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Abstract: We determine the 2-color Ramsey number of a connected
triangle matching c(nK3) that is any connected graph containing n vertex
disjoint triangles. We obtain that R(c(nK3), c(nK3)) = 7n − 2, somewhat
larger than in the classical result of Burr, Erdős, and Spencer for a triangle
matching, R(nK3, nK3) = 5n. The motivation is to determine the Ramsey
number R(C2

n ,C2
n ) of the square of a cycle C2

n . We apply our Ramsey result
for connected triangle matchings to show that the Ramsey number of an
“almost” square of a cycle C2,c

n (a cycle of length n in which all but at most
a constant number c of short diagonals are present) is asymptotic to 7n/3.
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1. INTRODUCTION

Denote by δ(G) the minimum degree in a graph G. Kn is the complete graph on n
vertices and Kn,n is the complete bipartite graph between two sets of n vertices each. If
G1, G2, . . . , Gr are graphs, then the Ramsey number R(G1, G2, . . . , Gr) is the smallest
positive integer n such that in any edge-coloring with colors 1, 2, . . . , r, for some i the
edges of color i contain a subgraph isomorphic to Gi. In this article, we will deal with 2-
and 3-color Ramsey numbers (so r = 2 or 3) and we will think of color 1 as red, color 2
as blue and color 3 (if it exists) as white.

Among well-known early results in generalized Ramsey theory is the exact value of
R(nK2, nK2) = 3n − 1 determined by Cockayne and Lorimer [8], and R(nK3, nK3) = 5n
determined by Burr et al. [3]. Here, nG denotes n vertex disjoint copies of the graph G.
It turned out in many applications that it is important to study the case when nK2, the
matching, is replaced by a connected matching, c(nK2), defined as any connected graph
containing nK2 (see for example applications [2, 9, 11–16, 22]). The 2-color Ramsey
number of connected matchings is the same as the Ramsey number of matchings (in fact,
[10] proves more) and one of the key arguments of [13] was that this remains true for three
colors as well. However, for more than three colors the Ramsey numbers of matchings
and connected matchings are different. For example, R(nK2, nK2, nK2, nK2) = 5n − 3
[8], but R(c(nK2), c(nK2), c(nK2), c(nK2)) > 6n − 3 when 2n − 1 is divisible by three.
This can be seen by the 4-coloring obtained from the parallel classes of an affine plane
of order 3 by replacing each point with a point set of size 2n−1

3 .
In this article, we look at the connected version of the “matching of triangles.” Let

c(nK3) denote any connected graph containing n vertex disjoint triangles. We shall prove
that here already the 2-color Ramsey number of c(nK3) is different from its counterpart
nK3.

Theorem 1. For n ≥ 2, R(c(nK3), c(nK3)) = 7n − 2.

While we have R(nK3, nK3) = 5n. To see that R(c(nK3), c(nK3)) > 7n − 3, consider
pairwise disjoint sets A, B,C such that V (K7n−3) = A ∪ B ∪ C, |A| = |B| = 3n − 1 and
|C| = n − 1. Edges inside A and inside B are red, all other edges are blue. In this coloring
there is no monochromatic c(nK3) (in fact there is not even an nK3 in blue).

To prove that R(c(nK3), c(nK3)) ≤ 7n − 2, we need the Ramsey number of connected
triangle matchings versus ordinary matchings that might be interesting on its own.

Lemma 2. For 1 ≤ m ≤ n, R(c(nK3), mK2) = 3n + m − 1.

Notice that R(c(nK3), mK2) > 3n + m − 2 is shown by the disjoint sets A, X such that
V (K3n+m−2) = A ∪ X , |A| = 3n − 1, |X | = m − 1 and edges inside A are colored red,
other edges are colored with blue. In this coloring there is no red nK3 or blue mK2.

