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Abstract

We explore properties of 3-uniform hypergraphs H without linear cy-
cles. It is surprising that even the simplest facts about ensuring cycles
in graphs can be fairly complicated to prove for hypergraphs. Our main
results are that 3-uniform hypergraphs without linear cycles must contain
a vertex of strong degree at most two and must have independent sets of
size at least 2|V (H)|

5
.

1. Introduction

A subset S of vertices in a hypergraph H is independent if there are no edges of H
inside S. The cardinality of a largest independent set of H is denoted by α(H). A
linear cycle (often also called a loose cycle) in a hypergraph is a sequence of at least
three edges where only the cyclically consecutive edges intersect and they intersect
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in exactly one vertex. Our original motivation was to prove the following conjecture
that is still open.

Conjecture 1.1 (Gyárfás–G.N. Sárközy, [3]). One can partition the vertex set of ev-
ery 3-uniform hypergraph H into α(H) linear cycles, edges and subsets of hyperedges.

Note that Conjecture 1.1 would extend Pósa theorem, see [5] from graphs to 3-
uniform hypergraphs. Conjecture 1.1 in a weaker form (with weak cycles instead of
linear cycles) has been proved in [3]. It is necessary to allow subsets of hyperedges
in Conjecture 1.1, such an example is the complete hypergraph K3

5 . Let ρ(H) denote
the minimum number of edges (or subsets of edges) needed to partition V (H) and
let χ(H) denote the chromatic number of H, the minimum number of colors in a
vertex coloring of H without monochromatic edges. The following result proves that
Conjecture 1.1 is true if there are no linear cycles in H.

Theorem 1.2. If H is a 3-uniform hypergraph without linear cycles, then ρ(H) ≤
α(H). Moreover, χ(H) ≤ 3.

We find the family of hypergraphs without linear cycles intriguing and the purpose
of this paper is to prove further results about it. Let H = (V,E) be a 3-uniform
hypergraph, for v ∈ V the link graph of v in H is the graph with vertex set V and
edge set {(x, y) : (v, x, y, ) ∈ E}. The strong degree d+(v) for v ∈ V is the maximum
number of independent edges (i.e. the size of a maximum matching) in the link graph
of v. The underlying graph is the ordinary graph the edges of which are the pairs
covered by the hyperedges of H. Our main results are motivated by the following
trivial assertions: a graph of minimum degree 2 contains a cycle; if Gn has no cycles
then α(Gn) ≥ n/2.

Theorem 1.3. Suppose that H is a 3-uniform hypergraph with d+(v) ≥ 3 for all
v ∈ V . Then H contains a linear cycle.

Theorem 1.3 can be easily strengthened.

Theorem 1.4. Suppose that H is a 3-uniform hypergraph with d+(v) ≥ 3 for all but
at most one v ∈ V . Then H contains a linear cycle.

Indeed, if a graph G is a counterexample with an exceptional vertex w to Theorem
1.4 then three copies of G can be joined together through cut vertex w to get a
counterexample to Theorem 1.3 as well. Notice that Theorem 1.4 does not hold with
two exceptional vertices: for an odd n consider the n triples (i, i + 1, i + 2) (mod n)
on [n] together with two vertices x, y and with edges (x, y, i) for all i ∈ [n]. This
hypergraph has no linear cycles and d+(i) = 3, d+(x) = d+(y) = 1. It is worth
mentioning that the condition d+(v) ≥ 3 cannot be weakened by requiring that the
link graph of v cannot be pierced by at most two vertices. Indeed, K3

5 or hypergraphs
obtained by attaching further K3

5 ’s to it are examples. It is also interesting to note
that the maximal number of edges in a 3-uniform hypergraph without linear cycles is(
n−1
2

)
, the maximum number of edges without a linear triangle [1], [2].

Theorem 1.5. If Hn is a 3-uniform n-vertex hypergraph without linear cycles, then
α(Hn) ≥ 2

5n.
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The hypergraph consisting of n vertex disjoint copies of K3
5 shows that equality

can hold in Theorem 1.5. One may add further “transversal” copies of K3
5 ’s, to make

the construction connected, if n = 4k + 1.

