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Abstract

We call a partial Steiner triple system C (configuration) t-Ramsey if for large
enough n (in terms of C, t), in every t-coloring of the blocks of any Steiner triple
system STS(n) there is a monochromatic copy of C.

We prove that configuration C is t-Ramsey for every t in three cases:

• C is acyclic

• every block of C has a point of degree one

• C has a triangle with blocks 123, 345, 561 with some further blocks at-
tached at points 1 and 6

This implies that we can decide for all but one configurations with at most four
blocks whether they are t-Ramsey. The one in doubt is the sail with blocks
123, 345, 561, 147.

∗Advisor of a 2016 summer research experience class at Budapest Semesters in Mathematics
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1 Introduction

A Steiner triple system of order n, STS(n), is an n-element set V , called points and
a set B of 3-element subsets of V called blocks, such that each pair of elements of
V appears in exactly one block of B. A partial Steiner triple system of order n,
PTS(n) is defined by requiring only that each pair of elements in V is in at most one
block. Sometimes a PTS(n) is referred to as a configuration on n points. Also, in
hypergraph theory, a PTS(n) is called a 3-uniform linear hypergraph on n vertices.
As it is customary, we assume that every point of a PTS(n) is in at least one block.
The number of blocks containing v ∈ V is called the degree of v. A set S ⊂ V in an
STS(n) is independent if |S ∩B| ≤ 2 for all B ∈ B.

A configuration C is unavoidable if there is an n0 = n0(C) such that every STS(n)
with n ≥ n0 must contain C. It is known that all but two configurations with at
most four blocks are unavoidable. The two exceptions are the Pasch configuration
with blocks 123, 345, 561, 246 and the one with blocks 123, 345, 561, 267. To decide
whether a configuration is unavoidable can be very difficult. The most spectacular
example is the following conjecture of Erdős.

A configuration is called r-sparse for some r ≥ 4 if it does not contain any con-
figuration with i+ 2 points and i blocks for all 2 ≤ i ≤ r. Erdős conjectured [3] that
for every r ≥ 4 there exists r-sparse STS(n) for every large enough admissible (≡ 1, 3
(mod 6)) n. Thus, supposing that this conjecture is true, unavoidable configurations
have at most as many blocks as the number of points minus three.

We call a configuration C t-Ramsey if there exists a constant n0(C, t) such that
for all admissible n ≥ n0(C, t) there is a monochromatic copy of C in every t-coloring
of the blocks of any STS(n). If C is t-Ramsey then the smallest possible value of
n0(C, t) is denoted by R(C, t). Clearly, a configuration is 1-Ramsey if and only if it
is unavoidable.

Notice that the nature of R(C, t) differs slightly from classical Ramsey numbers.
For example, proving that in any 2-coloring of the edges of K6 there is a monochro-
matic triangle, establishes that the 2-color Ramsey number of a triangle is at most 6.
However, although in every 2-coloring of the blocks of STS(7) (the Fano plane) there
is a monochromatic triangle (a triangle is the configuration with blocks 123, 345, 561),
the blocks of STS(9) can be 2-colored without having monochromatic triangles.

Assume that the blocks of an STS(n) are colored with t colors. This coloring
defines a natural induced coloring on the complete graph with vertex set V by coloring
every pair of V with the color of the block containing the pair. A natural tool to
establish bounds on R(C, t), one can use results of Ramsey theory on graphs. This is
illustrated with the next result.

Proposition 1. Let C be the triangle. Then R(C, 2) = 13.
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Proof. Suppose that n ≥ 13 and consider a 2-coloring of the blocks of any STS(n).
We apply the result R(K4− e,K4− e) = 10 ([5]) for the complete 2-colored Kn in the
induced coloring (K4 − e denotes the graph obtained from K4 by deleting an edge).
We obtain a monochromatic, say red K4 − e in the induced coloring, say with vertex
set W = {1, 2, 3, 4} and with edges as the pairs of W except (3, 4). Assume there is a
block B ∈ B within W . Without loss of generality assume B = {1, 2, 3}. In this case,
B together the blocks through the pairs (1, 4), (2, 4) form a red triangle. If there is
no block within W then the three blocks through the pairs (1, 2), (1, 3), (2, 3) define
a red triangle. This proves that R(C, 2) ≤ 13.

