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Abstract

This survey is devoted to problems and results concerning covering the ver-
tices of edge colored graphs or hypergraphs with monochromatic paths, cycles
and other objects. It is an expanded version of the talk with the same title at
the Seventh Cracow Conference on Graph Theory, held in Rytro in September
14-19, 2014.

1 Covers by paths and cycles

In this survey r-coloring always means edge-coloring with r colors (traditionally red
and blue when r = 2). Some part of the material is already discussed in the 2008
survey of Kano and Li [32].

Roughly fifty years ago, in my very first paper [17] the following statement ap-
peared as a footnote.

Proposition 1. (Gerencsér, Gyárfás [17],1967) The vertex set of any 2-edge-colored
complete graph Kn can be partitioned into a red and a blue path.

For the sake of the rigorous, empty paths and one-vertex paths are accepted as a
monochromatic path of any color in Proposition 1. To prove it, suppose that R and
B are vertex disjoint red and blue paths with endpoints r, b in a complete graph with
a red-blue edge coloring and v /∈ V (R) ∪ V (B). Then either rv extends R to a red
path or bv extends B to a blue path or through the edge rb either R∪ rb∪ bv, B−{b}
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or B ∪ br ∪ rv,R − {r} is a pair of red-blue paths covering one more vertex. Note
that the path partition can be found by checking the color of at most 3(n − 3) + 1
edges. We may add the two edges between the starting points and endpoints of the
paths R,B to get a cycle which is the union of a red and a blue path, we call it a
simple Hamiltonian cycle.

Corollary 1. A 2-colored complete graph has a simple Hamiltonian cycle.

From this one can immediately get an upper bound for the 2-color Ramsey number
of a path.

Corollary 2. R(Pm, Pn) ≤ m + n− 3 if m,n ≥ 3.

However, the bound in the corollary is not sharp, the Ramsey number is smaller.

Theorem 1. (Gerencsér, Gyárfás [17],1967) R(Pm, Pn) = m+⌊n
2
⌋−1 for m ≥ n ≥ 2.

Nevertheless, in the directed case a covering result can be used to provide the
Ramsey number. Let K∗

n denote the complete oriented graph where each pair of
vertices is joined by two edges (one in each direction). A simple Hamiltonian cycle
in a 2-colored K∗

n is a directed cycle which is the union of a red and a blue path.

Theorem 2. (Raynaud [40],1973) A complete oriented graph has a simple Hamilto-
nian cycle in every 2-coloring of its edges.

Corollary 3. (Gyárfás, Lehel [20], 1973; Williamson [47], 1973) If m,n ≥ 3 then

R(
−→
Pm,

−→
Pn) ≤ m + n− 3.

Note that R(
−→
Pm,

−→
Pn) ≥ m + n− 3, shown by the following 2-coloring of K∗

n+m−2.
Color (i, j) red if i ∈ {1, 2, . . . ,m− 1} and blue if i ∈ {m,m + 1, . . .m + n− 2}. The
moral is that for directed paths a cover result can provide the Ramsey number. A
very recent similar example will be discussed later (Lemma 2).

A whole range of problems can be defined to connect Ramsey and covering results.
With Sárközy and Selkow [24] we defined f(n, s, r, F ) for a family F of graphs and
for integers 1 ≤ s ≤ r as the largest m such that in every r-coloring of the edges of
Kn at least m vertices can be covered by no more than s monochromatic members
of F . However, this survey is concentrated on the cover problem, the smallest s
for which f(n, s, r, F ) = n. Proposition 1 implies that for the family P of paths,
f(n, 2, 2, P ) = n.
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1.1 Cycles instead of paths - Lehel’s conjecture

Lehel conjectured (1979) that Proposition 1 remains true if paths are replaced by
cycles. (An empty set, a vertex and an edge is accepted as a cycle.) I could prove a
slightly weaker statement.

