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a b s t r a c t

It is well-known (as a special case of the path–path Ramsey number) that in every
2-coloring of the edges of K3n−1, the complete graph on 3n − 1 vertices, there is a
monochromatic P2n, a path on 2n vertices. Schelp conjectured that this statement remains
true if K3n−1 is replaced by any host graph on 3n − 1 vertices with minimum degree at
least 3(3n−1)

4 . Herewe propose the following stronger conjecture, allowing host graphswith
the corresponding Ore-type condition: If G is a graph on 3n − 1 vertices such that for any
two non-adjacent vertices u and v, dG(u) + dG(v) ≥

3
2 (3n − 1), then in any 2-coloring

of the edges of G there is a monochromatic path on 2n vertices. Our main result proves
the conjecture in a weaker form, replacing P2n by a connected matching of size n. Here a
monochromatic, say red, matching in a 2-coloring of the edges of a graph is connected if
its edges are all in the same connected component of the graph defined by the red edges.
Applying the standard technique of converting connected matchings to paths with the
Regularity Lemma, we use this result to get an asymptotic version of our conjecture for
paths.

© 2016 Elsevier B.V. All rights reserved.

1. Background, summary of results

The path–path Ramsey number was determined in [10], and its diagonal case (stated for convenience for even paths) is
that R(P2n, P2n) = 3n − 1, i.e. in every 2-coloring of the edges of K3n−1, the complete graph on 3n − 1 vertices, there is a
monochromatic P2n, a path on 2n vertices. It is a natural question whether a similar conclusion is true if K3n−1 is replaced by
some other host graph G. The first result in this direction was obtained in [13] where it was proved that in every 2-coloring
of the edges of the complete 3-partite graph Kn,n,n there is a monochromatic P(1−o(1))2n. We focus in this paper on another
example, a conjecture of Schelp [21], stating that K3n−1 can be replaced by any host graph G of order 3n − 1 with large
minimum degree δ(G).

Conjecture 1 (Schelp [21]). Suppose that n is large enough and G is a graph on 3n − 1 vertices with δ(G) ≥
3(3n−1)

4 . Then in
every 2-coloring of the edges of G there is a monochromatic P2n.

Asymptotic versions of Schelp’s conjecturewere proved independently in [3] and [15]. In this paperwegoone step further
and consider graphs satisfying an Ore-type degree condition replacing theminimumdegree condition. Herewe call a degree
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condition Ore-type if it gives a lower bound on the degree sum for any two non-adjacent vertices. There has been a lot of
efforts in trying to extend results from minimum degree conditions to Ore-type conditions. The first result of this type was
proved by Ore [20]: If for any two non-adjacent vertices x and y of G, we have dG(x)+dG(y) ≥ n, then G is Hamiltonian. Some
other results of this type include for example [7] (Ore-type conditions for k-ordered Hamiltonian graphs), [16] (Ore-type
results on equitable colorings), [17] (Ore-type versions of Brooks’ theorem), [8] (Ore-Type Conditions for H-Linked Graphs)
or [2] (Ore-type conditions for partitioning into two monochromatic cycles).

Generalizing Conjecture 1 for graphs satisfying an Ore-type condition here we pose

Conjecture 2. Suppose that n is large enough and G is a graph on 3n − 1 vertices such that for any two non-adjacent vertices u
and v of G, we have dG(u) + dG(v) ≥ 3(3n − 1)/2. Then in every 2-coloring of the edges of G there is a monochromatic P2n.

The condition ‘‘n is large enough’’ seems to be a kind of safety belt in Conjecture 1, so we kept it also in Conjecture 2,
although as far as we know, both can be true for all n. It is also worth mentioning that the condition δ(G) ≥

3(3n−1)
4 (or the

sum of degrees of nonadjacent vertices is at least 3(3n−1)
2 in Conjecture 2) is close to best possible in these conjectures as the

following example [15,21] shows.
Suppose that 3n− 1 = 4m for somem and consider a graph whose vertex set is partitioned into four parts A1, A2, A3, A4

with |Ai| = m. Assume there are no edges from A1 to A2 and from A3 to A4 and all other pairs are edges. Edges in the complete
bipartite graphs [A1, A3], [A2, A4] ([A1, A4], [A2, A3]) are colored red (blue). Edges inside the Ai-s can be colored arbitrarily.
In this coloring the longest monochromatic path has 3n−1

2 vertices, much smaller than 2n, while the minimum degree is
3m − 1 =

3(3n−1)
4 − 1 and the sum of degrees of nonadjacent pairs is 6m − 2 =

3(3n−1)
2 − 2. Thus, a small increase in the

minimum degree (or in the sum of degrees of nonadjacent pairs) results in a dramatic increase of the length of the longest
monochromatic path.

To state ourmain result, Theorem 1, we need a definition. Amatching in a graph is called a connectedmatching if its edges
belong to the same connected component of the graph. When the edges are colored, a monochromatic, say red connected
matching is a matching with red edges in a connected component of the graph defined by the red edges.

Theorem 1. Let G be a graph with 3n − 1 vertices such that for any two non-adjacent vertices u and v of G, we have
dG(u) + dG(v) ≥ 3(3n − 1)/2. Then in any 2-coloring of the edges of G there exists a monochromatic connected matching
of size n.