To prove that R(C, 2) ≥ 13 we exhibit a 2-coloring of STS(9) (the affine plane of
order 3): color the blocks in two parallel classes red and the blocks in the other two
parallel classes blue, there is no monochromatic triangle. 2

We can prove that a configuration is t-Ramsey in two basic cases. The first case is
when C is acyclic defined recursively as follows. A configuration C = (V,B) is acyclic
if either |B| = 1, or it can be obtained from an acyclic configuration C by adding a
new block which intersects V (C) in at most one point.

Theorem 1. Acyclic configurations are t-Ramsey for every t. In fact, R(C, t) ≤
6t|V (C)|.

Our other result is for graphlike configurations, where every block contains a point
of degree one. To a graphlike configuration C we associate a graph GC , obtained from
the blocks of C by removing a point of degree one from each block.

Theorem 2. Every graphlike configuration is t-Ramsey for every t with R(C, t) =
O((Rt(GC))

3), where Rt(GC) denotes the t-color Ramsey number of the graph GC.

The two theorems above show that all but four of the (24) configurations with at
most four blocks are t-Ramsey for every t. The two natural exceptions are the avoid-
able ones mentioned before. There are two further small configurations that are un-
avoidable but neither acyclic nor graphlike. One of them has blocks 123, 345, 561, 678.
We shall apply the ”induced matching lemma” of Ruzsa and Szemerédi [7] to show
that it is also t-Ramsey. In fact, we prove this for a more general family, Dp,q, ob-
tained from the triangle with blocks 123, 345, 561 by attaching p blocks at point 1 and
q blocks at point 6. For details on the 24 small configurations and the two avoidable
ones among them see [2, 4].

Theorem 3. For fixed non-negative integers p, q, the configuration Dp,q is t-Ramsey
for every t.

Theorems 1, 2, 3 leave only one (unavoidable) small configuration for which we
could not decide wether it is even 2-Ramsey: the sail with blocks 123, 345, 561, 147.

3



Corollary 1. The configurations with at most four blocks, except possibly the sail,
are t-Ramsey for any t ≥ 1.

2 Acyclic configurations

The density of a configuration C, denoted ϵ(C), is defined to be the number of blocks
divided by the number of points. For the proof of Theorem 1 we need two lemmas.

Lemma 1. Let C = (V,B) be any configuration.

(a) There exists a point v ∈ V such that deg(v) > ϵ(C).

(b) There exists a subconfiguration (V ′,B′) such that deg(v) > ϵ(C) for every v ∈
V ′.

Proof.

(a) Suppose to the contrary that deg(v) ≤ ϵ(C) for every v ∈ V . Then

3|B| =
∑
v∈V

deg(v) ≤ |V |ϵ(C) = |B|,

which is absurd, since |B| > 0. Hence, there must be some point v with deg(v) >
ϵ(C).

(b) Proceeding by induction on |B|, clearly the claim holds for the configuration
consisting of exactly one block. Suppose it also holds for all configurations with
fewer than n blocks, and let C = (V,B) be a configuration with n blocks.

If deg(v) > ϵ(C) for every v ∈ V then we are done, so suppose that for some
v0 ∈ V we have deg(v0) ≤ ϵ(C).

Removing v0 from C yields a subconfigurationD = (V ′,B′). Then |V ′| = |V |−1
and |B′| = |B| − deg(v0), since we must remove each block containing v0 when
removing v0. Yet D must have at least one block, since it follows from (a) and
ϵ(C) ≥ deg(v0) that some point has degree larger than deg(v0). It remains to
show that ϵ(D) ≥ ϵ(C). Then it would follow by induction that there exists a
subconfiguration D′ of D such that the degree of each point exceeds ϵ(C).