Theorem 3. (Gyárfás [18],1983) The vertex set of any 2-colored complete graph can
be covered by a red and a blue cycle that intersect in at most one vertex.

It took a long time to get rid of the common vertex and prove Lehel’s conjecture.
First  Luczak, Rödl and Szemerédi [34] succeeded to prove the conjecture for large n
(with a proof using the Regularity Lemma and introducing new techniques). Then
Allen [1] gave a simpler proof for large n without using the Regularity Lemma.

Theorem 4. ( Luczak, Rödl, Szemerédi [34], 1998; Allen [1], 2008) Lehel’s conjecture
is true for large enough complete graphs.

Finally Bessy and Thomassé found a completely elementary inductive proof that
works for all graphs.

Theorem 5. (Bessy, Thomassé [5], 2010) The vertex set of any 2-edge-colored com-
plete graph Kn can be partitioned into a red and a blue cycle.

Recently Conlon and Stein ([7], 2014) extended Theorem 5 (using it as a black
box) to locally 2-colored complete graphs, i.e. to complete graphs where the number
of colors is arbitrary but at most two colors are used on edges incident to any vertex.

1.2 Multicoloring

The path (cycle) partition number of a colored graph G is the minimum number
of vertex disjoint monochromatic paths (cycles) whose vertices cover the vertices of
G. These numbers are denoted by pp(G), cp(G), respectively. Similarly, pc(G), cc(G)
denote the minimum number of monochromatic paths (cycles) whose vertices cover
the vertices of G.

Conjecture 1. (Gyárfás [16], 1989) For any r-colored complete graph K, pp(K) ≤ r.
Weaker version: pc(K) ≤ r.

One can see easily that Conjecture 1 is best possible.

Proposition 2. (Erdős, Gyárfás, Pyber [10], 1991) There exists r-colored complete
graphs K with pc(K) = r.
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Proof. Indeed, consider a complete graph whose vertices are partitioned into sets
Ai-s where |Ai| = 2i − 1 for i = 1, 2, . . . , r. The edge xy gets color

min{i : Ai ∩ {x, y} ̸= ∅}.

Then color 1 must be used to cover A1 and if color i is not used for some 1 < i ≤ r
then paths of color 1, 2, . . . , i− 1 can cover at most

i−1∑
j=1

2j = 2i − 2 < |Ai|

vertices of Ai. Since edges of color j > i cannot cover any vertex of Ai, some vertex
of Ai remains uncovered. Thus all the r colors are needed in a vertex cover by
monochromatic paths. 2

It is not obvious at all that pc(K) depends on r only, not on |V (K)|. This was
established in the next result.

Theorem 6. (Gyárfás [16], 1989) For any r-colored complete graph K, pc(K) ≤
r4 + r2 + 1.

Conjecture 1 have been strengthened as follows.

Conjecture 2. (Erdős, Gyárfás, Pyber [10], 1991) For any r-colored complete graph
K, cp(K) ≤ r.

Theorem 6 was extended from cover to partition, from paths to cycles with a
better bound.

Theorem 7. (Erdős, Gyárfás, Pyber [10], 1991) For any r-colored complete graph
K, cp(K) ≤ cr2 log r.

The proof of Theorem 7 is based on an “absorbing monochromatic starter” of size
crn in an r-colored Kn where cr is a constant depending only on r. It is a base cycle
C together with the |C| different vertices, the rim, each connected to a distinct edge
of C. Removing C and its rim, one can repeatedly select monochromatic cycles in
the majority color using Erdős - Gallai theorem, until only a small set of leftover
vertices remain (relative to the size of the rim). Finally the leftover is covered using
the complete bipartite graph between the rim and the leftover part. Here Pósa’s
cycle cover lemma [38] is applied: the vertex set of any graph G can be covered by at
most α(G) cycles, edges and vertices. The proof ends observing that C, together the
unused vertices of the rim, still contains a monochromatic cycle.