The motivation of Theorem 1 comes from the effort to determine or estimate the
2-color Ramsey number R(C2

n,C2
n ) where C2

n is the square of the cycle on n vertices,
i.e. the cycle Cn with all short diagonals (diagonals between vertices at a distance 2 on
the cycle). A very recent article of Allen Brightwell and Skokan [1] gives lower bound
3n − 4 and upper bound 20n

3 + o(n) for that Ramsey number.
Density questions for the square of a cycle have also received a lot of attention

(e.g. the well-known Pósa-Seymour problem, see [4, 17, 21]). Note also that there has
been a lot of research on the Ramsey numbers of constant maximum degree graphs (such
as C2

n , where the maximum degree is 4). It is known that for a graph G on n vertices with
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maximum degree � the Ramsey number is linear, it is at most c(�)n [5]. The current
best bound c(�) ≤ 2c� log � is due to Conlon, Fox and Sudakov [6].

To determine R(C2
n,C2

n ) exactly for every n is hopeless since for n = 5, 6, C2
5 =

K5,C2
6 = K6 − 3K2 and these Ramsey numbers are both unknown. Also, the constant

c(4) in the linear bounds c(4)n is very large. However, combining Theorem 1 with the
Regularity Lemma, we shall make a step forward and prove the following. Let C2,c

n denote
an “almost” square of the cycle Cn, a cycle of length n in which all but at most a constant
number c of short diagonals are present.

Theorem 3. For every fixed η > 0 there is a c = c(η) so that for any n ≥ c we have
R(C2,c

n ,C2,c
n ) ≤ (1 + η)7n/3.

It is worth noting that Theorem 3, although asymptotically sharp (shown by a similar
construction as in Theorem 1), does not give the right asymptotics for R(C2

n ,C2
n ), where we

insist on all short diagonals. Indeed, R(C2
n,C2

n ) ≥ 3n − 4 is proved in [1]. Thus perhaps
surprisingly removing these constant number of diagonals makes a big difference in the
Ramsey number.

The following easy lemma from [15] will be used. It extends (when δ(G) = |V (G)| −
1) the well-known remark of Erdős and Rado that in a 2-colored complete graph there is
a monochromatic spanning tree.

Lemma 4. (Lemma 1.5 in [15]) Suppose that the edges of a graph G with δ(G) ≥ 3|V (G)|
4

are 2-colored. Then there is a monochromatic connected subgraph with order larger than
δ(G). This estimate is sharp.

Theorem 1 and Lemma 2 are proved in Section 2. Their perturbed versions are worked
out in Section 3. Section 4 outlines the (rather standard) argument how to obtain Theorem
3 from the Regularity and Blow-up lemmas.

2. THE PROOF OF LEMMA 2 AND THEOREM 1

Proof of Lemma 2. We prove by induction on m. Since for m = 1 the statement
is trivially true for every n, suppose we have a blue matching M = (m − 1)K2 in a
2-coloring of a K3n+m−1 with vertex set V . If there is no blue mK2 then every edge ei ∈ M
has a vertex pi adjacent in red to all but at most one vertex of X = V − V (M) (otherwise
ei could be replaced by two independent blue edges). Also, X induces a red complete
graph. Since

|X | = 3n + m − 1 − 2(m − 1) = 3n − m + 1 ≥ 2m + 1,

we can select greedily m − 1 pairwise disjoint red triangles with one vertex as pi and
two vertices from X . Then we find red triangles greedily in the remainder of X . We are
guaranteed to find n red triangles this way. These triangles can be certainly included into
a connected red subgraph so we have the required c(nK3). �

Proof of Theorem 1. Consider a 2-coloring of the edges of K = K7n−2 with red
and blue, assume w.l.o.g. that the blue color class has only one connected component
(since one color class is connected by using Lemma 4 with δ(G) = |V (G)| − 1). Since
R(nK3, nK3) = 5n for n ≥ 2, we have a monochromatic nK3. If it is blue, we are done,
therefore it is red and the red color class must define at least two connected components.
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Suppose that the red components have vertex sets X1, X2, . . . , Xs, where s ≥ 2 and |X1| ≥
|X2| ≥ · · · ≥ |Xs| ≥ 1. We may suppose that |X1| ≤ 5n, otherwise we have the required
monochromatic c(nK3) from R(nK3, nK3) = 5n.