Although Theorem 1 is weaker than Conjecture 2 since it proves the existence of a connected matching of the right size
instead of a path, it is valid for every n. The special case of Theorem 1withminimum degree condition 3

4 (3n−1)was proved
in [15].

Theorem 1 can be used as a stepping stone to prove Theorem 2, an asymptotic form of Conjecture 2.

Theorem 2. For every η > 0, there is an n0 = n0(η) such that the following holds. Suppose that G is a graph on n ≥ n0 vertices
such that for any two non-adjacent vertices x and y of G, we have dG(x) + dG(y) ≥ ( 3

2 + η)n. Then in every 2-coloring of the
edges of G there is a monochromatic path with at least ( 2

3 − η)n vertices.

Our proof technique is based on a method of Łuczak established in [19] and used successfully in many results of this
area, see e.g. [4,9,12,11,13,14]. The crucial idea of this method is that ‘‘paths’’ in a statement to be proved are replaced by
‘‘connectedmatchings’’. Wewill apply Theorem 1 to the cluster graph of a regular partition of the target graph of Theorem 2
obtained from the Regularity Lemma. Through several technical details, the regularity of the partition is used to ‘‘lift back’’
the connected matching of the cluster graph to a path in the original graph. This became a rather standard method by now,
we give an outline in Sections 5 and 6.

The proof of Theorem 1 (Section 4) relies on two other results that may be interesting on their own. One of them is a
lemma on matchings in multipartite graphs satisfying an Ore-type condition (proof is in Section 2).

Lemma 1. Let H be a multipartite graph with classes C0, C1, . . . , Cm such that |C0| ≥ |C1| ≥ · · · ≥ |Cm|. If the following three
conditions hold, then there is a matching of H with n edges:
(1) |V (H)| ≥ 2n,
(2) dH(u) + dH(v) ≥ 2n for every uv ∉ E(H) with u ∈ Ci, v ∈ Cj and i ≠ j,
(3) |V (H − C0)| ≥ n.

In case of |C0| = · · · = |Cm| = 1 Lemma 1 yields (an extension of) a folklore remark (Erdős and Pósa in [6] gave credit to
Dirac): if |V (H)| ≥ 2n and dH(v) ≥ n for every v ∈ V (H) then there is a matching in H with n edges.

The other result we need (proof is in Section 3) is Theorem 3, an extension of a result about the 3-color Ramsey number
R(n1K2, n2K2, St), where niK2 is a matching with ni edges and St is a star with t edges. It was proved in [15] that for
n1 ≥ n2 ≥ 1, t ≥ 1,

R(n1K2, n2K2, St) = f (n1, n2, t) :=


2n1 + n2 − 1 if t ≤ n1
n1 + n2 − 1 + t if t ≥ n1.
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A 2-colored host graph G of order nwith δ(G) ≥ n − t can be considered as a 3-coloring of a Kn such that there is no star
St in the third color. To handle a 2-colored host graph with an Ore-type condition, we need a more general result as follows.

Theorem 3. Assume that n1 ≥ n2 ≥ 1, t ≥ 1 and let G be a graph on f (n1, n2, t) vertices such that for each pair of non-adjacent
vertices, the sum of the number of their non-neighbors is at most 2(t − 1). Then in any 2-coloring of the edges of G there exists
either a matching of size n1 in the first color or a matching of size n2 in the second color.

2. Matchings in multipartite graphs with Ore-type condition

In this section we prove Lemma 1. Let M be a maximum matching of H . Suppose to the contrary that |M| < n, and let
U ⊂ V (H) be the set of all vertices unsaturated byM . Then, by condition (1), |U| ≥ 2, and if u ∈ U and uv ∈ E(H), then v is
saturated byM .
Case 1: there are u ∈ U ∩ Ci, v ∈ U ∩ Cj, with i ≠ j, and uv ∉ E(H).

By condition (2), the pair {u, v} has at least 2n neighbors which are saturated by M . By the pigeon-hole principle, there
is an edge xy ∈ M incident with three edges from {u, v}. Then we have two independent edges, say ux, vy ∈ E(G), and
(u, x, y, v) is a path augmentingM , a contradiction.
Case 2: U ⊆ Ci, for some i ≠ 0.

Since |C0| ≥ |Ci|, there is an edge xy ∈ M such that x ∈ C0 and y ∈ Cj, for some j ∉ {0, i}. We claim that all neighbors of
y are saturated by M . If this is not the case, then let uy ∈ E(H), for some u ∈ U , and let v ∈ U \ {u}. Now vx ∉ E(H), since
otherwise (v, x, y, u) is a path augmentingM . ThenM ′

= (M \{xy})∪{uy} is a maximummatching which does not saturate
x ∈ C0 and v ∈ Ci, thus Case 1 applies. In a similar way, we obtain that all neighbors of x are saturated by M , in particular,
vx ∉ E(H).

Now by (2), dH(u) + dH(y) ≥ 2n, thus by the pigeon-hole principle there is an edge x′y′
∈ M such that (x, y, x′, y′, u) is a

path. Then (M \ {xy, x′y′
}) ∪ {yx′, y′u} is a maximummatching which does not saturate x ∈ C0 and v ∈ Ci. Since vx ∉ E(H),

Case 1 applies.
Case 3: U ⊆ C0.