Recently Conlon and Stein successfully modified the argument of the previous
paragraph and obtained an extension of Theorem 7 for local r-colorings, where arbi-
trary number of colors can be used with the condition that the edge set incident to
any vertex must be colored with at most r colors.
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Theorem 8. (Conlon, Stein [7], 2015) For any locally r-colored complete graph K,
cp(K) ≤ cr2 log r.

Very recently Lang and Stein [33] removed the log factor from Theorem 8 (for
large n).

The bound of Theorem 7 was improved as follows, giving the best currently known
bound on the cycle partition problem.

Theorem 9. (Gyárfás, Ruszinkó, Sárközy, Szemerédi [14], 2006) For any r-colored
complete graph Kn with n ≥ n(r), cp(Kn) ≤ 100r log r.

The gain of a factor r comes from two refinements of the method outlined above.
First, the Regularity Lemma is used to replace the starter with a connected struc-
ture of dense monochromatic regular pairs (lifting a dense connected monochromatic
matching of the cluster graph). A monochromatic matching is connected if its edges
are in the same connected component in the color of the matching. The second re-
finement is a more efficient covering of the leftover vertices. The essence of a nearly
optimal cover strategy is the following lemma.

Lemma 1. (Gyárfás, Ruszinkó, Sárközy, Szemerédi [14], 2006) Assume [A,B] is an
r-colored complete bipartite graph, |A| ≥ r|B|. Then B can be covered by at most r
vertex disjoint monochromatic connected matchings.

Connected matchings are used in many Ramsey-type results, but Lemma 1 was the
first result in the context of covering by connected matchings. Further applications
appear in the proofs of Theorems 11, 19 and 20.

Using the bipartite r-color version of the Regularity Lemma, Lemma 1 can be
turned into the following result.

Theorem 10. For every fixed r there exists n0 = n0(r) such that the following is
true. Assume that the edges of a complete bipartite graph K(A,B) are colored with r
colors, where |A| ≥ n0. If |A| ≥ 2r|B|, then B can be covered by at most 3r vertex
disjoint monochromatic cycles.

Theorem 10 shows that any covering of all but at most |V (K)|
2r

exceptional ver-
tices an r-colored complete graph K by monochromatic cycles can be extended to a
complete cover by adding at most 3r cycles. However, it is an open problem how to
achieve a linear bound (in r) on the number of cycles partitioning (or even covering)
the non-exceptional part.

Conjecture 2 was proved asymptotically for r = 3.
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Theorem 11. (Gyárfás, Sárközy, Szemerédi [23], 2011) Apart from o(n) vertices,
the vertex set of any 3-colored Kn can be partitioned into 3 monochromatic cycles.

The main idea of the proof is that for even n, the vertices of any 3-colored Kn

can be partitioned into three monochromatic connected matchings. Soon thereafter
Pokrovskiy settled the path version, Conjecture 1, for r = 3.

Theorem 12. (Pokrovskiy [36], 2012) For any 3-colored complete graph K, pp(K) ≤
3.

In addition, Pokrovskiy showed the following.

Theorem 13. (Pokrovskiy [36], 2012) The vertex set of any 3-colored complete graph
can be covered by 3 (not necessarily disjoint) monochromatic paths of different colors.

It is worth noting that the two previous theorems cannot be combined. There
are 3-colorings of complete graphs where the vertex set cannot be partitioned into
monochromatic paths of distinct colors. As far as I know, the first example of such
colorings is discovered by K. Heinrich [26]. The simplest such 3-coloring is obtained
from the factorization of K4 by replacing each vertex with a set |Ai| = k > 1 and
within each Ai coloring all edges with the same color. In this coloring at most 3k
vertices can be covered by vertex disjoint monochromatic monochromatic paths of
distinct colors.

A key lemma in the proofs in [36] was the k = 1 case of the following lemma.

Lemma 2. (Pokrovskiy [37], 2013) For any k, the vertex set of any 2-colored complete
graph can be partitioned into k vertex disjoint red paths and a disjoint blue complete
balanced (k + 1)-partite graph.