Now since deg(v0) ≤ ϵ(C), we have |B′| ≥ |B| − ϵ(C). It follows that,

ϵ(D) =
|B′|
|V ′|

≥ |B| − ϵ(C)
|V | − 1

.
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But

|B| − ϵ(C) =
|B||V |
|V |

− |B|
|V |

=
|B|(|V | − 1)

|V |
.

Thus, ϵ(D) ≥ |B|/|V | = ϵ(C), as desired. 2

Lemma 2. Let C be an acyclic configuration, and let S be a PTS(n). If deg(v) ≥
|V (C)| for every v ∈ V (S), then there exists an injective hypergraph homomorphism
f :V (C) → V (S). Hence, some subconfiguration of S is isomorphic to C.

Proof. We will proceed by induction on |V (C)|. Clearly, if |V (C)| = 3, then the
claim is true.

Now assume that the claim is true for acyclic configurations C such that |V (C)| <
m for some integer m. Let C be an acyclic configuration with |V (C)| = m, and
suppose S is a PTS(n) such that for every point v, deg(v) ≥ |V (C)|.

Since C is acyclic, there is an A = {p, q, r} ∈ E(C) such that deg(p) = deg(q) =
1. Remove A from E(C) to yield another acyclic configuration D. Then for every
v ∈ V (S), deg(v) ≥ m > |V (D)|. It follows from the induction hypothesis that there
exists an injective homomorphism f :V (D) → V (S).

Suppose deg(r) = 1 in C . Since every point in S has degree at least m, clearly
S must have at least 2m + 1 > m points. But |f [V (D)]| = |V (D)| < m, so V (S) \
f [V (D)] must be nonempty. Choose any x ∈ V (S) \ f [V (D)]. Since deg(x) ≥ m
and |f [V (D)]| < m, there must be a block B ∈ E(S) such that B = {x, y, z} with
y, z ̸∈ f [V (D)]. Then the function f̃ :V (C) → V (S) defined by f̃(p) = x, f̃(q) = y,
f̃(r) = z, and f̃(v) = f(v) for v ∈ V (D), is clearly an injective homomorphism as
desired.

Finally, suppose deg(r) > 1 in C, then r ∈ V (D). Proceeding as before, we
can find a block {f(r), y, z} in S with y, z ̸∈ f [V (D)], and define an injective homo-
morphism f̃ :V (C) → V (S) by f̃(q) = y, f̃(p) = z, and f̃(v) = f(v) for v ∈ V (D). 2

Proof of Theorem 1. Let C be an acyclic configuration and let S = (V,B) be an
STS(n) with n ≥ 6t|V (C)|. Color B with t colors. Using the fact that |B| = n(n−1)/6,
it follows that there exists a subconfiguration T = (V ′,B′) of S such that all blocks
of T have the same color, and

|B′| ≥ 1

t
|B| = n(n− 1)

6t
.

Then

ϵ(T ) =
|B′|
|V ′|

≥ 1

n
|B′| ≥ n− 1

6t
.
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Now by Lemma 1(b), there exists a subconfiguration U of T such that for every point
v in U ,

deg(v) > ϵ(T ) ≥ n− 1

6t
.

But n ≥ 6t|V (C)|, so it follows that,

deg(v) >
6t|V (C)| − 1

6t
≥ |V (C)| − 1.

Hence, deg(v) ≥ |V (C)| for every point v in U . It follows from Lemma 2 that U , and
therefore S, contains a subconfiguration isomorphic to C.

Thus, for n ≥ 6t|V (C)|, every t-coloring of an STS(n) results in a monochromatic
copy of C. 2

To find the exact value of R(C, t) is a difficult problem, even for the configurations
with two blocks. Let A be the configuration of two intersecting blocks. To find R(A, t)
is equivalent to the problem of finding the chromatic index of STSs, the minimum
number of colors needed to color the blocks so that blocks of the same color must be
disjoint. In fact, R(A, t) is the minimum n such that every STS of order at least n has
chromatic index larger than t. It follows from an important result of Pippenger and
Spencer [6] that the chromatic index of STS(n) is asymptotic to n/2. This translates
into the statement that R(A, t) is asymptotic to 2t.