1.1. Skeletons, near-skeletons

A linear tree is a 3-uniform hypergraph that is obtained from a single edge by re-
peatedly adding edges that intersect the previous hypergraph in exactly one vertex.
A single vertex is a trivial tree. A linear path is a linear tree built so that the next
edge always intersects the previous edge in a vertex of degree one. A linear cycle is
obtained from a linear path of at least two edges, by adding an edge that intersects
the first and the last edges of the path in one of their degree one vertices. For brevity,
we often just use the term tree for a linear tree. The star of a tree T at v ∈ V (T ) is
the subtree of T containing the edges of T incident to v. For any v ∈ V (T ), the pairs
(x, y) that are at equal distance from v in the underlying graph of T are called pairs
opposite to v. Clearly, every edge of T has exactly one pair opposite to v.

A skeleton T in H is a non-trivial subtree which cannot be extended to a larger
subtree by adding an edge e ∈ E(H) for which |e∩V (T )| = 1. A near-skeleton T with
an exceptional vertex v ∈ V (T ) is a non-trivial subtree T with the following property:
if |e ∩ V (T )| = 1 for some e ∈ E(H) then e ∩ V (T ) = {v}. Note that skeletons
are not necessarily maximum subtrees, for example in the hypergraph with edge set
{(a, b, c), (b, c, d), (c, d, e)}, {(b, c, d)} and {(a, b, c), (c, d, e)} are both skeletons. The
following easy lemma is stated without proof.

Lemma 1.6. Suppose H is a 3-uniform hypergraph having no linear cycle and T is
a linear subtree in it. Let v ∈ V (T ) and f = (v, a, b) ∈ E(H) be such that {a, b}
intersects V (T ) but does not intersect the star at v ∈ V (T ). Then {a, b} is a pair
opposite to v in T . Replacing the edge of T containing a, b by f is called a swap, it
gives another linear tree on vertex set V (T ).

The following is a useful corollary of Lemma 1.6.

Corollary 1.7. Suppose T is a skeleton (near-skeleton) in a 3-uniform hypergraph
H that has no linear cycle. Then any sequence of swaps with edges of E(H[V (T )])
results in a skeleton (near-skeleton) T ′ in H with V (T ′) = V (T ).

1.2. Proof of Theorem 1.2

Consider a 3-uniform hypergraph H and choose a skeleton T1 in it, then let T2 be
a skeleton in H \ T1 and continue with T3, . . . , Tm until an edgeless Tm+1 remains.
Let Gi be the underlying graph of Ti. Observe that α(Gi) = θ(Gi) where θ(G) is
the minimum number of complete subgraphs whose vertices cover V (G). By the
definition of skeletons, no edge of H intersects V (Ti) in one vertex and intersects
V (H) \ (∪j≤iV (Ti)) in two vertices. Suppose Si ⊂ V (Gi) is an independent set of Gi.
Because H has no linear cycles, no edge of H is inside Si and no edge of H contains
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two vertices of Si and one vertex of V (H) \ Si. Thus

α(H) ≥ α(∪m+1
i=1 Gi) =

m+1∑
i=1

α(Gi) =
m+1∑
i=1

θ(Gi) =
m+1∑
i=1

ρ(Ti) ≥ ρ(H)

proving the first part of Theorem 1.2. The second part, χ(H) ≤ 3, follows from
χ(Gi) = 3 for 1 ≤ i ≤ m and χ(Gm+1) = 1, using the remarks above, that union of
independent sets of Gis are independent in H. In fact, one can also derive χ(H) ≤ 3
by induction, since Theorem 1.3 ensures that there is a vertex of H with strong degree
at most two.

2. Proof of Theorem 1.3

We shall prove Theorem 1.3 in the following slightly stronger form.

Theorem 2.1. Suppose that T is a near-skeleton in a 3-uniform hypergraph H and
d+H(v) ≥ 3 holds for every v ∈ V (T ). Then H contains a linear cycle.