Assume thatM saturates themaximumnumber of vertices of C0 among all maximummatchings ofH . LetM0 ⊆ M be the
set of all edges ofM with one end vertex in C0. By the definition ofM , every neighbor of u ∈ U must be saturated byM0. Let X
be the set of all vertices x ∈ V (H−C0) such that, ux ∈ E(H), for some u ∈ U , and let Y = {y ∈ C0 | yx ∈ M0, for some x ∈ X}.
Set |X | = |Y | = n − t (0 < t < n).

Observe that by (3), M0 ≠ M , let vw ∈ M \ M0. If there is an edge xy ∈ M0 and u ∈ U such that ux, vy ∈ E(H), then the
set M ′

= (M \ {xy, vw}) ∪ {ux, vy} is a maximummatching which saturates the additional vertex u ∈ C0, a contradiction.
Thus we obtain that v has all neighbors in D = V (H) \ (U ∪ Y ). Since dH(u) ≤ |X | = n − t , by condition (2), we obtain

dH(v) ≥ n + t . This implies |D \ X | ≥ dH(v) − |X | ≥ (n + t) − (n − t) = 2t . Then the perfect matching of D \ X which
has at least t edges can be added to the n − t edges of the perfect matching on X ∪ Y to obtain a matching of order n in H , a
contradiction.

3. 2-color Ramsey numbers of matchings in graphs with an Ore-type condition

In this section we prove Theorem 3. Let G be a 2-colored graph on f (n1, n2, t) vertices such that for each pair of non-
adjacent vertices, the sum of the number of their non-neighbors is at most 2(t − 1). We shall prove that G contains either a
matching of size n1 in the first color or a matching of size n2 in the second color.

Consider an arbitrary red–blue coloring of the edges of G. Notice that the case t < n1 obviously follows from the case
t = n1, so we will assume that |V (G)| = n1 + n2 − 1+ t and t ≥ n1 ≥ n2. We use induction on n1; for n1 = 1 (thus n2 = 1),
the statement is obvious, for every t .

In the induction step we reduce the triple (n1, n2, t) to (n1 − 1, n2, t) if n1 > n2 and to (n1 − 1, n1 − 1, t) if n1 = n2.
Depending on which case we have, either there is a red matching of size n1 − 1 or there is a blue matching of size n2 or a
blue matching of size n1 − 1. If there is a blue matching of size n2 there is nothing to prove. Otherwise, by switching colors
if necessary, we may assume that there is a red matching of size n1 − 1 and our goal is to find a blue matching of size n2.

We will use the Berge–Tutte formula [5] several times in the paper. Let Gr ⊂ G be the subgraph of all red edges of G.
Defining def (Gr) = |V (Gr)| − 2ν(Gr), the deficiency of Gr , a well-known (e.g. see in [23]) form of the formula states that
there is a cutset X ⊂ V (Gr) such that V (Gr) \ X is partitioned into def (Gr) + |X | odd connected components. Then

def (Gr) = |V (Gr)| − 2ν(Gr) = (n1 + n2 − 1) + t − 2(n1 − 1) = t − n1 + n2 + 1,

and the number of odd components of V (Gr) \ X in Gr is t − n1 + n2 + 1 + |X |. Label these components as C0, C1, . . . , Cm
so that the sizes are in decreasing order. Note thatm = t − n1 + n2 + |X | ≥ 1.

Let H ⊂ G be the graph with vertex set V (G) \ X and with all those edges of Gwhich connect different Ci-s. Obviously all
edges of H are blue. We shall prove that H has a (blue) matching of size n2. For this purpose we will apply Lemma 1 with H
and n2. It remains to check the three conditions of the lemma.
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For (1) notice that the set X together with one vertex from each Ci, i = 0, . . . ,m, is included in V (G), thus |X | +

(t − n1 + n2 + 1 + |X |) ≤ |V (G)| = n1 + n2 − 1 + t . Hence |X | ≤ n1 − 1, which implies |V (H)| = |V (G)| − |X | ≥

(n1 + n2 − 1 + t) − (n1 − 1) ≥ 2n2.
Secondly we have to consider non-adjacent vertices u and v in H such that u ∈ Ci and v ∈ Cj, where i ≠ j, and show that

dH(u) + dH(v) ≥ 2n2. Assume to the contrary that 2n2 > dH(u) + dH(v). The (co-)degree condition on G translates into
(|V (G)| − 1 − dG(u)) + (|V (G)| − 1 − dG(v)) ≤ 2(t − 1), implying dG(u) + dG(v) ≥ 2(n1 + n2 − 2 + t) − 2(t − 1). This
leads to

2n2 > dH(u) + dH(v) ≥ 2(n1 + n2 − 1) − 2|X | − (|Ci| − 1) − (|Cj| − 1),

wherewe subtract from dG(u)+dG(v) the potential edges going from u and from v to X and to the vertices’ own components,
Ci and Cj. Fromhere rearrangement gives |Ci|+|Cj| > 2(n1−|X |). Now for the total number of verticeswe have the following
estimate:

|V (G)| = n1 + n2 − 1 + t ≥ |X | + |Ci| + |Cj| + m − 1
> |X | + 2(n1 − |X |) + (t − n1 + n2 + |X | − 1) = n1 + n2 − 1 + t = |V (G)|,

a contradiction.
Finally we have to verify |V (H −C0)| ≥ n2. Indeed, by taking one vertex from each Ci different from C0, and using t ≥ n1,

we obtain

|V (H − C0)| ≥ t − n1 + n2 + |X | ≥ n2,

as desired.