Let B be the configuration of two disjoint blocks. Then R(B, t) is the minimum n
such that the blocks of any STS of order at least n cannot be decomposed into t parts
so that these parts contain pairwise intersecting blocks. It seems that this problem
is not investigated yet. It is easy to see that R(B, 2) = 9 and for larger t we give the
following bounds.

Theorem 4. For t ≥ 3, 2t− 1 ≤ R(B, t) ≤ 3t+ 1.

Lemma 3. For n ≥ 9, the maximum number of pairwise intersecting blocks in any
STS(n) is n−1

2
.

Proof. In any STS(n), any point is in exactly n−1
2

blocks, so equality is possible in
the lemma.

Suppose that A is a set of pairwise intersecting blocks. We may assume that
n ≥ 13 since STS(9) has exactly four parallel classes so we cannot have more than
four blocks in A. Let v be a point of maximum degree, say k, in A.

Observe that if k ≥ 4 then all edges of A must contain v, proving the lemma. If
k = 1 (k = 2) the A has at most one (four) blocks and the proof is finished. Thus
k = 3 and in this case all blocks of A must be inside the union of the three blocks of
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A containing v. Thus |A| ≤ 7 and the proof is finished since none of the two STS(13)
contain STS(7). 2

Proof of Theorem 4. First we give the proof for R(B, t) ≤ 3t+ 1.

An STS(n) with n ≥ 9 has 1
3

(
n
2

)
blocks, which means a t-colored STS(n) has at

least 1
3t

(
n
2

)
blocks in one color. Lemma 3 implies that if 1

3t

(
n
2

)
> n−1

2
, i.e. if n > 3t,

then there exists two disjoint monochromatic blocks. So if n ≥ 3t+ 1, we will have a
monochromatic B in a t-colored STS(n). Thus R(B, t) ≤ 3t+ 1.

For the lower bound we need the result of Sauer and Schönheim [8] who proved
that for every n, there always exists a STS(n) = (V,B) with a maximum independent
set I of size at least n−1

2
. Then there are at most n− n−1

2
= n+1

2
vertices in J = V \ I.

Assuming J = {v1, . . . , vt}, we can partition B by placing a block Z ∈ B in class i if
i is the smallest integer for which vi ∈ Z. Clearly, blocks in the same class intersect.
So n+1

2
≥ t therefore 2t− 1 ≤ R(B, t). 2

3 Graphlike Configurations

A set S ⊂ V in an STS is scattering if it is independent and for any two blocks B1, B2

such that |B1 ∩ S| = |B2 ∩ S| = 2, the points B1 \ S,B2 \ S are different. Note that
any subset of a scattering set is a scattering set. The blocks defined by the pairs of
a scattering set S with s = |S| determine

(
s
2

)
points in V \ S. This implies that any

scattering set S in STS(n) satisfies
(
s+1
2

)
≤ n and Colbourn, Dinitz and Stinson [1]

proved that for all admissible n there is an STS(n) with a scattering set S that gives
equality.

We need that any STS(n) has a large scattering set.

Proposition 2. Within any STS(n) there exists a scattering set of size s such that

n ≤
(
s

2

)
(s− 1) + s.

Proof. Clearly every STS(n) has a non-empty scattering set, so let S be a maximal
scattering set, |S| = s. Note that two distinct points in S uniquely determine a block
with a point outside of S. Let T ⊆ V be the set of points outside S contained in a
block with two elements from S. Then |T | =

(
s
2

)
. Now consider the set U = V \(S∪T ).