Case 1. |X1| ≥ |X2| ≥ 3n, |X1| = 3n + k1, |X2| = 3n + k2. Since by Lemma 2 we have
R(c(nK3), (ki + 1)K2) = 3n + ki for i = 1, 2, Xi contains either a red c(nK3) or a blue
(ki + 1)K2 and we are done if the first possibility appears. Thus we have blue matchings
Mi of size ki + 1 in Xi for i = 1, 2. We can take k1 + 1 vertices in X2 \ M2 and k2 + 1
vertices in X1 \ M1 to form a blue T = (k1 + k2 + 2)K3 using the blue edges between X1

and X2 since from k1 + k2 ≤ n − 2 it follows that

3n + k1 − 2(k1 + 1) = 3n − k1 − 2 ≥ k2 + 1,

3n + k2 − 2(k2 + 1) = 3n − k2 − 2 ≥ k1 + 1.

If k1 + k2 + 2 = n (i.e. s = 2) we have the required blue c(nK3). Otherwise we have
l = n − (k1 + k2) − 2 (> 0) vertices in A = V − (X1 ∪ X2) and we can form l vertex
disjoint blue triangles taking one vertex from each of the sets A, X1 − T, X2 − T . We
have enough vertices for that, because

|X1 − T | = 3n + k1 − 2(k1 + 1) − (k2 + 1) = 3n − (k1 + k2) − 3 ≥ n − (k1 + k2) − 2

and the same is true for |X2 − T |. Thus we have a connected blue triangle matching of
size at least k1 + k2 + 2 + n − (k1 + k2) − 2 = n, as desired finishing Case 1.

Case 2. |X1| ≥ 3n, 2n ≤ |X2| < 3n, |X1| = 3n + k1, |X2| = 3n − k2, 1 ≤ k2 ≤ n. Again
since by Lemma 2 we have R(c(nK3), (k1 + 1)K2) = 3n + k1, we may suppose that we
have a blue M1 = (k1 + 1)K2 in X1. We transform M1 to a blue triangle matching T =
(k1 + 1)K3 using k1 + 1 vertices from X2 and then extend T using q = n − k1 + k2 − 2
vertices in A = V − (X1 ∪ X2) and q vertices from both X1, X2. We have enough room
for that because

3n + k1 − 2(k1 + 1) ≥ n − k1 + k2 − 2, 3n − k2 − (k1 + 1) ≥ n − k1 + k2 − 2

are both true since k2 ≤ n. Thus we have a connected blue triangle matching of size at
least (k1 + 1) + (n − k1 + k2 − 2) = n + k2 − 1 ≥ n.

Case 3. |X1| ≥ 3n, n ≤ |X2| < 2n, |X1| = 3n + k1, |X2| = n + k2, 0 ≤ k2 < n. Again
since by Lemma 2 we have R(c(nK3), (k1 + 1)K2) = 3n + k1, we may suppose that we
have a blue M1 = (k1 + 1)K2 in X1. Furthermore, we may suppose that k1 < n otherwise
M1 can be transformed to a blue triangle matching T = (k1 + 1)K3 using vertices from
X2. Since k2 < n also holds, |V − (X1 ∪ X2)| = 3n − (k1 + k2) − 2 ≥ n. Thus we have
at least n vertices in all of the three sets X1, X2,V − (X1 ∪ X2) implying that we have a
connected blue c(nK3).

Case 4. |X1| ≥ 3n, |X2| < n or |X1| < 3n.
From Lemma 2 we may assume |X1| ≤ 4n − 2. Indeed, otherwise since by Lemma 2

we have R(c(nK3), nK2) = 4n − 1, we may suppose that we have a blue M1 = nK2 in X1.
This blue M1 can be transformed into a blue c(nK3) using n vertices in V − X1 (|X1| < 5n
ensures that there are n vertices).

Define the set S1 so that |S1| = n and, starting with X1, all vertices of Xi are selected
before taking vertices from Xi+1. Then, starting from the next Xi, define S2 in the same
way. Now set

A = {∪Xi : (S1 ∪ S2) ∩ Xi = ∅}.
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Then we have the following claim.

|A| ≥ n (or equivalently |V \ A| ≤ 6n − 2).