Lemma 2 for general k was used as a main ingredient in the proof of the following
Ramsey-type result.

Theorem 14. (Pokrovskiy [37], 2013) For all k and n ≥ k + 1,

R(Pn, P
k
n ) = (n− 1)k +

⌊
n

k + 1

⌋
where P k

n is the k-th power of Pn.

Pokrovskiy found a counterexample to Conjecture 2 for r ≥ 3. He gave 3-colorings
of complete graphs such that any three pairwise disjoint monochromatic cycles leave at
least one vertex uncovered (but his examples can be covered by three monochromatic
cycles). However, he thinks that Conjecture 2 is almost true.

Conjecture 3. (Pokrovskiy [36], 2012) In every r-coloring of a complete graph K
there are r vertex disjoint monochromatic cycles covering all but cr vertices of K,
where cr is a constant depending only on r.

6



1.3 Non-complete host graph

Proposition 1 was extended in another directions, by replacing the complete graph
by sparser host graphs. We start with an old and a very recent example.

Theorem 15. (Gyárfás, Jagota, Schelp [19],1997) Assume n ≥ 5 and G is a graph
obtained from Kn by deleting at most m = ⌊n

2
⌋ edges. Then for every 2-coloring of

G, V (G) can be partitioned into a red and a blue path. (Best possible, not true if m
is replaced by m + 1).

Theorem 16. (Schaudt, Stein [46],2014) Let G be a 2-colored complete t-partite

graph, t ≥ 3, with no partite class of size larger than |V (G)|
2

. Then V (G) can be
partitioned into a red and a blue path.

Balanced complete bipartite host graphs are also received attention.

Theorem 17. (Gyárfás [16], 1989) For r-colored Kn,n, pc(Kn,n) is bounded by a
function of r.

Haxell proved a stronger result, conjectured in [10].

Theorem 18. (Haxell [27], 1997) For any r-colored Kn,n, cp(Kn,n) is bounded by a
function of r. For large r, cp(Kn,n) ≤ c(r log(r))2.

Peng, Rödl and Ruciński [35] mentioned that using their main result, the proof
method of Theorem 18 would yield a cr2 log r bound. A very recent further improve-
ment, 4r2 is proved by Lang and Stein (it works even for local r-colorings).

A recent conjecture is the following.

Conjecture 4. (Pokrovskiy [37], 2014) For any r-colored Kn,n, pp(Kn,n) ≤ 2r − 1
(if true best possible). This is true for r = 2.

It is announced in [46] that Lang, Schaudt and Stein proved Conjecture 4 for r = 3
in asymptotic form. The analogue conjecture is proved for infinite complete bipartite
graph by D. Sokoup [45], see Theorem 31 iinfbipn Subsection 1.5.

Host graphs with large minimum degree have been considered in the next result.

Theorem 19. (Balogh, Barát, Gerbner, Gyárfás, Sárközy [3], 2012) For every η > 0
there is n0(η) such that the following holds. For every n-vertex graph G with n ≥ n0

and δ(G) > (3
4

+ η)n, in every 2-coloring of G there exists a red and a vertex disjoint
blue cycle, covering all but at most ηn vertices of G.
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A recent work of DeBiasio and Nelsen [8] introduces a new approach and strength-
ens Theorem 19 by removing the exceptional set of at most ηn uncovered vertices.
Another result replaces the minimum degree condition of the host graph by an Ore-
type condition.

Theorem 20. (Barát, Sárközy [4], 2014) For every η > 0 there is n0(η) such that
the following holds. For every n-vertex graph G with n ≥ n0 and such that for any
two non-adjacent vertices x, y, deg(x) + deg(y) ≥ (3

2
+ η)n, in every 2-coloring of G

there exists a red and a vertex disjoint blue cycle, covering all but at most ηn vertices
of G.

Another possibility for non-complete host graph is to consider graphs with a fixed
independence number. Sárközy showed that Theorem 7 carries over as follows.