Fix u ∈ U and consider all of the blocks {u, s, t} where s ∈ S. Then t cannot be
in S, or else u would be in T . Also, t cannot be in U for all such blocks, or else S
would not be a maximal scattering set. Thus t ∈ T for at least one block. This gives
an injection from U to S × T . However, we have over-counted the pairs (s, t) where
s ∈ S and t ∈ T which lie in blocks containing two points of S and one point of T .
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We counted each of these twice, but none of them may lie in a block with a point
from U . Thus |U | ≤ s

(
s
2

)
− 2

(
s
2

)
. This gives

n = |S|+ |T |+ |U | ≤ s+

(
s

2

)
+ s

(
s

2

)
− 2

(
s

2

)
=

(
s

2

)
(s− 1) + s,

as desired. 2

Proof of Theorem 2. Let C be a graphlike configuration. By Proposition 2, we
can choose N = O((Rt(GC)

3)) such that n ≥ N guarantees every STS(n) will have
a scattering set of size s = Rt(GC). Then, in the coloring induced on Ks by the
blocks containing the pairs of the scattering set in a t-colored STS(n), there must be
a monochromatic copy of GC . By the definition of a scattering set, the blocks whose
coloring induces this copy of GC all have a point of degree one, and thus constitute
a monochromatic copy of C in the STS(n). 2

4 The configuration Dp,q

A matching in a graph G is a set of pairwise vertex disjoint edges. An induced
matching M in G is a matching which is an induced subgraph of G, i.e., within the
vertex set of M the only edges of G are the edges of M . We need the following
well-known result.

Theorem 5. (Ruzsa and Szemerédi, [7]) If the edge set of a graph on n vertices is
the union of at most cn induced matchings (where c is a fixed constant), then the
graph has o(n2) edges.

Proof of Theorem 3. Assume we have a t-coloring on the blocks of a STS(n) =
(V,B), V = {v1, . . . , vn}. Let Bi ⊂ B denote the set of blocks containing vi whose
color appears most frequently among the blocks containing vi. For example if t = 2
and v1 is in more red blocks than blue, than B1 consists of all red blocks containing
v1. Moreover, if v2 appears in more blue blocks than in red, then B2 consists of the
blue blocks containing v2. Note that distinct Bi-s may be of different colors. Also, in
case of ties, the color can be selected arbitrarily. Now, at least n/t of the Bi-s consists
of blocks of the same color, so without loss of generality, B1, . . . ,Bm are of same color
c, where m ≥ n/t.

We define a graph G on V with edge set E = E1 ∪ E2 ∪ . . . ∪ Em where

Ei = {(vj, vk) : {vi, vj, vk} ∈ Bi}.

Note that each Ei is a matching, |Ei| ≥ n−1
2t

and |E(G)| ≥ m
(
n−1
2t

)
≥ n(n−1)

2t2
. Suppose

that n is large enough to satisfy

|Ei| ≥
n− 1

2t
> 2p+ q + 3. (1)
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Since we have a quadratic number of edges in G, Theorem 5 implies that for every
sufficiently large n, some Ei is not an induced matching. Thus there exists j ̸= i for
which we have a three-edge path e, f, g in G such that e, g ∈ Ei, f ∈ Ej. Condition
(1) implies (applied for i) that |Ei| ≥ p + 2 thus we can find p edges e1, . . . , ep ∈ Ei

different from e, g. Now we apply condition (1) for j which gives that |Ej| > 2p+q+3
ensuring q edges f1, . . . , fq ∈ Ej so that these edges are disjoint from the 2p vertices
of e1∪ . . .∪ ep and also disjoint from the edges of the path e, f, g (at most three edges
of Ej can intersect the path efg since f ∈ Ej). Now the blocks defined by vi with
the pairs e, g, e1, . . . , ep and the blocks defined by vj with the pairs f, f1, . . . , fq give
a Dp,q configuration in color c. 2

5 Concluding remarks

It seems reasonable to conjecture that unavoidable configurations are t-Ramsey for
every t. However, we could not decide whether the sail is t-Ramsey (even for t = 2).

It seems that certain properties that are trivial in Ramsey theory become difficult
for Steiner systems. For example, we do not see how to prove that if C is 2-Ramsey
then two disjoint copies of C is also 2-Ramsey.
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