4. 2-color Ramsey numbers of connected matchings in graphs with an Ore-type condition

In this section we prove Theorem 1. Let G be a 2-edge colored graph with 3n − 1 vertices such that dG(u) + dG(v) ≥
3
2 (3n − 1), for any pair u, v of non-adjacent vertices. We shall prove that G has a monochromatic connected matching of
size n.

Let O1 be the vertex set of a largest monochromatic component of G, say red.
Case 1: |O1| < |V (G)|.

Set D = V (G) \ O1, and let A be the set of those vertices in O1 which are adjacent to D by a blue edge.
Claim: A∪D is a connected blue component. Assume that A∪D has a cut (A1 ∪D1, A2 ∪D2), w.l.o.g. |A1 ∪D2| ≥ |A2 ∪D1|. By
the definition of D and the cut, there is no edge between the non-empty sets O1 \A2 and D2. Thus dG(u)+dG(v) ≥

3
2 (3n−1)

for u ∈ O1 \ A2, v ∈ D2. On the other hand,

dG(u) + dG(v) ≤ (3n − 2 − |D2|) + (3n − 2 − |O1 \ A2|) = 6n − 4 − (|D2| + |O1 \ A| + |A1|)

<6n − 2 −
1
2
(3n − 1) =

3
2
(3n − 1),

a contradiction proving the claim (in the last step we used |A1 ∪ D2| ≥ |A2 ∪ D1|).
Let O2 be the vertex set of the blue component covering D. Let |O1 \ O2| = p and |O2 \ O1| = q. Since u′

∈ O1 \ O2
and v′

∈ O2 \ O1 are non-adjacent, dG(u′) + dG(v′) ≥
3
2 (3n − 1). If dG(u′) < 3

4 (3n − 1), for some u′
∈ O1 \ O2, then

dG(v′) ≥
3
4 (3n−1), for every v′

∈ O2 \O1. By symmetry, wemay assume dG(v) ≥
3
4 (3n−1) for all v ∈ O2 \O1. This implies

p < (3n − 1)/4.
Case 1.1: n/2 ≤ p < (3n − 1)/4.

Let p =
3n−1

4 − x, for some 0 < x ≤ n/4. We first show that d(u,O1 ∩ O2) ≥ 2(n − p) + p, for each u ∈ O1 \ O2 (where
d(u,O1 ∩ O2) is the number of neighbors of u in O1 ∩ O2). Since dG(v) ≤ (3n − 1) − p, the Ore-condition implies

dG(u) ≥
3
2
(3n − 1) − dG(v) ≥

3
2
(3n − 1) −


3
4
(3n − 1) + x


=

3
4
(3n − 1) − x.

Therefore, d(u,O1 ∩ O2) ≥
3
4 (3n − 1) − x − (p − 1) = (3n + 1)/2 ≥ 2(n − p) + p, since p ≥ n/2.

We apply Theorem 3 to the subgraph G[O1 ∩ O2] with parameters t =
 3n−1

4


, n1 = n − q, n2 = n − p (n1 ≥ n2). We

claim that with these choices of the parameters t, n1, n2 we have |O1 ∩ O2| = 3n − 1 − p − q ≥ f (n1, n2, t). Indeed, for
t ≤ n1 we have to check that 3n− 1− p− q ≥ 2(n− q) + (n− p) − 1 which reduces to q ≥ 0. For t > n1 we have to check
3n − 1 − p − q ≥ (n − p) + (n − q) − 1 + t which reduces to n ≥ t , obviously true for our choice of t . Thus by Theorem 3
(switching colors) we have either a red matchingM of size n − p or a blue matchingM ′ of size n − q. In the former case, we
can extend M to a connected matching of size n by including p additional edges, since any vertex u ∈ O1 \ O2 has at least p
neighbors in (O1 ∩ O2) \ V (M). In the latter case, we observe that d(v,O1 ∩ O2) ≥

3
4 (3n − 1) − (q − 1) ≥ 2(n − q) + q, for

any v ∈ O2 \ O1. Therefore we can extendM ′ by including q additional edges to obtain a connected blue matching of size n.
Case 1.2: n/2 > p.



1694 J. Barát et al. / Discrete Mathematics 339 (2016) 1690–1698

By the previous paragraph we may assume that G[O1 ∩ O2] does not contain a blue matching of size n − q. We apply the
Berge–Tutte formula for the subgraph Gb ⊂ G[O1 ∩ O2] formed by the blue edges of G[O1 ∩ O2]. If def (Gb) is the deficiency
of Gb, then there exists a cutset X ⊂ V (Gb) such that V (Gb) \ X is the union of |X | + def (Gb) odd components. Thus for the
number of odd components we have

|X | + def (Gb) ≥ |X | + (3n − 1 − p − q) − 2(n − q − 1) = |X | + n − p + q + 1.

We include the set O1 \ O2 to the odd components and label them as C0, C1, . . . , Cm+1, where the sizes are in decreasing
order andm ≥ |X | + n − p + q.