Indeed, this is true either because |X1| ≤ 4n − 2 and |X2| < n so the last Xi that intersects
S2 satisfies |Xi| < n or because 3n > |X1| ≥ |X2|. But then we can select S3 ⊂ A with
|S3| = n, and the blue complete tripartite graph [S1, S2, S3] defines the required blue
c(nK3). �

3. PERTURBED VERSION OF THEOREM 1

As in many applications of the Regularity Lemma, one has to handle a few irregular
pairs and the corresponding edges will not be present in the reduced graph. We say that
the graph G on n vertices is ε-perturbed if it is almost complete, at most ε

(n
2

)
edges are

missing. We cannot apply Theorem 1 in the reduced graph because in Theorem 1 we have
a 2-colored complete graph, yet the reduced graph will be a 2-colored ε-perturbed graph.
Thus we need perturbed versions of Theorem 1 and first Lemma 2. It will be convenient
to think of the missing edges as edges in a third color class (white or “invisible”), so we
move up from 2-color Ramsey numbers to 3-color Ramsey numbers. K1,t denotes the star
with t leaves.

Lemma 5. For 1 ≤ m ≤ n, 0 ≤ t ≤ n, R(c(nK3), mK2, K1,t ) ≤ 3n + m − 1 + 2t.

Proof. We prove by induction on m as in the nonperturbed case. The starting case,
m = 1 follows easily from a well-known result of Corradi and Hajnal [7] (or it could
also be proved directly by an easy induction on n). Indeed, if there is no blue edge, we
have a red graph on N = 3n + 2t vertices with minimum degree at least 3n + t > 2N

3
and it contains at least �N/3� ≥ n vertex disjoint red triangles. Since our red graph
is automatically connected from the minimum degree condition, we have the required
red c(nK3). Thus, we may select a blue matching M = (m − 1)K2 in a 2-coloring of a
K3n+m−1+2t with vertex set V . We may assume that from every vertex fewer than t edges
are missing (or white edges). If there is no blue mK2 then every edge ei ∈ M again has a
vertex pi that is adjacent in blue to at most one vertex in X = V − V (M). However, now
pi is not necessarily adjacent in red to all other vertices in X since some edges might be
missing. But all the edges that are actually present are indeed red to the other vertices.
Furthermore, in X all edges that are present are red as well. Since

|X | = 3n + m − 1 + 2t − 2(m − 1) = 3n − m + 1 + 2t ≥ 2m + 1 + 2t,

again we can select greedily m − 1 pairwise disjoint red triangles with one vertex as pi

and two vertices from X . Indeed, pi is still adjacent in red to more than (2t + 3) − t =
t + 3 > t vertices in X but then there is a (red) edge among these neighbors, giving a red
triangle as desired. Then we find red triangles greedily in the remainder of X similarly.
Finally, we find the n-th red triangle in the remainder of X as follows. Select an arbitrary
remaining vertex of X . Since it has more than t neighbors left in X , there is an edge among
these neighbors and all edges are red in X . The red graph spanned by X is connected
because |X |/2 > t, thus the n red triangles form a c(nK3). �

We will also need a perturbed version of the classical result of Burr, Erdős, and Spencer,
R(nK3, nK3) = 5n.
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Lemma 6. For n ≥ 2, 1 ≤ t ≤ n, R(nK3, nK3, K1,t ) ≤ 6n − 2 + 5t.

Proof. Consider the largest blue triangle matching, remove it, then consider the
largest red triangle matching in the remainder and remove it. We have at least 5t + 4
vertices left and there are no more monochromatic triangles. However, consider an
arbitrary vertex, it is still adjacent to at least 4t + 4 vertices in the leftover. Then in one of
the colors (say blue) it is adjacent to at least 2t + 2 vertices. These neighbors will induce
a triangle that must be red (otherwise we get a blue triangle), a contradiction. Indeed,
consider again an arbitrary vertex from these at least 2t + 2 vertices, it is still adjacent to
at least t + 2 vertices from these at least 2t + 2 vertices. But then there must be an edge
within these at least t + 2 vertices, giving a triangle.

