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a b s t r a c t

This paper extends to hypergraphs a question discussed in Bialostocki and Gyárfás [4] and
Garrison [8]: can one generalize a Ramsey type result from complete host graphs to graphs
of sufficiently large chromatic number?

For an r-uniform tree T (r ≥ 2) we define the (t-color) chromatic Ramsey number
χ (T , t) as the smallest m with the following property: if the edges of any m-chromatic
r-uniform hypergraph are colored with t colors in any manner, there is a monochromatic
copy of T . The presence of a tree is not accidental: χ (H, t) can be defined only for an acyclic
hypergraphH since there are hypergraphswith arbitrary large chromatic number and girth.
We prove that⌈

Rr (T , t) − 1
r − 1

⌉
+ 1 ≤ χ (T , t) ≤ |E(T )|t + 1

where Rr (T , t) is the t-color Ramsey number of T . We give better upper bounds for χ (T , t)
when T is a matching or a star, proving that for r ≥ 2, k ≥ 1, t ≥ 1, χ (Mr

k , t) ≤

(t − 1)(k − 1) + 2k and χ (Srk, t) ≤ t(k − 1) + 2 where Mr
k and Srk are, respectively, the

r-uniform matching and star with k edges.
The general upper bounds are improved for 3-uniform hypergraphs. We prove that

χ (M3
k , 2) = 2k, extending a special case of

∧
Alon–Frankl–Lovász theorem. We also prove

that χ (S32 , t) ≤ t+1, which is sharp for t = 2, 3. This is a corollary of ourmain result which
bounds the chromatic number χ (H) of 3-uniform hypergraphs by the chromatic number
of its 1-intersection graph H [1], whose vertices represent hyperedges and whose edges
represent intersections of hyperedges in exactly one vertex. We prove that χ (H) ≤ χ (H [1])
for any 3-uniform hypergraph H (assuming that H [1] has at least one edge). The proof
uses the list coloring version of Brooks’ theorem. The more general question, whether
χ (H) ≤ χ (H [1]) holds for every r-uniform hypergraph (r > 3) remains open. We could
not decide either whether the above lower bound of χ (T , t) is sharp for every r-uniform
tree.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction, results 1

A hypergraph H = (V , E) is a set V of vertices together with a nonempty set E of subsets of V , which are called edges. 2

In this paper, we will assume that for each e ∈ E, |e| ≥ 2. If |e| = r for each e ∈ E, then H is r-uniform; a 2-uniform H is 3

a graph. A hypergraph H is acyclic if H contains no cycles (including 2-cycles which are two edges intersecting in at least 4

two vertices). If H is a connected acyclic hypergraph, we say that H is a tree. In particular, a star is a tree in which exactly 5

one vertex is common to every edge. A matching is a hypergraph consisting of pairwise disjoint edges, with every vertex 6

belonging to some edge. We denote by Srk andMr
k the r-uniform k-edge star and matching, respectively. 7

For a positive integer k, a function c : V → {1, . . . , k} is called a k-coloring of H . A coloring c is proper if no edge of H 8

is monochromatic under c . The chromatic number of H , denoted χ (H), is the least m ≥ 1 for which there exists a proper 9

m-coloring of H and in this case, we say that H is m-chromatic. Given H = (V , E), a partition {E1, . . . , Et} of E into t parts is 10

called a t-edge-coloring of H . For r-uniform hypergraphs H1,H2, . . . ,Ht , the (t-color) Ramsey number Rr (H1,H2, . . . ,Ht ) is 11

the smallest integer n for which the following is true: under any t-edge-coloring of the complete r-uniform hypergraph K r
n , 12

there is a monochromatic copy of Hi in color i for some i ∈ {1, 2, . . . , t}. When all Hi = H we use the notation Rr (H, t). 13

Bialostocki and the senior author of this paper extended two well-known results in Ramsey theory from the complete 14

host graph Kn to arbitrary n-chromatic graphs [4]. One extends a remark of Erdős and Rado stating that in any 2-coloring of 15

the edges of a complete graph Kn there is amonochromatic spanning tree. The other is the extension of the result of Cockayne 16

and Lorimer [5] about the t-color Ramsey number of matchings. In [8], an acyclic graph H is defined as t-good if every t-edge 17

coloring of any R2(H, t)-chromatic graph contains amonochromatic copy ofH . Matchings are t-good for every t [4] and in [8] 18

it was proved that stars are t-good, as well as the path P4 (except possibly for t = 3). Additionally, P5, P6, P7 are 2-good. In 19

fact, as remarked in [4], there is no known example of an acyclic H that is not t-good. 20