Let us define amultipartite graphH with classes C0, C1, . . . , Cm+1 andwith all red edges of G going between these classes
(there are no blue edges between them). Since V (H) ⊂ O1, a matching of H is a red connected matching. We claim that H
satisfies the three conditions of Lemma 1.

First we deduce an upper bound on |X |. The sum of the size of X , plus at least 1 for each odd component, and p + q is at
most the total number of vertices. Thus |X | + (|X | + n − p + q + 1) + p + q ≤ 3n − 1, and we have

|X | ≤ n − q − 1.

This implies

|V (H)| = (|V (G)| − |O2 \ O1|) − |X | = (3n − 1 − q) − |X | ≥ 3n − 1 − q − (n − q − 1) − q = 2n,

which is condition (1) in Lemma 1.
Secondly we show that dH(u)+dH(v) ≥ 2n, for non-adjacent vertices u ∈ Ci and v ∈ Cj, where i ≠ j. We will distinguish

two subcases.
Subcase a: Neither Ci nor Cj is O1 \ O2.

Assume to the contrary that 2n > dH(u) + dH(v). We use the Ore-condition in G to get dH(u) + dH(v) ≥
3
2 (3n − 1) −

2q− 2|X | − (|Ci| − 1) − (|Cj| − 1), where we subtract the potential edges going from u and v to (O2 \ O1), to X , and to their
own components. Rearrangement gives

2|X | + |Ci| + |Cj| ≥ 2.5n − 2q.

We observe |O1 ∩ O2| ≥ |X | + |Ci| + |Cj| + (|X | + n − p + q − 1), by counting 1 vertex in each odd component different
from Ci, Cj, and O1 \ O2. Using this bound on |O1 ∩ O2|, for the total number of vertices we obtain the following estimation

|V (G)| = p + q + |O1 ∩ O2| ≥ p + q + (2|X | + |Ci| + |Cj| + n − p + q − 1)
= p + q + (2.5n − 2q) + (n − p + q − 1) = 3.5n − 1 > 3n − 1,

a contradiction.
Subcase b: Ci = O1 \ O2.

Repeating the previous argument leads to a slightly different estimate:

2n > dH(u) + dH(v) ≥
3
2
(3n − 1) − q − 2|X | − (|Ci| − 1) − (|Cj| − 1),

since now u has no neighbor in (O2\O1). This implies 2|X |+|Ci|+|Cj| ≥ 2.5n−q. Then |V (G)| ≥ q+(2.5n−q)+(n−p+q) =

3.5n − p > 3n − 1, a contradiction since n/2 > p.
Thirdly we have to control the size of the largest partition class C0. If C0 ⊆ O1 ∩O2, then |V (H) \ C0| ≥ |O1 \O2| + (|X | +

n−p+q) ≥ n, since p = |O1 \O2|. If C0 = O1 \O2, then using |X | ≤ n−q−1we get |V (H)\C0| = 3n−1−q−|C0|− |X | ≥

3n − 1 − q − p − (n − q − 1) = 2n − p > n, since n/2 > p, hereby finishing Case 1.
Case 2: O1 = V (G) (i.e. q = 0).

We suppose there is no red matching of size greater than n − 1. Apply again the Berge–Tutte formula on the red graph
Gr by considering all vertices of G, but only the red edges. Then there exists a cutset X ⊂ V (Gr) such that V (Gr − X) is the
union of |X | + def (Gr) odd components, where the deficiency of Gr satisfies def (Gr) ≥ (3n − 1) − 2(n − 1) = n + 1.

Let us label the components again as C0, C1, . . . , Cm, where the sizes are in decreasing order and m ≥ |X | + n. We will
apply Lemma 1 on the graph H that consists of C0, C1, . . . , Cm and the blue edges between these sets (there are no red edges
between them). We have to verify the three premises of Lemma 1.

Since each odd component contains at least one vertex,we obtain 2|X |+n+1 ≤ |X |+(|X |+def (Gr)) ≤ |V (Gr)| = 3n−1.
Therefore |X | < n, and |V (H)| = |V (G) \ X | ≥ 2n follows.

Secondly let u ∈ Ci and v ∈ Cj, for i ≠ j, two non-adjacent vertices of H . Observe that u and v are non-adjacent in
G, by the definition of the (red) components Ci and Cj. Therefore dG(u) + dG(v) ≥

3
2 (3n − 1). Assume to the contrary

that 2n > dH(u) + dH(v). Since dG(u) ≤ dH(u) + |X | + (|Ci| − 1) and dG(v) ≤ dH(v) + |X | + (|Cj| − 1), we deduce
dH(u) + dH(v) ≥

3
2 (3n− 1) − 2|X | − |Ci| − |Cj| + 2. That is, 2|X | + |Ci| + |Cj| ≥ 2.5n. Using again that each odd component

contains at least one vertex we obtain:

|V (G)| ≥ |X | + |Ci| + |Cj| + (m − 2) = |X | + |Ci| + |Cj| + (|X | + def (Gr) − 2)
≥ 2.5n + (n + 1) − 2 = 3.5n − 1 > 3n − 1,

a contradiction.
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Thirdly, we have to show |V (H) \ C0| ≥ n. Suppose to the contrary |V (H) \ C0| < n. It yields |C0| + |X | =

|V (G)| − |V (H) \ C0| > 3n − 1 − n = 2n − 1. Now again we use that each odd component contains at least one vertex:
|V (G)| ≥ |X | + |C0| + m − 1 = (|X | + |C0|) + (|X | + def (Gr)) − 1 ≥ 2n + |X | + n ≥ 3n, a contradiction. That is, condition
(3) holds.