Theorem 21. (Sárközy [44], 2010) The vertex set of any r-colored graph G with
α = α(G), V (G) can be partitioned into at most 25(αr)2 logαr monochromatic cycles.

Note that in case of one color (r = 1), a well-known result gives the best possible
vertex partition.

Theorem 22. (Pósa [38], 1963) The vertex set of any graph G can be partitioned
into at most α(G) cycles, edges and vertices.

Sárközy suggested that perhaps Pósa’s theorem carries over to colored graphs and
strengthens Theorem 22.

Conjecture 5. (Sárközy [44], 2010) For any r-colored graph G, cp(G) ≤ α(G)r.

Although Pokrovskiy’s example makes this conjecture false, it is probably true in
a somewhat weaker form. At least the 2-color case is true in the following asymptotic
sense.

Theorem 23. (Balogh, Barát, Gerbner, Gyárfás, Sárközy [3], 2012) For every η > 0
and for every positive integer α, there is n0(η, α) such that the following holds. For
every n-vertex graph G with n ≥ n0 and α(G) = α, in every 2-coloring of G there
exists at most 2α vertex disjoint monochromatic cycles, covering all but at most ηn
vertices of G.

8



1.4 Hypergraphs

A loose (or linear) path in a k-uniform hypergraph is a sequence of edges where only
the consecutive edges meet and they meet in exactly one vertex. Here an analogue
of Proposition 1 was formulated.

Conjecture 6. (Gyárfás, Sárközy [22],2013) In any 2-colored complete k-uniform
hypergraph there exists a vertex disjoint red and a blue loose path covering all but
at most k − 2 vertices. (There is an example showing that one cannot avoid k − 2
uncovered vertices.)

A weaker form of this conjecture, with 2k− 5 uncovered vertices instead of k− 2,
is proved in [22], thus the case k = 3 is settled.

A tight path in a k-uniform hypergraph is a sequence of at least k vertices and with
all edges that have k vertices in consecutive positions in the sequence. It is possible
that Proposition 1 extends to tight paths, but we could not even decide the first step.

Question 1. (Gyárfás, Sárközy [22],2013) Is it possible to partition the vertex set of
every 2-colored complete 3-uniform hypergraph into a red and a blue tight path?

However, in the case of Berge paths, when only distinct vertices and distinct
edges (covering consecutive pairs of vertices) are required in the definition of paths,
Proposition 1 can be extended to any number of colors.

Theorem 24. (Gyárfás, Sárközy [22],2013) The vertex set of any r-uniform r-colored
complete hypergraph K can be partitioned into monochromatic Berge paths of different
colors. Consequently, at most r Berge paths cover V (K).

The proof method in [10] was extended to bound the cycle partition number for
loose cycles of hypergraphs.

Theorem 25. (Gyárfás, Sárközy [22], 2013) There exists c(r, k) such that the vertex
set of any r-colored complete k-uniform hypergraph can be covered by at most c(r, k)
vertex disjoint monochromatic loose cycles.

Sárközy gave a good bound on c(r, k) from the strong hypergraph Regularity
Lemma of Rödl and Schacht [41], combined with the hypergraph Blow-up lemma of
Keevash [30].

Theorem 26. (Sárközy [42], 2014) For c(r, k) in Theorem 25, we have c(r, k) ≤
50rk log rk.
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The most general existence theorem, combining Theorems 21 and 25 is obtained
recently.

Theorem 27. (Gyárfás, Sárközy [25], 2014) For every r-coloring of a k-uniform hy-
pergraph H with α = α(H), V (H) can be partitioned into at most c(r, k, α) monochro-
matic loose cycles.

Concerning sharp results, even for one color, the following possible extension of
Pósa’s theorem is suggested.

Conjecture 7. (Gyárfás, Sárközy [25], 2014) Every k-uniform hypergraph can be
partitioned into at most α(H) loose cycles and parts of hyperedges. (The case k = 2
is Pósa’s theorem.)