1.3.
Proof. Consider a minimum counterexample where |V (H)| is as small as possible
and within that |V (T )| is as small as possible. The subhypergraph of H with vertex
set V (T ) is denoted by H(T ). We may suppose that T has the longest linear path P
among all near-skeletons T ′ of H with V (T ′) = V (T ). Set

P = {e1 = (y0, x1, y1), e2 = (y1, x2, y2), . . . , em = (ym−1, xm, ym)}.

(We can see P on Figure 1.) By the symmetry of y0, x1 in P we may assume that x1

is not the exceptional vertex of T . For 1 ≤ i < j ≤ m an upward path B from ei to ej
is a linear path in H(T ) whose first edge intersects ei in {xi}, its last edge intersects ej
in the pair {xj , yj} and its other vertices (inner vertices) are not on P . It is possible
that B is a one edge path (xi, xj , yj) ∈ E(H(T )), in this case it is considered as the
last edge (with no inner vertices). A set of upward paths are internally disjoint if
their sets of inner vertices are pairwise disjoint.

Definition 2.2. For 2 ≤ j ≤ m a ladder Lj is the subhypergraph of H(T ) containing
the path e1, . . . , ej and a set of internally disjoint upward paths with the following
property.

• For every 1 ≤ i < j there exists an upward path from ek to eℓ for some
k, ℓ such that 1 ≤ k ≤ i < ℓ ≤ j.

Figure 2 shows a ladder with two upward paths. We shall use the ladder to ensure
that for any vertex q not on the ladder the edge (q, yi−1yi) can be continued to get a
simple path from the edges of the ladder ending with a last edge of an upward path
in the pair (xj , yj). Observe that by removing from Lj the last edges of its upward
paths, we have a linear tree in H(T ) denoted by L∗

j . Ladders exist because d
+(x1) ≥ 3

implies that there is an edge f = (x1, a, b) in H(T ) for which {a, b} ∩ {y0, y1} = ∅.
The choice of x1 and Lemma 1.6 imply that {a, b} = {xj , yj} for some 2 ≤ j ≤ m.
Thus P ∪ f is a ladder Lj , see Figure 3.
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Figure 1: Path

Let Lj be a ladder such that j is as large as possible. Set
P ′ = ∪i>jei and let M denote the linear tree P ′ ∪ L∗

j . We
extend M to a larger tree by adding a maximal linear subtree
F = F (xj) of H(T ) with root xj , so that its vertices (except
its root) is in V (T ) \V (M). Notice that from the construction,
U = V (M) ∪ V (F ) ⊆ V (T ) and M ∪ F is a linear tree. (One
can define F step by step using Corollary 1.7.) Let q ∈ V (F )
and suppose that there exists h = (q, a, b) ∈ E(H) such that
{a, b} ∩ V (F ) = ∅. The maximality of F implies that {a, b} ∩
M ̸= ∅. Applying Lemma 1.6 to the linear tree in M ∪ F at
vertex q, we get that {a, b} either intersects the star at q or it

is a pair opposite to q. We have the following possibilities for {a, b}.

• Case 1. {a, b} = {xk, yk} for some k > j
• Case 2. {a, b} = {yj−1, yj}
• Case 3. Either {a, b} = {yk−1, xk} with some 1 ≤ k < j or {a, b} is on an

upward path of Lj

Case 1 would contradict the choice of j since the path with first edge starting at xj

and last edge (q, a, b) would be an upward path extending the ladder Lj to a ladder
Lk. Cases 2,3 for q ̸= xj are also impossible since we could get a linear cycle from
the definition of the ladder Lj . Indeed, in Case 2 one can start with h = (q, a, b) and
descend on P until an upward path leads back directly or through a jump on P to
(xj , yj), closing a cycle at {yj−1, yj}. In Case 3 one can proceed similarly but upon
reaching (xj , yj) get back to q ∈ V (F ), closing the cycle. We conclude that there is no
q ∈ V (F (xj)) \ {xj} and h = (q, a, b) ∈ E(H(T )) such that {a, b} ∩ V (F ) = ∅. Thus,
if F (xj) ̸= {xj}, F (xj) is a near-skeleton with exceptional vertex xj , contradicting
the assumption that |V (T )| is as small as possible. If F (xj) = {xj}, the assumption
d+(xj) ≥ 3 allows to select h = (xj , a, b) ∈ E(H(T )) such that {a, b}∩{yj−1, yj} = ∅.
Then {a, b} must satisfy Case 3 and we get a linear cycle and a contradiction except
when h = (xj , y0, x1) and Lj consists of only one upward path with one edge f =
(x1, xj , yj) because in this case the cycle starting with edge (xj , yk−1, xk) and ending
with edge (x1, xj , yj) degenerates. From here we assume that Lj is this simple ladder
shown on Figure 3. In case of j = 2 the link graph of x2 consists of the {a, b} pairs
that are either pairs of e1 or intersect y2 because if {a, b} = {u, y1} with u /∈ V (P )
then (u, y1, x2), e1, f would form a linear triangle. Thus, from d+(x2) ≥ 3, there is
an edge of H(T ) on x2 that is different from h and does not intersect {y1, y2} and
therefore would extend L2 to a higher ladder. Thus we have j ≥ 3.