In this paper, we explore a similar extension of Ramsey theory for hypergraphs, motivating the following definition. 21

Definition 1. Suppose that T is an acyclic r-uniform hypergraph. Let χ (T , t) be the smallest m with the following property: 22

under any t-edge-coloring of anym-chromatic r-uniform hypergraph, there is a monochromatic copy of T . 23

We call χ (T , t) the chromatic Ramsey number of T . It follows from the existence of hypergraphs of large girth and 24

chromatic number that the chromatic Ramsey number can be defined only for acyclic hypergraphs. 25

1.1. General trees and acyclic hypergraphs 26

To see that χ (T , t) is indeed well defined, we use the following result. 27

Lemma A ([10,12]). If H is r-uniform with χ (H) ≥ k + 1, then H contains a copy of any r-uniform tree on k edges. 28

Proposition 2. For any r-uniform tree T , χ (T , t) ≤ |E(T )|t + 1. 29

Proof. Fix t ≥ 1. Let T be an r-uniform tree with k edges and let H = (V , E) be a hypergraph with χ (H) ≥ kt + 1. Let 30

E = E1∪̇ · · · ∪̇Et be a t-coloring of its edges and set Hi = (V , Ei). 31

Then χ (H1 ∪ · · · ∪ Ht ) = χ (H) ≥ kt + 1 holds and without loss of generality, χ (H1) ≥ k + 1. By Lemma A, H1 contains a 32

copy of T . □ 33

The simple bound of Proposition 2 can be easily reduced for graphs. 34

Proposition 3. For any 2-uniform tree T with k edges, χ (T , t) ≤ 2kt + 1. 35

Proof. Let G be a t-colored graph with χ (G) ≥ 2kt + 1 and T is a tree with k edges. Clearly G has a subgraph of minimum 36

degree 2kt , with a slight abuse of notation, we keep the name G for it. Then, for some color i,
∑

v∈V (G)di(v) ≥ 2k|V (G)|, where 37

di(v) is the number of edges in color i incident to v. Thus the graphGi, whose edges are the edges ofGwith color i, has average 38

degree at least 2k therefore Gi has a subgraph of minimum degree kwhich must contain every tree with k edges. □ 39

Question 4. Let T be an r-uniform tree. Is there an upper bound for χ (T , t) which is linear in both t, |E(T )|? 40

Since any r-uniform acyclic hypergraph T may be found in some r-uniform tree T ′, χ (T , t) is well-defined for any 41

r-uniform acyclic hypergraph. Observe the following natural lower bound of χ (T , t). Let L(T , t, r) :=

⌈
Rr (T ,t)−1

r−1

⌉
+ 1. 42

Proposition 5. For any acyclic r-uniform T , L(T , t, r) ≤ χ (T , t). 43

Proof. Let N := Rr (T , t) − 1. By the definition of the Ramsey number, there is a t-coloring of the edges of K r
N without a 44

monochromatic T . Since χ (K r
N ) = ⌈

N
r−1⌉, the proposition follows. □ 45
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The notion of t-good graphs can be naturally extended to hypergraphs using Proposition 5. An acyclic r-uniform hyper-1

graph T is called t-good if every t-edge coloring of any L(T , t, r)-chromatic r-uniform hypergraph contains amonochromatic2

copy of T . In other words, T is t-good if L(T , t, r) = χ (T , t). Note that for r = 2, this gives the definition of good graphs.3

Although it is unlikely that all acyclic hypergraphs are t-good, we have no counterexamples.4

For special families of r-uniform acyclic hypergraphs, namely for stars and matchings, we found better upper bounds for5

χ (T , t). Surprisingly, most of the bounds attained do not depend on r .6

1.2. Stars7

Proposition 6. χ (Srk, t) ≤ t(k − 1) + 2.8

Proof. Fix t, k ≥ 1 and let p := t(k − 1) + 2. Suppose that H is r-uniform with χ (H) ≥ p and its edges are t-colored. By9