We showed that the conjecture is true if loose cycles replaced by weak cycles
(sequence of edges in which only the cyclically consecutive edges intersect) or by
loose paths. It seems reasonable that Theorem 27 can be extended to tight cycles
(where all cyclically consecutive k-sets form the edges).

Conjecture 8. There exists c(r, k) bounding the tight cycle partition number of any
r-colored complete k-uniform hypergraph.

1.5 Infinite versions

For infinite complete graphs I think that the following result is “perfect”.

Theorem 28. (Rado [39], 1987) Countably infinite r-colored complete graphs can be
partitioned into finite or one-way infinite monochromatic paths of different colors.
Consequently, at most r monochromatic paths cover the vertex set.

As in the finite case, r−1 monochromatic paths cannot always cover, the coloring
of Proposition 2 with |Ar| = ∞ shows that. Rado’s proof can be easily extended to
hypergraphs.

Theorem 29. (Gyárfás, Sárközy [22] 2013) The vertex set of any countably infinite
k-uniform r-colored hypergraph can be partitioned into monochromatic loose paths of
different colors.

The following result (in fact it is a special case of a more general result) extends
Theorem 29 to tight paths.
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Theorem 30. (M. Elekes, D. T. Soukup, L.Soukup, Szentmiklóssy [11], 2014) The
vertex set of any countably infinite k-uniform r-colored hypergraph can be partitioned
into monochromatic tight paths of different colors.

The infinite version of Conjecture 4 was proved by D. T. Soukup.

Theorem 31. (D. T. Soukup [45], 2014) For any r-colored balanced countably infinite
complete bipartite graph B, pp(B) ≤ 2r − 1.

1.6 A misunderstanding - when red and blue cannot mix

I mentioned once to Paul Erdős that for any 2-coloring of Kn, pc(Kn) ≤ 2 (Proposition
1) and he said he did not believe it. It soon turned out that Paul thought that the
covering paths must be monochromatic in the same color! Indeed, with this definition
the path cover number depends on n.

Theorem 32. (Erdős, Gyárfás [9], 1995) The vertex set of any 2-colored Kn can be
covered by at most 2

√
n monochromatic paths of the same color.

Conjecture 9. (Erdős, Gyárfás [9], 1995) The vertex set of any 2-colored Kn can be
covered by at most

√
n monochromatic paths of the same color. This would be best

possible.

2 Covers by other monochromatic subgraphs

2.1 Covers with graphs of bounded degree

The cycle cover problem can be extended to coverings by regular graphs.

Theorem 33. (Sárközy, Selkow, Song [43], 2013) Every r-colored complete graph Kn

can be covered by at most 100r log r + 2rd vertex disjoint connected monochromatic
d-regular graphs and vertices for n ≥ n0(r, d).

The most general result into this direction is found by Grinshpun and Sárközy.
They call a sequence of graphs F = {F1, F2, . . .} ∆-bounded if each Fi has i vertices
and maximum degree at most ∆.

Theorem 34. (Grinshpun, Sárközy [15], 2014) There is an absolute constant C such
that for every ∆ and every ∆-bounded sequence F , any 2-colored complete graph can
be partitioned into at most 2C∆log∆ vertex disjoint monochromatic members of F . If
all Fis are bipartite graphs, 2C∆ members suffice and this is best possible apart from
the constant in the exponent.
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Corollary 4. (Grinshpun, Sárközy [15], 2014) The vertex set of every 2-colored com-
plete graph can be covered by at most 2ck log k vertex disjoint monochromatic k-th power
of a cycle.

The authors conjecture sharper bounds for the covering number with powers of
cycles.

Conjecture 10. (Grinshpun, Sárközy [15], 2014) The vertex set of every 2-colored
complete graph can be covered by at most ck vertex disjoint monochromatic k-th power
of a cycle.