For 2 ≤ i ≤ j define a maximal subtree F (xi) of H(T ) with root xi, such that its
vertices (except its root) are in V (T ) \ V (M).

Claim 2.3. For 2 ≤ i ≤ j, F (xi) = {xi}, gi = (xi, xi−1, yi−1) ∈ E(H) and for
3 ≤ i ≤ j, (xi−1, x1, y0) /∈ E(H).

Proof of Claim 2.3. For i = j, F (xj) = {xj}. Note that for a /∈ P , e =
(a, yj−1, xj) /∈ E(H) and e′ = (yj−1, yj−2, xj) /∈ E(H), otherwise e, ej−1, . . . , e1, f
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or e′, ej−2, . . . , e1, f would be a linear cycle. Using this and d+(xj) ≥ 3, it follows
that gj ∈ E(H). Then (xj−1, x1, y0) /∈ E(H), otherwise that edge with gj , f would
form a linear triangle. This proves the claim for i = j. Suppose that the claim is true
for some i ≥ 3, we show it remains true for i− 1 as well.

yj
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ym

xm

x1
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xj
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xi+1
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Figure 2: Ladder

Suppose F = F (xi−1) ̸= {xi−1}. Then, as before, F is a near-
skeleton with exceptional vertex xi−1, a contradiction. Indeed,
assuming that there exists q ∈ V (F ) \ {xi−1} and h = (q, a, b) ∈
E(H) such that {a, b}∩V (F ) = ∅ for some q ∈ V (F ), from Lemma
1.6 we get the following possibilities for {a, b}.

• Case A. {a, b} = {xk, yk} for some k > i− 1
• Case B. {a, b} = {yi−2, yi−1}
• Case C. {a, b} = {yk−1, xk} with some 1 ≤ k ≤ i− 1

Case A would contradict the choice of j if k > j: the path with
first edge starting at xi and last edge (q, a, b) would be an upward
path extending the ladder Lj to a ladder Lk. If i ≤ k ≤ j then the
linear cycle starting with the path h, gj , . . . , gi and ending with
the linear path of F from xi−1 to q, a contradiction. Cases B,C

are also impossible since we could get a linear cycle. Indeed, in both cases one can
start with h = (q, a, b) and go up on gi, . . . , gj , return on h and close the cycle on
e1, . . . , ei−1. Thus F is a near-skeleton with exceptional vertex xi−1 leading to a
contradiction. Therefore F (xi−1) = {xi−1} as claimed. Moreover, (xi−1, x1, y0) /∈
E(H) otherwise that edge with gi . . . , gj , f would form a linear cycle. Now we use
d+(xi−1) ≥ 3. Since Fi−1 = {xi−1}, every edge (xi−1, a, b) ∈ E(H) intersects V (P )
and from Lemma 1.6, we have Cases A,B,C plus those where the star at xi−1 intersects
{a, b}, i.e. {a, b} ∩ {yi−2, yi−1} ̸= ∅. Notice that for a /∈ P , e = (a, yi−2, xi−1) /∈
E(H) and e′ = (yi−2, yi−3, xi−1) /∈ E(H) otherwise e, ei−2, . . . , e1, f, gj , . . . , gi or
e′, ei−3, . . . , e1, f, gj , . . . , gi would be a linear cycle. One can easily check that only
three cases left for which there is no linear cycle: {a, b} ∩ {yi−1} ̸= ∅, or {a, b} =
{xi, yi}, or {a, b} = {yi−2, x2}. From d+(xi−1) ≥ 3, all of these possibilities must
occur, in particular the third, so gi−1 ∈ E(H) and this completes the proof of Claim
2.3. Observing that gj , . . . , g2, f is a linear cycle, the proof of Theorem 2.1 is
completed.