Thus Lemma 1 yields a blue matching M of size n in H . Now this matching may not necessarily be connected. We finish
the proof by showing that thisM is indeed a connected matching in blue.
Claim:M is a connected blue matching.

The claim is certainly true if H is connected. Suppose to the contrary that H is disconnected. Let A be a connected
component of H , which intersects the smallest component Cm and let B = V (H) \ A. First we observe that |Cm| ≤ 2.
Indeed, if |Cm| ≥ 3, then each component has at least 3 vertices. Therefore |V (G)| ≥ 3(|X | + n + 1) > 3n − 1 = |V (G)|, a
contradiction.

We will pick a vertex u ∈ Cm ∩ A and an appropriate vertex v ∈ B. Assume first that there is a vertex v ∈ Ci ∩ B,
i ∉ {0,m}. Since u and v are non-adjacent in G, we have dG(u) + dG(v) ≥

3
2 (3n − 1). Furthermore, observe dG(v) ≤

(3n − 2) − |A| + |Ci| − 1, since v cannot be adjacent to a vertex of A except the ones in Ci by a possible red edge. Similarly
dG(u) ≤ (3n − 2) − |B| + |Cm| − 1.

Combining the inequalities above, we obtain

3
2
(3n − 1) ≤ d(u) + d(v) ≤ 2(3n − 2) − (|A| + |B|) + |Ci| − 1 + |Cm| − 1

= (3n − 1) + (3n − 1 − |A| − |B|) + |Ci| + |Cm| − 4.

Since (3n − 1) − |A| − |B| = |X |, and using that |Cm| ≤ 2 the previous inequality implies (3n − 1)/2 ≤ |X | + |Ci| − 2. This
leads to the contradiction

3n − 1 ≤ 2|X | + 2|Ci| − 4 ≤ 2|X | + |Ci| + |C0| − 4
≤ |X | + (|X | + n − 1) + |Ci| + |C0| − 4 ≤ |V (G)| − 4 < 3n − 1,

where we use that Ci ≠ Cm and the number of the remaining odd components is at least |X | + n − 1. Thus if we could pick
an appropriate vertex v ∈ Ci ∩ B, i ∉ {0,m}, then we would be done.

Observe first that there must be an edge e ∈ M disjoint from A, since otherwise M is connected. If |Cm| = 1, then
e ∩ Cm = ∅, and v ∈ e \ (C0 ∪ Cm) is an appropriate choice for v leading to a contradiction.

Assume now that |Cm| = 2. If we cannot pick a vertex v as before, then e goes between C0 and Cm ∩ B (the other vertex
in Cm). Then let v be the vertex of e in C0. A computation identical to the above yields (3n − 1)/2 ≤ |X | + |C0| − 2. Using
this inequality and the fact that |Ci| ≥ |Cm| = 2, for each 1 ≤ i ≤ m, we obtain the contradiction

3n − 1 = |V (G)| ≥ |X | + |C0| + 2(|X | + n) ≥ (3n − 1)/2 + 2 + 2n > 3n − 1.

We conclude that H is a connected graph and the claim follows.

5. Applying the Regularity Lemma; perturbations

As inmany applications of the Regularity Lemma, one has to handle irregular pairs, that translates to exceptional edges in
the reduced graph. A graphG on n vertices is ε-perturbed if atmost ε

n
2


of its edges aremarked as exceptional (or perturbed).

For a perturbed graph G, let G− denote the graph obtained by removing all perturbed edges. We are not allowed to use the
exceptional edges for our connected matching. Thus first we need a perturbed version of Theorem 1.

Theorem 4. For every η > 0, there exist n0 = n0(η) and ε0 = ε0(η)(≪η) such that the following holds. Suppose that ε ≤ ε0
and G is a 2-edge-colored ε-perturbed graph on n ≥ n0 vertices and G satisfies the following Ore-type condition: for any two
non-adjacent vertices x and y of G, we have dG(x)+dG(y) ≥ (3/2+η)n. Then there exists a monochromatic connected matching
in G− spanning at least ( 2

3 − (ε)1/3)n vertices.

These perturbation arguments are fairly standardmodifications of the original argument, for example in [2]we presented
all the details in a similar situation. Here we are not going to present all the details, we just present the perturbed version
of Lemma 1 and its proof for demonstrative purposes. The other details are left to the interested reader.