2.2 Covers with connected pieces - Ryser’s conjecture

A subset S of vertices in a colored hypergraph is called connected in color i if the
edges of color i within S form a connected subhypergraph. S is connected if it is
connected in some color.

Definition 1. The connected cover (partition) number of an colored graph or hy-
pergraph H is the minimum number of (vertex disjoint) connected subsets covering
V (H). These numbers are denoted by conc(H), conp(H), respectively.

A conjecture of Ryser (1971) that appeared in [29] was formulated in [21] as
follows.

Conjecture 11. For every r-colored graph G, conc(G) ≤ (r − 1)α(G) (r ≥ 2).

Ryser’s conjecture is known to be true for α(G) = 1, r ≤ 5; r = 2 (equivalent with
König’s theorem); r = 3 (Aharoni, [2], 2001). Ryser’s conjecture is sharp if r− 1 is a
prime power.

2.3 Covers with connected pieces - complete bipartite host

Conjecture 12. (Gyárfás, Lehel [21], 1977) For every r-colored complete bipartite
graph G, conc(G) ≤ 2r − 2.

Theorem 35. (Chen, Fujita, Gyárfás, Lehel, Tóth, [6], 2013) Conjecture 12 is true
for r ≤ 5.

Conjecture 12 can be easily reduced to r-colorings where each color class is the
union of vertex disjoint complete bipartite graphs, covering all vertices. Such reduc-
tion is not known for Ryser’s conjecture.
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2.4 Covers with connected pieces - hypergraphs

Although Ryser’s conjecture is open for complete graphs (α(G) = 1, r ≥ 6), its
analogue for complete k-uniform hypergraphs is solved by Zoltán Király with a short
elegant proof.

Theorem 36. (Király [31], 2010) If k ≥ 3, for every r-colored complete k-uniform
hypergraph H, conc(H) ≤ ⌈ r

k
⌉. The bound is sharp for k ≥ 3, r ≥ 1.

For non- complete k-uniform hypergraphs H (α(H) ≥ k) only the initial steps are
known and there is no plausible conjecture for the best estimate of conc(H). Here
α(H) is the cardinality of the largest vertex set that does not contain completely any
edge of H.

Theorem 37. (Fujita, Furuya, Gyárfás, Tóth [13], 2014) For k ≥ 2 every k-colored
k-uniform hypergraph H with α(H) = k satisfies conc(H) ≤ 2. For k ≥ 3 every
(k + 1)-colored k-uniform hypergraph H with α(H) = k satisfies conc(H) ≤ 3. Both
results are sharp.

2.5 Partitions into connected pieces

It is possible that Conjecture 11 can be strengthened from cover to partition. For the
case α(G) = 1, i.e. for complete graphs, this was formulated in [10].

Conjecture 13. (Erdős, Gyárfás, Pyber [10], 1991) For every r-colored complete
graph K, conp(K) ≤ r − 1.

For r ≤ 3 this conjecture was proved in [10]. The next result ”almost proves” it.

Theorem 38. (Haxell, Kohayakawa [28], 1996) If n is large compared to r then for
every r-colored complete graph K, conp(K) ≤ r.

For general α and for k-uniform hypergraphs, the following bound is known.

Theorem 39. (Fujita, Furuya, Gyárfás, Tóth [12], 2012) For every r-colored non-
trivial k-uniform hypergraph H, conp(H) ≤ α(H) − r + 2.

When r = 2 this result gives the following (an extension of König’s theorem).

Corollary 5. (Fujita, Furuya, Gyárfás, Tóth [12], 2012) For every 2-colored non-
trivial k-uniform hypergraph H, conp(H) ≤ α(H).

Acknowledgement. Thanks for Gábor Sárközy for his remarks on the manuscript.
The author is also indebted to referees for valuable remarks.
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[22] A. Gyárfás, G.N. Sárközy, Monochromatic path and cycle partitions in hyper-
graphs, Electronic Journal of Combinatorics, 20 (2013), P18.
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