, it is also impossible that x, y both send a double
edge to the same vertex z ∈ Z:

1i 7→ 123, 1x 7→ 12x, ix 7→ iyz, 1z 7→ 1yz, iz 7→ iyz, xz 7→ 1xz.

We conclude that either x, y belong to distinct blocks (both a single loop
with some double edges), or x, y are joined with a double edge with label
{1, 3}. In the former case the blocks are good blocks, otherwise x, y define
a (bad) dumbbell block Q. We claim that in this case Q is a component.

Indeed, if there is an edge from {x, y} to Z, say xz with z ∈ Z and with
label {1} or label {2} then {1, 2, x, y} spans a member of B; and if the
label is {3} then {1, 3, x, y} spans a member of B:

1x 7→ 1xz, 2x 7→ 12x, 1y 7→ 1xy, 2y 7→ 23y, 12 7→ 123, xy 7→ 3xy;

2x 7→ 2xz, 1x 7→ 12x, 1y 7→ 1xy, 2y 7→ 23y, 12 7→ 123, xy 7→ 3xy;

3x 7→ 3xz, 1x 7→ 12x, 3y 7→ 23y, 1y 7→ 1xy, 13 7→ 123, xy 7→ 3xy,

proving the claim.

This finishes the proof of Lemma 8.
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Assume that the connected components of G are C1, C2, . . . and let I, J

denote the index sets of the good and bad components, respectively. Let U ⊂
V (G) be the set of vertices in G uncovered by the bad components. Then we
have

s(G) =
∑

j∈J

s(G[Cj ]) +
∑

i∈I

s(G[Ci]) ≤
∑

j∈J

s(G[Cj ]) + |U |. (2)

Now we estimate the number of edges in G∗. Using Proposition 8, assume
that we have the following bad components: p double loops, q dumbbells and
an m-star or a triple loop on x. The bad components cover m+ p+ 2q vertices
where the m = 1 case occurs if x is covered by a triple loop, m ≥ 3 if x is
covered by an m-star (the m = 2 case is considered as a dumbbell). The m = 0
case is when no bad component covers x. Then |U | = n− 3− (m+ p+ 2q) and
s(G) = m′ + 2p+ 3q where m′ = 3 if m = 1, otherwise m′ = m+ 1. Therefore,
by (2)

s(G) ≤ n− 3− (m+ p+ 2q) + (m′ + 2p+ 3q) = n− 3 + (ρ+ p+ q)

where ρ = 2 if m = 1 otherwise ρ = 1.
Using δ(Hn) ≥ f(n)− f(n− 1)+1 for the vertices {1, 2, 3} (and subtracting

one because the edge {1, 2, 3} does not contribute to edges of G), we have

|E(G∗)| = |E(G)|−s(G) ≥ 3δ(Hn)−s(G) ≥ 3(f(n)−f(n−1))−(n−3+(ρ+p+q)).

The union of the bad blocks contain m−1+ q edges of G∗ (m−1 in the m-star,
q in the dumbbells) thus

|E(G∗[U ])| ≥ 3(f(n)− f(n− 1))− (n− 3 + (m− 1 + ρ+ p+ 2q)) = M. (3)

Since 0 ≤ m+p+2q ≤ n−3, we can write m+p+2q = α(n−3) with 0 ≤ α ≤ 1.
Then

|V (G∗[U ])| = (1−α)(n− 3),M = 3(f(n)− f(n− 1))− ((n− 3)(α+1)+ ρ− 1).

We use Turán’s theorem to finish the proof of Theorem 1, by showing that
G∗[U ] contains a K4, thus Hn contains a member of B, leading to contradiction.

We need to show that M ≥ |V (G∗[U ])|2

3 , i.e. (using that ρ− 1 ≤ 1)

Proposition 9. 9(f(n)− f(n− 1))− 3(1+α)(n− 3)− (1−α)2(n− 3)2− 3 ≥ 0.

Proof. Using Observation 3, we have three very similar cases.

• 1. n = 3k. Then 9(f(n)− f(n− 1)) = 9(k2+2) = (3k− 3)2+18k+9 thus

18k + 9 + (3k − 3)2 − 3(1 + α)(n− 3)− (1 − α)2(n− 3)2 − 3 =

= 18k + 9− 3(3k − 3)(1 + α) + (3k − 3)2(2α− α2)− 3 ≥

= α((3k − 3)2 − 3(3k − 3)) + 9k + 15 ≥ 0

if k ≥ 2 (for the last inequality we used α ≥ α2).
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• 2. n = 3k+ 1. Then 9(f(n)− f(n− 1)) = 9k2 = (3k − 2)2 + 12k− 4 thus

12k − 4 + (3k − 2)2 − 3(1 + α)(n− 3)− (1 − α)2(n− 3)2 − 3 =

= 12k − 4− 3(3k − 2)(1 + α) + (3k − 2)2(2α− α2)− 3 ≥

= α((3k − 2)2 − 3(3k − 2)) + 3k − 1 ≥ 0

if k ≥ 2 (using again α ≥ α2).