3. Proof of Theorem 1.5

Let H be a 3-uniform hypergraph of n vertices not containing any linear cycle. We
prove that α(H) ≥ 2n/5. To facilitate the constructive proof, a mixed tree is defined
as an extension of linear 3-uniform trees where we allow 2-element edges as well. In
particular, graph trees and 3-uniform (linear) trees are both mixed linear trees. A
mixed forest is the vertex-disjoint union of mixed trees. A path-ending of a mixed
forest T is a path with two edges g, h where h is a pendant edge (i.e. the vertices in
h\ g are of degree one in T ) and the vertex g∩h has degree 2 in T . There are 4 types
of path endings, depending whether g or h has 2 or 3 vertices. In fact, we define a
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degenerate path-ending as well: in the one-edge tree the only edge is considered as a
path-ending.

ym

y0

xm
yj
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Figure 3: A simple

ladder with edges

forced by Claim 2.3

A star-ending of a mixed forest is a set of at least two pendant edges with a
common vertex. We state the following obvious lemma without proof.

Lemma 3.1. Any mixed forest with at least one edge has either
a path-ending or a star ending.

Let T1 be a maximum nontrivial skeleton, i.e. a linear tree
in H such that |V (T1)| is maximum. We prove the theorem
by constructing (step by step, details are in Subsection 3.1) an
independent set S of H and a set Z ⊂ V (H) such that

S ∩ Z = ∅, |S|
|S|+ |Z|

≥ 2

5
, and S ∪ Z = V (H).

Initially set S = Z = ∅. First we cover V (T1) with S∪Z in several
steps (see Subsection 3.1) so that S ⊂ V (T1) is an independent
set in H. Then we iterate the process, taking a maximum skele-
ton T2 in the subhypergraph of H induced by X = V (H)\(S∪Z)
and continue with T3, T4, . . . , Tm, etc. until the subhypergraph
of H induced by X = V (H)\ (S∪Z) has no edges. At this point
S is extended by X and the construction is completed.

Suppose that we have already defined S ∪ Z and Ti so that
S is independent in H and S ⊂ ∪j<iV (Tj). We extend S ∪Z by
steps in Subsection 3.1, in each step using a mixed forest T in
Ti, initially T = Ti. We choose a vertex set R (typically, but not
always a subset of V (T )) such that a subset R0 ⊆ R

∩
V (T ) with

|R0| ≥ 2|R|/5 vertices will be put into the independent set S and
R − R0 is placed in Z. We proceed in this way until all vertices
of Ti are covered by S ∪ Z. Note that the procedure defining

S ∪Z ensures the properties |S|
|S|+|Z| ≥

2
5 , S ∪Z = V (H) because

at each step |R0| ≥ 2|R|/5 and in the final step S is increased by
|X| but Z is left untouched. Thus we need to ensure only that
the final S is independent. This will be done in Claim 3.2.

3.1. Construction of S and Z

Case 1. T ⊂ Ti has a path-ending Q = g ∪ h with |h| = 3. Set h = (a, b, c),
g = (b, d, e) (or g = (b, d) if |g| = 2 or g = ∅ if T has one edge h).