We note that more is true (5n + ct) but for our purposes this weaker statement is
sufficient. �

Next, we are ready to give the perturbed version of Theorem 1.

Theorem 7. For n ≥ 2, 0 ≤ t ≤ 2n/3, R(c(nK3), c(nK3), K1,t ) ≤ 7n − 2 + 7t.

Proof. Again suppose we have a 2-coloring of a K7n−2+7t with vertex set V . We may
assume that from every vertex fewer than t edges are missing (edges in the third color).
Applying Lemma 4, we get a monochromatic (say blue) connected component X of size at
least (7n − 2 + 7t) − t = 7n − 2 + 6t. By Lemma 6, since 7n − 2 + 6t ≥ 6n − 2 + 5t,
we have a monochromatic nK3 in X . If it is blue, we are done, therefore it is red
and thus the red color class must define at least two connected components within X .
Suppose that the red components of V have vertex sets X1, X2, . . . , Xs, where s ≥ 2 and
|X1| ≥ |X2| ≥ · · · ≥ |Xs| ≥ 1. We may suppose that |X1| ≤ 6n − 2 + 5t otherwise we
have the required monochromatic c(nK3) from Lemma 6.

Case 1. |X1| ≥ |X2| ≥ 3n + 2t, |X1| = 3n + 2t + k1, |X2| = 3n + 2t + k2. Here we
apply Lemma 5 to the two subgraphs induced by X1 and X2. We find either a red c(nK3)

or a blue (ki + 1)K2 in them and we are done if the first possibility appears. Thus we
have blue matchings M1, M2 of size k1 + 1, k2 + 1, respectively.

We extend M1 to a blue (k1 + 1)K3 by taking k1 + 1 vertices in X2 − M2. This can
be done if |X2 − M2| ≥ k1 + 1 + 2t − 2, extending the edges of M1 one by one to blue
triangles, at each step we have at most 2t − 2 vertices in X2 − M2 not adjacent (in blue)
to at least one of the ends of the edge to be extended. Indeed,

|X2 − M2| = 3n + 2t + k2 − 2(k2 + 1) = 3n + 2t − k2 − 2 ≥ k1 + 1 + 2t − 2

i.e 3n ≥ k1 + k2 + 1 that is true since k1 + k2 + 1 ≤ n + 3t − 1 ≤ n + 2n − 1 from the
assumption t ≤ 2n/3. The same argument allows to extend M2 to a blue (k2 + 1)K3 with
k2 + 1 vertices of X − M1. Thus we have a blue T = (k1 + k2 + 2)K3 and noticing that
the blue graph spanned by X1 ∪ X2 is connected (by |X1|, |X2| > 2t, any two vertices of
X1 and of X2 has a common blue neighbor) we are done if k1 + k2 + 2 ≥ n.

Otherwise we have l = n + 3t − (k1 + k2) − 2 (> 0) vertices in A = V − (X1 ∪ X2)

and we plan to extend T to nK3 with n − (k1 + k2 + 2) vertex disjoint blue triangles
taking one vertex from each of the sets A, X1 − T, X2 − T . Since T is already connected,
the extension will be automatically connected as well. We have enough vertices for that
if all the three sets have size at least n − (k1 + k2 + 2) + 2t (in fact two of them can be
only at least n − (k1 + k2 + 2) + t). In our case the condition holds for A with t to save
and for Xi − T it holds with about 2n to save:
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|X1 − T | = 3n + 2t + k1 − 2(k1 + 1) − (k2 + 1) = 3n + 2t

−(k1 + k2) − 3 ≥ n − (k1 + k2 + 2) + 2t

and the same is true for |X2 − T |. Thus we have a blue c(nK3).
Case 2. |X1| ≥ 3n + 2t, 2n + 2t ≤ |X2| < 3n + 2t, |X1| = 3n + 2t + k1, |X2| = 3n +