• 3. n = 3k+2. Then 9(f(n)− f(n− 1)) = 9(k2 + k) = (3k− 1)2 +15k− 1
thus

15k − 1 + (3k − 1)2 − 3(1 + α)(n− 3)− (1− α)2(n− 3)2− =

= 15k − 1− 3(3k − 1)(1 + α) + (3k − 1)2(2α− α2)− 3 ≥

= α((3k − 1)2 − 3(3k − 1)) + 6k − 1 ≥ 0

if k ≥ 2 (using again α ≥ α2).

This proves Proposition 9 and finishes the proof of Theorem 1.

Proof of Corollary 2. One can easily check that the configurations of B
whose absence was used in the proof of Theorem 1 had at most nine vertices.
In fact, the only place where a nine-vertex configuration of B could appear was
in the proof of Proposition 5, where the vertex set was {1, 2, 3, x, y, z} and the
possible three vertices of ei \ {z} for i = 1, 2, 3. In all other places we referred
to configurations of at most seven vertices.

3 Launching the induction

It is possible that the next theorem can be proved by a computer program, but
we prove it by traditional ways. The first statement, ex3(5,B) = 5, was proved
originally in [2] as a lemma to show that the 2-color Ramsey number of B(K4)
in triple systems is equal to six.

Theorem 10. ex3(5,B) = 5 and ex3(6,B) = 8.

Proof. A pair of vertices in a triple system H is uncovered if no triple of H
contains the pair. Let W be the graph formed by the uncovered pairs.
I. n = 5. Five triples clearly cannot form a member of B thus we have to show

ex3(5,B) < 6. Assume H5 is a triple system with six triples on vertex set [5]
without any member of B. Observe that the maximum degree of H5 is at least
⌈ 6×3

5 ⌉ = 4.

• 1. Suppose that W has an edge, for some 1 ≤ i < j ≤ 5, the pair ij is
not covered by any triple of H . By symmetry, let i = 1, j = 2. Then H5

either contains the six triples meeting {1, 2} in one vertex or one of them,
say 234 is missing. In the first case the assignment

e13 7→ 134, e14 7→ 145, e15 7→ 135, e34 7→ 234, e35 7→ 235, e45 7→ 245

8



defines a member of B, otherwise the assignment e34 7→ 234 is replaced by
the assignment e34 7→ 345 to get a member of B. In both cases we have a
contradiction.

• 2. Every pair of [5] is covered by some triple of H5. Let 1 be a vertex of
maximum degree. If its degree is at least five, then the trace G = G({1})
contains a 4-cycle 23452. Then {2, 3, 4, 5} spans a member of B with
the two distinct triples covering pairs 24, 35 and the four triples on 1,
contradiction. Thus the degree of 1 is four, and we may assume that G

does not contain a 4-cycle. Thus G is a triangle, say 2342 with a pendant
edge 45. There are two triples of H5 within {2, 3, 4, 5} and apart from
symmetry there are four possible choices (with respect to the four edges
of G). In each case we can easily find a member of B spanned by {1, 2, 3, 4}
as shown below (the first two assignments are the ones using the two edges
of H5 inside {2, 3, 4, 5}.

34 7→ 234, 23 7→ 235, 12 7→ 123, 13 7→ 134, 14 7→ 145, 24 7→ 124;

24 7→ 234, 34 7→ 345, 12 7→ 124, 13 7→ 134, 14 7→ 145, 23 7→ 123;

23 7→ 235, 24 7→ 245, 12 7→ 124, 13 7→ 123, 14 7→ 145, 34 7→ 134;

24 7→ 245, 34 7→ 345, 12 7→ 124, 13 7→ 134, 14 7→ 145, 23 7→ 123.

II. n = 6. Suppose we have 9 = f(6) + 1 triples in H6. The maximum degree

is at least ⌈ 9×3
6 ⌉ = 5. The minimum degree is at least 4 otherwise deleting the

vertex we get six triples on five vertices contradicting Case I.
This implies that W has no vertex with degree at least two, thus its edges

form a matching M . If |M | = 3 then some vertex on M has degree at least 5,
contradiction.

• 1. Suppose |M | = 2, say 12, 34 are the edges of W and some vertex on
M , say 1, has degree 5. Then the five triples containing 1 are determined:
e1 = 135, e2 = 136, e3 = 145, e4 = 146, e5 = 156. Then, since the degree of
2 is at least four, one of the triples 235, 236 must be an edge of H6. Then
{1, 3, 5, 6} spans a member of B in H6, shown by one of the assignments

35 7→ 235, 13 7→ 135, 15 7→ 145, 16 7→ 146, 36 7→ 136, 56 7→ 156,

36 7→ 236, 13 7→ 136, 15 7→ 145, 16 7→ 146, 35 7→ 135, 56 7→ 156.