Case 1.1. There is no edge (a, b, x) or (b, c, x) in H for which x /∈ Z ∪ {c, d, e}.
Put a, b into S and c, d, e into Z (ratio at least 2/5). Replace T by the mixed forest
obtained from T by deleting the vertices of Q. If Case 1.1 does not hold, we must have
edges (a, b, x1), (b, c, x2) in H such that x1, x2 /∈ Z∪{c, d, e}. However, xi ∈ V (Ti)\Q
would create a cycle in Ti, xi ∈ V (Tj) for j < i would contradict the maximality of
Tj . Thus x1, x2 are both in X = V (H) \ (S ∪ Z). If x1 ̸= x2 then replacing (a, b, c)
by (a, b, x1) and (b, c, x2), a skeleton larger than Ti could be defined, a contradiction.
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Thus x1 = x2 = x and we have the following. Case 1.2. There is x ∈ X such that
(a, b, x) and (b, c, x) are edges in H. Put a, c into S and b, x into Z (ratio is 1/2).
Replace T by the mixed forest obtained from T by deleting {a, b, c}. Case 2. T has
a path-ending Q = g ∪ h with |h| = 2, set ab = h. Put the degree one vertex of h
into S and the other vertex of h into Z (ratio is 1/2). Replace T by the mixed forest
obtained from T by deleting the vertices of h. Case 3. T has a star-ending. Put
one vertex of degree one from each edge of the star into S (there are at least two)
and put its other vertices into Z. (Clearly at least 2/5 of the vertices of the star go
to S.) Replace T by the mixed forest obtained from T by deleting the vertices of the
star-ending. Case 4. T has only isolated vertices. Place all vertices into S. The

a c
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s s

s s
s
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s
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Figure 4: The cases

proof of Theorem 1.5 is complete with the following claim.

Claim 3.2. S is an independent set in H.

Proof. Suppose that e = (s1, s2, s3) ∈ E(H) is in S. Observing
that the construction ensures S ⊂ ∪m

j=1V (Tj)∪Xm, the maximal
choices of the Tj ’s imply that Tj with the smallest j for which
e ∩ V (Tj) ̸= ∅ contains at least two vertices of e, say s1, s2 ∈ Tj

and s3 ∈ Tk for j ≤ k or s3 ∈ Xm. If s3 /∈ V (Tj) then s3 was
placed in S after s1, s2. We may assume that s3 entered S not
earlier than s1, s2 and s2 entered S not earlier than s1. The T -
neighbors of a vertex v ∈ V (T ) are the vertices in the edges of
T containing v. Notice that in Cases 2,3 the T -neighbors of the
vertices placed in S are all placed in Z and in Cases 1.1 and 1.2
the T -neighbors of the pair placed in S are placed in Z (in Case
1.1 c, d, e, in Case 1.2 a, x) - we refer to this as the neighbor rule.
If (s1, s2) or (s2, s3) were placed in S together as (a, b) in Case
1.1 then the definition of Case 1 excludes e ∈ E(H). Suppose
that (s1, s2) or (s2, s3) were placed in S together as (a, c) in
Case 1.2, let y denote s3 or s1, depending on which pair is (a, c).

Then y ∈ V (H) − Z − {a, b, c, x}. If y ∈ Xj (in this case (a, c) = (s1, s2), y = s3),
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replacing the triple (a, b, c) by (a, b, x) and (a, c, y) in Tj , we get a contradiction to the
maximality of Tj . If y ∈ S ∩ V (Ti) and the skeleton path from y to {a, b, c} reaches b
first, then extending it with (a, b, x) and (a, c, y) we get a linear cycle, contradiction.
If the skeleton path reaches a or c first, then extending it by (a, c, y), we get a linear
cycle.

Thus we may assume that no pair of the vertices of e are
placed into S through Cases 1.2 or 1.2, i.e. they entered S either
in separate steps or some of them together in Case 3. Using the
neighbor rule and Lemma 1.6 with (v, a, b) = (s1, s2, s3), e would
create a cycle in H and this contradiction completes the proof of
the claim and the proof of Theorem 1.5.

4. Concluding remarks

It would be desirable to understand better the structure of 3-
uniform hypergraphs with no linear cycles. We conjectured that
excluding K3

5 from these hypergraphs essentially improves our
results. Indeed, after the submission of this paper, [4] confirmed
our conjecture that 3-uniform hypergraphs without linear cycles
and without K3

5 are 2-colorable, thus they contain independent
sets of size at least half of their order. Naturally, it would
be interesting to extend our results to r-uniform hypergraphs.
Acknowledgment. We thank Sasha Kostochka for some fruit-

ful conversations on the topic.
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