Lemma A, χ (Srp−1, 1) ≤ p, so we can find a copy of Srp−1 in H . By the pigeonhole principle, k of the edges of Srp−1 have the10

same color, forming a monochromatic copy of Srk . □11

How good is the estimate of Proposition 6? Notice first that for t = 1 it is sharp.12

Proposition 7. χ (Srk, 1) = k + 1.13

Proof. Consider the complete hypergraph K = K r
k(r−1). Clearly, χ (K ) = k and Srk is not a subgraph of K , as its vertex set is too14

large. □15

If t = 2, Proposition 6 gives χ (Srk, 2) ≤ 2k. For r = 2 and odd k, this is a sharp estimate. For k = 1, this is trivial; for k ≥ 3,16

the complete graph K 2
2k−1 can be partitioned into two (k−1)-regular subgraphs. However, for even k ≥ 2, χ (S2k , 2) = 2k−1.17

An interesting problem arises when T = Sr2 with r ≥ 3, when Proposition 6 gives the upper bound t +2.We can decrease18

this bound by introducing the notion of 1-intersection graphs of a hypergraph.19

Definition 8. Let H = (V (H), E(H)) be a hypergraph. The 1-intersection graph of H is denoted H [1], where V (H [1]) = E(H)20

and21

E(H [1]) = {(e, f ) : e, f ∈ E(H) and |e ∩ f | = 1}.22

It is well-known that if H [1] is trivial, i.e., no two edges of H intersect in exactly one vertex, then H is 2-colorable ([14],23

Exercise 13.33). Note that the stronger statement χ (H) ≤ χ (H [1]) + 1 follows from applying the greedy coloring algorithm24

in any order of the vertices of H . Can we improve this?25

Question 9. Let r ≥ 3. Is it true that χ (H) ≤ χ (H [1]) for any r-uniform hypergraph H, provided H [1] has at least one edge?26

Our main result is the positive answer to Question 9 for the 3-uniform case and its corollary.27

Theorem 10. If H is a 3-uniform hypergraph with at least one edge in H [1] then χ (H) ≤ χ (H [1]).28

Corollary 11. For t ≥ 1, χ (S32 , t) ≤ t + 1.29

Proof. Suppose that we have a t-coloring c on the edges of a 3-uniform H with χ (H) ≥ t + 1. We claim that there are two30

edges of H with the same color that intersect in one vertex, defining a monochromatic S32 . Indeed, by Theorem 10 we have31

t +1 ≤ χ (H) ≤ χ (H [1]). Then c defines a vertex t-coloring on the (at least) (t +1)-chromatic graphH [1], this coloring cannot32

be proper: there are two vertices of the same color forming an edge in H [1] and proving the claim. □33

The case t = 2 of Corollary 11 was the initial aim of the research in this paper and it was proved first by Zoltán Füredi [7].34

Our proof of Theorem 10 uses his observation (Lemma 16
∧
) and the list-coloring version of Brooks’ theorem. Corollary 11 is35

obviously sharp for t = 2; it follows from Proposition 5 that it is also sharp for t = 3, because R3(S32 , 3) = 6 [3]. It would be36

interesting to see whether Corollary 11 is true for any Sr2 (in particular for r = 4, t = 2) as this is equivalent to the statement37

that r-uniform hypergraphs with bipartite 1-intersection graphs are 2-colorable.38

1.3. Matchings39

When T is a matching, the bounds of χ (T , t) relate to the following well-known result of Alon, Frankl, and Lovász40

(originally conjectured by Erdős).41

Theorem B ([1]). For r ≥ 2, k ≥ 1, t ≥ 1,42

Rr (Mr
k , t) = (t − 1)(k − 1) + kr.43

Note that special cases of Theorem B include r = 2 [5], k = 2 [13], t = 2 [2,9].44
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We obtain the following linear upper bound for matchings using Theorem B. 1

Theorem 12. For r ≥ 2, k ≥ 1, t ≥ 1, χ (Mr
k , t) ≤ (t − 1)(k − 1) + 2k. Equality holds for r = 2. 2

We tighten this bound, provided r ≥ 3 and t = 2. 3

Theorem 13. For r ≥ 3 and k ≥ 1, χ (Mr
k , 2) ≤ 2k. 4

We get two corollaries of Theorem 13 when its upper bound coincides with the lower bound of Proposition 5. 5