• 2. Suppose |M | = 2, say 12, 34 are the edges of W and vertices 1, 2, 3, 4
have degree four. Then d(5)+d(6) = 11 implying that the trace G({5, 6})
of H6 must contain a P4, say 1, 3, 2, 4 with double edges, and (by Property
4. in Proposition 6) {2, 3, 5, 6} spans a member of B.

• 3. Suppose |M | = 1, 12 is an edge of W . Now the trace G = G({1, 2}) has
no loops. Note that G cannot contain a 4-cycle, say 3, 4, 5, 6, 3 because
then with the edges covering the pairs 35, 46 we get a member of B on
{3, 4, 5, 6}. Since G contains at least eight edges, the trace must be a
triangle with a pendant edge formed by double edges, say 34, 45, 35, 36.
Now {1, 3, 4, 5} spans a member of B, contradiction.
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• 4. Suppose |M | = 0 i.e. W has no edges, every pair of [6] is covered by
some edge of H6. No vertex of H6 has degree at least 6. Indeed, if 1 is
such a vertex, then the trace G = G({1}) has at least six edges and either
contains a 4-cycle, say 23452 or isomorphic to two edge disjoint triangles,
say with edges 23, 34, 24, 25, 26, 56. In the first case {2, 3, 4, 5} spans a
member of B with assignments

23 7→ 123, 34 7→ 134, 45 7→ 145, 25 7→ 125

and the pairs 24, 35 are mapped to the triples containing them. In the
second case one can easily see that if any triple in {3, 4, 5, 6} is not in
H6 then we have a member of B. For example, assume that 345 is not
in H6, thus the edges e35, e45 that cover the pairs 35, 45 are different and
{2, 3, 4, 5} spans a member of B with the assignments

35 7→ e35, 45 7→ e45, 23 7→ 123, 24 7→ 124, 25 7→ 125, 34 7→ 134,

giving a contradiction.

Thus the degree sequence of H6 is 4, 4, 4, 5, 5, 5. Counting the codegrees,
i.e. the number of times the vertex pairs of H6 are covered by the triples,
we get that at least three pairs xiyi have codegree one. Indeed, otherwise
the sum of the codegrees is at least 2 + 13× 2 > 3× 9, contradiction.

We claim that for i = 1, 2, 3, the degrees of xi, yi are equal to 4. Indeed,
otherwise the trace G = G({xi, yi}) has at least seven edges, implying
that it must contain a pair of incident double edges plus a further loop or
edge incident to an endpoint, leading to a member of B. In fact, this is
Property 4. in Proposition 6.

We are left with one case to consider: the pairs xiyi form a triangle, say
1, 2, 3, 1 their degrees are equal to 4 and vertices 4, 5, 6 has degree 5. Then
{1, 2, 3} cannot be in E(H6), that would allow at most eight triples. The
trace G = G({1, 2, 3}) on {4, 5, 6} cannot contain a triple edge, say 45
with label {1, 2, 3} because then {1, 2, 3, 4} would span a member of B.
Indeed,

14 7→ 145, 24 7→ 245, 34 7→ 345

and the pairs 12, 13, 23 are covered by the triples of H6 containing them.
This implies that the double edges 45, 56, 46 are labeled w.l.o.g. with
{1, 2}, {1, 3}, {2, 3}, respectively, and each vertex of T has one loop. Now
{1, 2, 3, 4} spans a member of B again,

14 7→ 145, 24 7→ 245, 34 7→ 346

and the pairs 12, 13, 23 are covered by the edges of H6 containing them.
This is a contradiction, finishing the proof of Theorem 10.

Acknowledgement. Thanks to Maria Axenovich, Dániel Gerbner and Zoltán
Füredi for conversations on the subject.
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[9] D. Grósz, A. Methuku, C. Tompkins, Uniformity thresholds for the asymp-
totic size of extremal Berge-F -free hypergraphs, submitted

[10] E. Győri, Triangle-free hypergraphs. Combinatorics, Probability and Com-
puting 15 (2006), 185–191.
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[15] D. Mubayi, J. Verstraëte, A survey of Turán problems for expansions,
arXiv:1505.08078v1 (2015)

[16] C. Palmer, M. Tait, C.Timmons, A.Z Wagner, Turán numbers for Berge-
hypergraphs and related extremal problems, arXiv:1706.04249v1 (2017)

[17] O. Pikhurko, Exact computation of the hypergraph Turán function for ex-
panded complete 2-graphs, Journal of Combinatorial Theory B. 103 (2013)
220-225.

11

http://arxiv.org/abs/1705.04134
http://arxiv.org/abs/1805.07520

	1 Introduction
	2 Proof of Theorem 1 and its corollary
	3 Launching the induction