2t − k2, 1 ≤ k2 ≤ n.
Here, we apply Lemma 5 to the subgraph induced by X1. We may suppose we have a

blue M1 = (k1 + 1)K2 in X1, we transform M1 to a blue triangle matching T = (k1 + 1)K3

using k1 + 1 vertices from X2 and then extend T using q = n − k1 + k2 − 2 vertices in
A = V − (X1 ∪ X2) and q vertices from both X1, X2. We have enough room for that
because |A| = n + 3t − k1 + k2 − 2 ≥ q + 2t and

3n + 2t + k1 − 2(k1 + 1) ≥ q + 2t, 3n + 2t − k2 − (k1 + 1) ≥ q + 2t

are both true since k2 ≤ n. Thus we have a connected blue triangle matching of size at
least (k1 + 1) + q = n + k2 − 1 ≥ n.

Case 3. |X1| ≥ 3n + 2t, n + 2t ≤ |X2| < 2n + 2t, |X1| = 3n + 2t + k1, |X2| = n +
2t + k2, 0 ≤ k2 < n.

Again we apply Lemma 5 to the subgraph induced by X1 and select the blue
M1 = (k1 + 1)K2 in X1. We may suppose that k1 < n otherwise M1 can be transformed to
a blue triangle matching T = (k1 + 1)K3 using vertices from X2. Since k2 < n also holds,
|V − (X1 ∪ X2)| = 3n + 3t − (k1 + k2) − 2 ≥ n + 2t. Thus we have at least n + 2t ver-
tices in all of the three sets X1, X2,V − (X1 ∪ X2) implying that we have a connected blue
c(nK3).

Case 4. |X1| ≥ 3n + 2t, |X2| < n + 2t or |X1| < 3n + 2t.
We may assume |X1| ≤ 4n − 2 + 2t, otherwise we can apply Lemma 5 with m = n

to X1 to find a blue nK2 and, since from Lemma 7 |X1| ≤ 6n − 2 + 5t we have at
least 7n − 2 + 7t − (6n − 2 + 5t) = n + 2t vertices in V − X1, the blue nK2 can be
transformed into a blue c(nK3) using n vertices of V − X1.

If |X1| ≥ n + 2t, take an (n + 2t)-vertex subset S1 ⊂ X1 then take an (n + 2t)-vertex
set S2 from ∪i>1Xi so that in S2 we use all vertices of Xi before taking vertices from Xi+1.
Define

A = {∪i>1Xi : S2 ∩ Xi 
= ∅}.
Then |X1 ∪ A| ≤ 6n − 2 + 6t either because |X1| ≤ 4n − 2 + 2t and |X2| < n + 2t so the
last Xi that intersects S2 satisfies |Xi| < n + 2t or because 3n + 2t > |X1| ≥ |X2|. Thus
we can select S3 ⊂ V − A with |S3| ≥ n + t, and the blue tripartite graph [S1, S2, S3]
has lower bounds n + 2t, n + 2t, n + t for its vertex classes that allows to pick the
vertices of the required blue c(nK3). �

If |X1| < n + 2t, define S1 so that |S1| = n + t and all vertices of Xi are selected before
taking vertices from Xi+1. Then, starting from the next Xi, define S2 in the same way.
Now set

B = {∪Xi : (S1 ∪ S2) ∩ Xi 
= ∅}
and observe that |B| ≤ 4n + 6t thus we can select S3 ⊂ V − B with |S3| ≥ 7n − 2 + 7t −
(4n + 6t) = 3n − 2 + t ≥ n + 2t, and the blue complete tripartite graph [S1, S2, S3] has
lower bounds n + t, n + t, n + 2t for its vertex classes that allows to pick the vertices of
the required blue c(nK3). �
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4. PROOF OF THEOREM 3; APPLYING THE REGULARITY LEMMA

Next, we show how to prove Theorem 3 from Theorem 7, the Regularity Lemma [23]
and the Blow-up Lemma. The material of this section is fairly standard by now (see
[2, 11–16] for similar techniques) so we omit some of the details. In particular in [13]
Section 2 follows a similar outline.