Corollary 14. χ (M3
k , 2) = 2k. 6

Corollary 15. For r ≥ 3, χ (Mr
2, 2) = 4. 7

Corollary 14 extends Theorem B (for r = 3, t = 2) because χ (K 3
4k−1) = 2k. However, Corollary 15 does not extend 8

Theorem B for r ≥ 4. Indeed, for r = 4, the bound ⌈
1+2r
r−1 ⌉ derived from Theorem B is 3. 9

2. Proofs of main results 10

2.1. Proof of Theorem 10 11

In this section, we use the phrase ‘‘triple system’’ for a 3-uniform hypergraph. The word ‘‘triple’’ will take the place of 12

‘‘edge’’ so that ‘‘edge’’ may be reserved for graphs. Our goal is to construct a proper t-coloring of H from a proper t-coloring 13

of H [1]. Note that a partition of E(H) into classes E1, E2, . . . , Et such that for any i, 1 ≤ i ≤ t , no two edges of Ei 1-intersect 14

is precisely a proper t-coloring of H [1]. 15

A triple system is connected if for every partition of its vertices into two nonempty parts, there is a triple intersecting both 16

parts. Every triple system can be uniquely decomposed into pairwise vertex-disjoint connected parts, called components. 17

Components with one vertex are called trivial components. 18

Let Bk denote the triple system with k edges intersecting pairwise in the vertices {v, w}, called the base of Bk. A 19

B-component (also, Bk-component) is a triple system which is isomorphic to Bk for some k ≥ 1. A K -component is either 20

three or four distinct triples on four vertices. 21

Lemma 16. Let C be a nontrivial component in a triple system without 1-intersections. Then C is either a B-component or a 22

K-component. 23

Proof. If C has at most four vertices then 1 ≤ |E(C)| ≤ 4 (where E(C) is here considered as a set, not a multiset) and by 24

inspection, C is either B1, B2, or a K -component. Assume C has at least five vertices and select the maximum m such that 25

e1, e2, . . . , em ∈ E(C) are distinct triples intersecting in a two-element set, say in {x, y}. Clearly, m ≥ 2. Then A = ∪
m
i=1ei 26

must cover all vertices of C , as otherwise there is an uncovered vertex z and a triple f containing z and intersecting A, since 27

C is a component. However, fromm ≥ 2 and the intersection condition, f ∩A = {x, y} follows, contradicting the choice ofm. 28

Thus A = V (C) and from |V (C)| ≥ 5 we have m ≥ 3. It is obvious that any triple of C different from the ei’s would intersect 29

some ei in one vertex, violating the intersection condition. Thus C is isomorphic to Bm, concluding the proof. □ 30

A multigraph G is called a skeleton of a triple system H if every triple contains at least one edge of G. We may assume 31

that V (H) = V (G). A matching in a multigraph is a set of pairwise disjoint edges. A factorized complete graph is a complete 32

graph on 2m vertices whose edge set is partitioned into 2m−1matchings. The following lemma allows us to define a special 33

skeleton of triple systems. 34

Lemma 17. Suppose that H is a triple system with χ (H [1]) = t ≥ 2 and H1,H2, . . . ,Ht is a partition of H into triple systems 35

(each Hi is considered on vertex set V (H)) where each Hi has no 1-intersections. Then there exists a skeleton G of H with the 36

following properties: 37

1. E(G) = ∪
t
i=1Mi where each Mi is a matching and a skeleton of Hi. 38

2. For 1 ≤ i ≤ t, edges of Mi are the bases of all B-components of Hi and two disjoint vertex pairs from all K-components of 39

Hi. 40

3. If K ∗
= Kt+1 ⊂ G then K ∗ is a connected component of G factorized by the Mi’s and there is some e ∈ M1 ∩ E(K ∗) such 41

that e is from a B-component of H1. 42

Proof. From Lemma 16we can defineMi by selecting the base edges from every B-component ofHi and selecting two disjoint 43

pairs from every K -component of Hi. The resulting multigraph is clearly a skeleton of H and satisfies properties 1 and 2. We 44

will select the disjoint pairs from the K -components so that property 3 also holds. Notice that K ∗
= Kt+1 ⊂ G must form a 45

connected component in G because it is a t-regular subgraph of a graph of maximum degree t . Also, Kt+1 is factorized by the 46

Mi’s because the union of t matchings can cover at most t(t+1)
2 =

( t+1
2

)
edges of Kt+1, therefore every edge of Kt+1 must be 47
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covered exactly once by the Mi’s. Thus we have to ensure only that there is e ∈ M1 ∩ E(K ∗) with e from a B-component of1