Lemma 2. For every η > 0, there exist n0 = n0(η) and ε0 = ε0(η)(≪η) such that the following holds for every n ≥ n0.
Suppose that ε ≤ ε0 and let H be a multipartite graph with at most εn2 exceptional edges and with classes C0, C1, . . . , Cm such
that |C0| ≥ |C1| ≥ · · · ≥ |Cm|. If the following three conditions hold, then there is a matching in H− with n edges:
(1) |V (H)| ≥ (2 + 3

√
ε)n,

(2) dH(u) + dH(v) ≥ (2 + η)n for every uv ∉ E(H) with u ∈ Ci, v ∈ Cj and i ≠ j,
(3) |V (H − C0)| ≥ (1 +

√
ε)n.
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Proof of Lemma 2. We may assume that n is sufficiently large and ε ≪ η. Let us start by the standard ‘‘trimming’’ of the
graph, i.e. by deleting those vertices of H that are adjacent to at least

√
εn exceptional edges. There are less than

√
εn such

vertices. This way we get a slightly smaller graph Hε , with |V (Hε)| ≥ (2 + 2
√

ε)n. By renaming we may assume that C0 is
still the largest class, from condition (3) we still have |V (Hε −C0)| ≥ n. Secondly we delete the remaining exceptional edges
to form the graph H−

ε . We will find a matching of size n in H−
ε . We will denote the complement of a class of vertices in Hε

by Ci = ∪{Cj | j ≠ i}.
LetM be a maximummatching of H−

ε . Suppose to the contrary that |M| < n, and let U ⊂ V (Hε) be the set of all vertices
of Hε unsaturated byM . Now |U| > 2

√
εn, and if u ∈ U and uv ∈ E(H−

ε ), then v must be saturated byM .

Case 1: there exists a vertex u ∈ U ∩ Ci such that |U ∩ Ci| ≥
√

εn.
In this case we may pick a vertex v in U ∩ Ci such that u and v are non-adjacent in H (since u has fewer than

√
εn

exceptional neighbors). By condition (2), the pair {u, v} has at least (2 + η − 2
√

ε)n > 2n non-exceptional neighbors and
they are saturated by M . By the pigeon-hole principle, there is an edge xy ∈ M incident to three non-exceptional edges
coming from {u, v}. Therefore, there are two independent non-exceptional edges, say ux, vy ∈ E(G), and (u, x, y, v) is a
path augmenting M , a contradiction.

Note that again if Case 1 does not hold, we must have U ⊆ Ci, for some i, since |U| > 2
√

εn. Indeed, consider a Ci such
that |U ∩ Ci| > 0. We have two possibilities: either |U ∩ Ci| ≥

√
εn or |U ∩ Ci| ≥

√
εn. The latter is in Case 1, and the former

is also in Case 1 if |U ∩ Ci| > 0. Thus otherwise in fact U ⊆ Ci.
Case 2: U ⊆ Ci, for some i, where i ≠ 0.

Since |C0| ≥ |Ci|, there is an edge xy ∈ M such that x ∈ C0 and y ∈ Cj for some j ∉ {0, i}. We claim that all non-exceptional
neighbors of y are saturated byM . If this is not the case, then let uy ∈ E(H−

ε ) for some u ∈ U . Let v ∈ U \{u} be a vertex such
that vx is not an exceptional edge. Then vx ∉ E(H−

ε ), since otherwise (v, x, y, u) is a path augmenting M . Thus v and x are
non-adjacent inH . NowM ′

= (M\{xy})∪{uy} is amaximummatchingwhich does not saturate x ∈ C0 and v ∈ Ci, which are
non-adjacent in H , and thus we can proceed as in Case 1. In a similar way, we obtain that all non-exceptional neighbors of x
are saturated byM . Thus if v ∈ U is such that vx is not an exceptional edge, then vx ∉ E(H−

ε ). Let u be a vertex in U different
from v so that uy is not an exceptional edge and thus u and y are non-adjacent in H . Now by condition (2), the pair {u, y} has
at least (2+ η − 2

√
ε)n > 2n non-exceptional neighbors and they are saturated byM . By the pigeon-hole principle there is

an edge x′y′
∈ M such that (x, y, x′, y′, u) is a path (vertices x′ and y′ may be reversed). Therefore, (M \ {xy, x′y′

})∪{yx′, y′u}
is a maximummatching which does not saturate x ∈ C0 and v ∈ Ci. Since vx ∉ E(H), we can proceed as in Case 1.
Case 3: U ⊆ C0.

Assume that M saturates the maximum number of vertices of C0 among all maximum matchings of H−
ε . Let M0 ⊆ M be

the set of all edges ofM with one end vertex in C0.
By the definition ofM , every non-exceptional neighbor of u ∈ U must be saturated byM0. Let X be the set of all vertices

x ∈ V (Hε −C0) such that ux ∈ E(H−
ε ), for some u ∈ U , and let Y = {y ∈ C0 | yx ∈ M0, for some x ∈ X}. Set |X | = |Y | = n−t

(0 < t < n).
Observe that by |V (Hε −C0)| ≥ nwe haveM0 ≠ M , and thus let vw ∈ M \M0. If there is an edge xy ∈ M0 and u ∈ U such

that ux, vy ∈ E(H−
ε ), then the set M ′

= (M \ {xy, vw}) ∪ {ux, vy} is a maximum matching which saturates the additional
vertex u ∈ C0, a contradiction.