Let e(X,Y ) denote the number of edges between X and Y in a graph G. For disjoint
X,Y , we define the density

d(X,Y ) = e(X,Y )

|X | · |Y | .

For two disjoint subsets A, B of V (G), the bipartite graph with vertex set A ∪ B that has
all the edges of G with one endpoint in A and the other in B is called the pair (A, B).

A pair (A, B) is ε-regular if for every X ⊂ A and Y ⊂ B satisfying

|X | > ε|A| and |Y | > ε|B|
we have

|d(X,Y ) − d(A, B)| < ε.

A pair (A, B) is (ε, δ)-super-regular if it is ε-regular and furthermore,

deg(a) ≥ δ|B| for all a ∈ A,

and deg(b) ≥ δ|A| for all b ∈ B.

We need a 2-edge-colored version of the Szemerédi Regularity Lemma.1

Lemma 8. For every integer m0 and positive ε, there is an M0 = M0(ε, m0) such that
for n ≥ M0 the following holds. For any n-vertex graph G, where G = G1 ∪ G2 with
V (G1) = V (G2) = V , there is a partition of V into � + 1 clusters V0,V1, . . . ,V� such
that

� m0 ≤ � ≤ M0, |V1| = |V2| = · · · = |V�|, |V0| < εn,
� apart from at most ε

(
�

2

)
exceptional pairs, all pairs Gs|Vi×Vj are ε-regular, where

1 ≤ i < j ≤ � and 1 ≤ s ≤ 2.

Our other main tool is the Blow-up Lemma (see [18, 19]). It basically says that super-
regular pairs behave like complete bipartite graphs from the point of view of bounded
degree subgraphs.

Lemma 9. Given a graph R of order r and positive parameters δ,�, there exists an
ε > 0 such that the following holds. Let m be an arbitrary positive integer, and let us
replace the vertices of R with pairwise disjoint m-sets V1,V2, . . . ,Vr (blowing up). We
construct two graphs on the same vertex-set V = ∪Vi. The graph R(m) is obtained by
replacing all edges of R with copies of the complete bipartite graph Km,m, and a sparser
graph G is constructed by replacing the edges of R with some (ε, δ)-super-regular pairs.

1For background, this variant and other variants of the Regularity Lemma see [20].
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If a graph H with �(H) ≤ � is embeddable into R(m) then it is already embeddable
into G.

Actually, we will need the following consequence of the Blow-up Lemma (where R is
a triangle).

Lemma 10. For every δ > 0 there exist an ε > 0 and m0 such that the following holds.
Let G be a tripartite graph with tripartition V (G) = V1 ∪ V2 ∪ V3 such that |V1| = |V2| =
|V3| = m ≥ m0, and let all the 3 pairs (V1,V2), (V1,V3), (V2,V3) be (ε, δ)-super-regular.
Then for every pair of vertices v1 ∈ V1, v2 ∈ V3 and for every integer p, 4 ≤ p ≤ 3m, G
contains an “almost” P2

p , the square of a path with p vertices connecting v1 and v2 from
which at most two short diagonals are missing.

We emphasize that Lemma 10 is true for any value of p between 4 and 3m, not just for
the ones that are divisible by 3. The price we pay is that two short diagonals might be
missing that is allowed in our application. Note also that an easier approximate version
of this lemma would suffice as well, but for simplicity we use this lemma.

Proof. We think of G as having the orientation (V1,V2,V3). Because of the Blow-up
Lemma it is sufficient to check the statement for the complete tripartite graph (using
r = 3 and � = 4 in the Blow-up Lemma). We distinguish three cases depending on
p. If p = 3k for some integer 2 ≤ k ≤ m, then we just go around (V1,V2,V3) k times
starting with v1 and ending with v2, so in this case actually no short diagonal is missing.
If p = 3k + 1 with k ≥ 1, then we go around (V1,V2,V3) (k − 1) times starting with
v1, but then in the last round we “turn around,” i.e. we finish with vertices u1, u2, u3, v2

chosen from V1,V2,V1,V3, respectively. Then the only short diagonal missing is between
u1 and u3. Finally, if p = 3k + 2 with k ≥ 1, then we go around (V1,V2,V3)(k − 1) times
starting with v1, but then in the last round we “double up,” i.e. we finish with vertices
u1, u2, u3, u4, v2 chosen from V1,V2,V1,V2,V3, respectively. Then the only two short
diagonals missing are between u1 and u3 and between u2 and u4. �

With these preparations now we are ready to prove Theorem 3 from Theorem 7. Let

ε � η � 1, (1)

m0 sufficiently large compared to 1/ε and M0 obtained from Lemma 8. Suppose we have
a 2-coloring of a complete graph with vertex set V , |V | = (1 + η)7n/3 (for simplicity
assume that this is a sufficiently large integer). We apply Lemma 8. We obtain a partition
of V , that is V = ∪0≤i≤�Vi. We define the following reduced graph GR: The vertices of
GR are p1, . . . , p�, and there is an edge between vertices pi and p j if the pair (Vi,Vj) is
ε-regular in both colors. The edge pi p j is colored with the majority color in K(Vi,Vj).
Thus GR is a (1 − ε)-dense 2-colored graph on � vertices. Then we “trim” GR in the
standard way: there is a subgraph HR on at least (1 − √

ε)� vertices where the maximum
degree of the complement is less than

√
ε� (see for example Lemma 9 in [13]). In other

words, the third color class does not contain a star K1,t with t = √
ε�, as we need in

Theorem 7.
Applying Theorem 7 to HR with t = √

ε�, we can get a large monochromatic (say
red) connected triangle matching in HR (and thus in GR). For a triangle Ti, 1 ≤ i ≤ �1 in
this connected triangle matching denote the corresponding clusters by (V i

1,V i
2,V i

3). Thus
(using (1)) we may assume that the number of vertices in the union of these clusters is
between (1 + η

2 )n and (1 + η)n. Next, first using the fact that this is a connected triangle
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matching we find red connecting paths PR
i in GR between Ti and Ti+1, 1 ≤ i ≤ �1 (where

T�1+1 = T1) and then from these connecting paths PR
i we can find vertex disjoint red

connecting paths Pi in the original graph between a vertex of V i
3 to a vertex of V i+1

1 . This
procedure is rather standard by now, see for example [13] for the details.

These connecting paths Pi will be part of the final monochromatic C2,c
n we are con-

structing, so on these segments there will not be any short diagonals guaranteed. However,
since the paths PR

i are in GR, their total length is indeed a constant depending on ε only.
We remove the internal vertices of the paths Pi from our graph; let us denote their total
number by c1. Thus on the remaining segments we need exactly n − c1 vertices.

Furthermore, we remove some more vertices from each (V i
1,V i

2,V i
3), 1 ≤ i ≤ l1 to

achieve super-regularity in red in all of the three pairs. Finally, we remove some more
vertices to get a balanced super-regular tripartite graph. The number of remaining vertices
in the union of the clusters in the triangles is still between n and (1 + η)n using (1). For
simplicity we still denote the clusters by V i

j .
Finally we will lift the triangles back to almost square-paths in the original graph using

Lemma 10. Let us denote by (1 − η′) the ratio of n and the number of remaining vertices
in the union of the clusters in the triangles, so 0 ≤ η′ � 1. Let us use Lemma 10 in each
balanced super-regular tripartite graph (V i

1,V i
2,V i

3), 2 ≤ i ≤ l1 with pi = �(1 − η′)3|V i
1|�

to connect the two endpoints of the connecting paths Pi−1 and Pi with an almost square-
path of length pi. Finally we use Lemma 10 one more time in the balanced super-regular
tripartite graph (V 1

1 ,V 1
2 ,V 1

3 ) with a p1 value that makes the total length exactly n, to
connect the two endpoints of the connecting paths P�1 and P1 with an almost square-path
of length p1. This is possible since this p value is less than �(1 − η′)3|V 1

1 |� only by a
constant. Putting together the almost square-paths within the triangles with the connecting
paths we get the red almost square-cycle of length n with only a constant number of short
diagonals missing. �
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