H1. For convenience, we say that a K ∗
= Kt+1 is a bad component if such e does not exist.2

Select a skeleton S as described in the previous paragraph such that p, the number of bad components, is as small as3

possible. Suppose that (x, y) ∈ M1 is in a bad component U . In other words, (x, y) is in a K -component of H1, where4

V (K ) = {x, y, u, v} and (u, v) ∈ M1. Now we replace these two pairs by the pairs (x, u), (y, v) to form a new M1. After5

this switch, U is no longer a bad component. In fact, either U becomes a new component on the same vertex set (if (u, v)6

was in U) or U melds with another component into a new component. In both cases, no new bad components are created7

and in the new skeleton there are fewer than p bad components. This contradiction shows that p = 0 and proves the8

lemma. □9

Proof of Theorem 10. Let H be a triple system with t := χ (H [1]) ≥ 2 and partition H into H1, . . . ,Ht so that each Hi is10

without 1-intersections. Let G be a skeleton of H with the properties ensured by Lemma 17.11

Let G′ be a connected component of G. By Brooks’ Theorem, if G′ is not the complete graph Kt+1 or an odd cycle (if t = 2),12

χ (G′) ≤ ∆(G′) ≤ t .13

Suppose first that t is even. Now G′
̸= Kt+1 because that would contradict property 3 in Lemma 17: Kt+1 cannot be14

factorized into matchings. Also, for t = 2, G′ cannot be an odd cycle since odd cycles are not the union of two matchings.15

Thus every connected component of G is at most t-chromatic, therefore χ (G) ≤ t . Since G is a skeleton of H , this implies16

χ (H) ≤ t , concluding the proof for the case when t is even.17

Suppose that t is odd, t ≥ 3. In this case the previous argument does not work when some connected component18

G′
= Kt+1 ⊂ G. However, from Lemma 17, every Kt+1-component Ci of G has an edge (xi, yi) ∈ M1 that is the base of a19

B-component in H1. Define the vertex coloring c on X = ∪
m
i=1V (Ci) by c(xi) = c(yi) = 1 and by coloring all the other vertices20

of all Ci’s with 2, . . . , t .21

Let F be the subgraph of G spanned by V (G) \ X and define22

Z := {z ∈ V (F ) : {xi, yi, z} ∈ E(H1) for some 1 ≤ i ≤ m}.23

Fix any z ∈ Z . Then there is a triple T = (xi, yi, z) ∈ H1 in a B-component of H1 where T has base (xi, yi). If (z, u) ∈ M124

for some u ∈ V (G), some triple S containing (z, u) would be in H1. But then S, T would 1-intersect in z, contradicting to the25

definition of H1. Thus dG(z) ≤ t − 1 for all z ∈ Z . Note also that dG(v) ≤ t for all v ∈ V (F ) \ Z .26

We claim that with lists L(z) := {2, . . . , t} for z ∈ Z and L(v) := {1, . . . , t} for v ∈ V (F ) \ Z , F is L-choosable. We use the27

reduction argument present in many coloring proofs (see, for example, the very recent survey paper [6]).28

Suppose F is not L-choosable and let F ′ be aminimal induced subgraph of F which fails to be L-choosable.Wemay assume29

that any z ∈ V (F ′) ∩ Z has dF ′ (z) = t − 1 (otherwise we may L-choose F ′
− z, add z back and properly color it). Likewise we30

may assume dF ′ (v) = t for all v ∈ V (F ′) \ Z . By the degree-choosability version of Brooks’ theorem (see [11], Lemma 1 or [6],31

∧
Theorem 11), F ′ is a Gallai tree: a graph whose blocks are complete graphs or odd cycles.32

Let A be an endblock of F ′. Then A ̸= Kt+1 because all Kt+1-components of G are in X . Since all vertex degrees in F ′ are t33

or t − 1, A is either an odd cycle (if t = 3) or A is a Kt . A must contain an edge e ∈ M1. Otherwise M2, . . . ,Mt would cover34

the edges of A, a contradiction in either case. By the degree requirements, either35

V (A) ∩ (V (F ) \ Z) = {w}36

where w is the unique cut point of A or V (A) ⊂ Z . In both cases an endpoint of e must be in Z . Then there exists some triple37