Thuswe obtain that v has all non-exceptional neighbors inD = V (Hε)\(U∪Y ). Pick a vertex u ∈ U such that uv is not an
exceptional edge (using |U| > 2

√
εn), thus u and v are non-adjacent inH . Then since dH−

ε
(u) ≤ |X | = n−t , by condition (2),

we obtain dH−
ε
(v) ≥ n + t + ηn − 2

√
εn ≥ n + t . This implies |D \ X | ≥ dH−

ε
(v) − |X | ≥ (n + t) − (n − t) = 2t . Now

M induces a perfect matching on D \ X , that has at least t edges. We can add these edges to the n − t edges of the perfect
matching on X ∪ Y to obtain a matching of order n in H−

ε , a contradiction. �

6. Building paths from connected matchings

Next we show how to prove Theorem 2 from Theorem 4 and the Regularity Lemma [22]. The material of this section is
again fairly standard by now (see e.g. [1,12,11,13–15]) so we omit some of the details. The discussion closely follows the
treatment in [2] where also an Ore-type condition was transferred to the reduced graph.

We use a 2-edge-colored version of the Regularity Lemma.1

Lemma 3. For every integer m0 and positive ε, there is an M0 = M0(ε,m0) such that for n ≥ M0 the following holds. For any
n-vertex graph G, where G = G1 ∪ G2 with V (G1) = V (G2) = V , there is a partition of V into ℓ + 1 clusters V0, V1, . . . , Vℓ such
that

• m0 ≤ ℓ ≤ M0, |V1| = |V2| = · · · = |Vℓ|, |V0| < εn,
• apart from at most ε


ℓ

2


exceptional pairs, all pairs Gs|Vi×Vj are ε-regular, where 1 ≤ i < j ≤ ℓ and 1 ≤ s ≤ 2.

1 For background, this variant and other variants of the Regularity Lemma see [18].
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Proof of Theorem 2. Fixing an η ≪ 1, let ε ≪ ρ ≪ η, and let m0 be sufficiently large compared to 1/ε (so we will be able
to apply Theorem 4 in the reduced graph). Lemma 3 with parameters ε,m0 definesM0. Let G be a graph on n ≥ M0 vertices
such that for any two non-adjacent vertices x and y of G, we have dG(x) + dG(y) ≥ ( 3

2 + η)n. Consider a 2-edge-coloring of
G, that is G = G1 ∪ G2. Let V = ∪0≤i≤ℓ Vi be the partition ensured by Lemma 3, set |Vi| = L for 1 ≤ i ≤ ℓ.

We define the reduced graph GR as follows. The vertices p1, . . . , pℓ of GR correspond to the clusters. There is an exceptional
edge between vertices pi and pj if the pair (Vi, Vj) is ε-irregular in G1 or in G2. If the pair (Vi, Vj) is ε-regular in both G1 and
G2 with density in G exceeding ρ, then pipj is a (non-exceptional) edge of GR.

Note thatGR is an ε-perturbed graphwhere a non-edge corresponds to a regular pairwith density atmostρ. Any edge pipj
is colored by the color which is used onmost edges of G[Vi, Vj] (the bipartite subgraph of Gwith edges between Vi and Vj). If
the edge is non-exceptional, the density of this majority color is still at least ρ/2 in G[Vi, Vj]. This defines a 2-edge-coloring
GR

= GR
1 ∪ GR

2.
We claim that GR inherits a similar Ore-type condition from G: for any two non-adjacent vertices pi and pj of GR, we have

dGR(pi)+dGR(pj) ≥ ( 3
2 +

η

2 )ℓ. Indeed, let pi and pj be non-adjacent inGR and consider the corresponding clusters Vi and Vj. Set

S =


u∈Vi


v∈Vj

(dG(u) + dG(v)).

By definition, the number of non-edges in G[Vi, Vj] is at least (1 − ρ)|Vi||Vj| = (1 − ρ)L2. For each of these non-edges we
can use the Ore-condition in G so we get the following lower bound for S:

S ≥ (1 − ρ)L2

3
2

+ η


n.

On the other hand we can get the following upper bound for S:

S ≤ (dGR(pi) + dGR(pj))L
3
+ 2ρnL2 + 2εnL2 + 2L3

where the main term estimates the degrees to clusters corresponding to neighbors of pi, pj; the first error term is an upper
bound for the number of edges to clusters corresponding to non-neighbors of pi, pj (where the density is at most ρ); the
second error term stands for the number of edges of G from Vi ∪ Vj to V0 and finally the third error term is an upper bound
for the number of edges within Vi and Vj. Comparing the bounds of S and using that n

L ≥ ℓ, we get

dGR(pi) + dGR(pj) ≥


3
2

+ η


(1 − ρ) − 2ρ − 2ε


n
L

− 2 ≥


3
2

+
η

2


ℓ,

as desired, because ε, ρ are small compared to η and ℓ is large enough in terms of 1
ε
, more precisely, we need

η

2
− ρ


3
2

+ η


− 2ρ − 2ε


ℓ ≥ 2.

Applying Theorem 4 to the 2-colored, ε-perturbed and Ore-type GR, we get a monochromatic connectedmatching, say in
(GR

1)
−, that spans at least a ( 2

3 − (ε)1/3)-fraction of GR. Finally, we lift this connected matching back to a path in the original
graph using the following lemma2 in our context.

Lemma 4. Assume that there is a monochromatic connected matching M (say in (GR
1)

−) saturating at least c|V (GR)| vertices of
GR, for some positive constant c. Then in the original G there is a monochromatic path in G1 covering at least c(1− 3ε)n vertices.

Using our choice of ε ≪ η we obtain that G has a monochromatic path with at least ( 2
3 − η)n vertices thus concluding

the proof of Theorem 2. �
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