{xi, yi, z} ∈ H1 which 1-intersects with the triple of H1 containing e, a contradiction to the definition of H1, proving that F is38

L-choosable.39

Let c ′
: V (F ) → {1, . . . , t} be an L-coloring of F . We extend c from X to V (H) by setting c(v) := c ′(v) for all v ∈ V (F ).40

Observe that c properly colors all edges of G except for the edges of the form (xi, yi) which are monochromatic in color 1.41

Since G is a skeleton, every triple of H is properly colored except possibly the triples in the from (xi, yi, x).42

We claim that c(x) ̸= 1. Suppose to the contrary that c(x) = 1. If x ∈ X then x ∈ {xj, yj} for some j ̸= i, but this is43

impossible because the bases (xi, yi), (xj, yj) are from different B-components of H1. If x ̸∈ X then x ∈ Z from the definition44

of Z . However, 1 ̸∈ L(x) for x ∈ Z and this proves the claim.45

Therefore c is a proper t-coloring of H and this completes the proof. □46

2.2. Proof of Theorem 1247

Let H = (V , E) be an r-uniform hypergraph with χ (H) ≥ pwhere48

p = (t − 1)(k − 1) + 2k.49

Consider any t-edge coloring {E1, . . . , Et} of H and any proper coloring c of H obtained by the greedy algorithm (under any50

ordering of its vertices). Clearly c uses at least p colors and for any 1 ≤ i < j ≤ p there is an edge eij in H whose vertices51

are colored with color i apart from a single vertex which is colored with j. Let {F1, . . . , Ft} be a t-edge-coloring of K 2
p defined52

so that Fs := {{i, j} : 1 ≤ i < j ≤ p, eij ∈ Es} for each s, 1 ≤ s ≤ t . From the definition of p, Theorem B (in fact the53

∧
Cockayne–Lorimer Theorem suffices) implies that there is a monochromaticM2

k in K 2
p . Observe that54

{eij : {i, j} ∈ M2
k }55

gyarfas
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is a set of k pairwise disjoint edges in H in the same partition class of {E1, . . . , Et}. This completes the proof that χ (Mr
k , t) ≤ 1

(t − 1)(k − 1) + 2k. The lower bound R2(M2
k , t) ≤ χ (M2

k , t) implies equality in the r = 2 case. □ 2

2.3. Proof of Theorem 13 3

We fix r ≥ 3 and proceed by induction on k. Suppose k = 1 and letH be some r-uniform hypergraphwithχ (H) ≥ 2. Then 4

any 2-edge-coloring of H contains a single monochromatic edge since H has at least one edge. Now suppose the theorem is 5

true for k − 1 ≥ 1 and let H = (V , E) be r-uniform with χ (H) ≥ 2k. Without loss of generality, H is connected. Fix some 6

2-edge-coloring {E1, E2} of H , calling the edges of E1 ‘‘red’’ and the edges of E2 ‘‘blue’’. If E1 or E2 is empty, then Theorem 12 7

with t = 1 implies the desired bound. 8

So we may assume otherwise, and there exist edges e, f ∈ E with e red and f blue. Let s := |e ∩ f | and A := e ∪ f . If H[A] 9

is 2-colorable, then χ (H − A) ≥ χ (H) − 2 ≥ 2(k − 1) so by induction we find a monochromatic Mr
k−1 matching in H − A. 10

Without loss of generality,Mr
k−1 is red andMr

k−1 + e is a redMr
k in H . 11

If s > 1, then |A| = 2r − s ≤ 2r − 2 thus H[A] is certainly 2-colorable and the induction works. If s = 1 12

and H[A] is not 2-colorable then H[A] is K r
2r−1. Writing e = {w, u1, . . . , ur−1} and f = {w, v1, . . . , vr−1}, the edge 13

g = {w} ∪ {u1, u3, . . .} ∪ {v2, v4, . . .} ∈ E(H). Without loss of generality, g is red and |g ∩ f | = 1 + ⌊(r − 1)/2⌋ ≥ 2 14

since r ≥ 3. So the previous case applies to the red edge g and blue edge f . Finally, if s = 0 and H[A] is not 2-colorable there 15

must be g ∈ H[A] that intersects both e and f . Then either e, g or f , g is a pair of edges of different colors that intersect, and 16

a previous case can be applied again. □ 17
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