Large Cross-Free Sets in Steiner Triple Systems

András Gyárfás

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences Budapest, Hungary, E-mail: gyarfas.andras@renyi.mta.hu

Received November 6, 2013; revised March 20, 2014

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/jcd.21395

Abstract: A *cross-free* set of size m in a Steiner triple system (V, \mathcal{B}) is three pairwise disjoint m-element subsets $X_1, X_2, X_3 \subset V$ such that no $B \in \mathcal{B}$ intersects all the three X_i -s. We conjecture that for every admissible n there is an STS(n) with a cross-free set of size $\lfloor \frac{n-3}{3} \rfloor$ which if true, is best possible. We prove this conjecture for the case n=18k+3, constructing an STS(18k+3) containing a cross-free set of size 6k. We note that some of the 3-bichromatic STSs, constructed by Colbourn, Dinitz, and Rosa, have cross-free sets of size close to 6k (but cannot have size exactly 6k). The constructed STS(18k+3) shows that equality is possible for n=18k+3 in the following result: in every 3-coloring of the blocks of any Steiner triple system STS(n) there is a monochromatic connected component of size at least $\lceil \frac{2n}{3} \rceil + 1$ (we conjecture that equality holds for every admissible n). The analog problem can be asked for r-colorings as well, if $r-1\equiv 1,3$ (mod 6) and r-1 is a prime power, we show that the answer is the same as in case of complete graphs: in every r-coloring of the blocks of any STS(n), there is a monochromatic connected component with at least $\frac{n}{r-1}$ points, and this is sharp for infinitely many n. © 2014 Wiley Periodicals, Inc. J. Combin. Designs 00: 1-7, 2014

Keywords: Steiner triple systems; edge coloring of hypergraphs

1. INTRODUCTION

A hyperwalk in a hypergraph H = (V, E) is a sequence $v_1, e_1, v_2, e_2, \ldots, v_{t-1}, e_{t-1}, v_t$ of vertices and edges such that for all $1 \le i < t$ we have $v_i \in e_i$ and $v_{i+1} \in e_i$. We say that $v \sim w$, if there is a hyperwalk from v to w. The relation \sim is an equivalence relation, and the subhypergraphs induced by its classes are called the *connected components* of H. A vertex v that is not covered by any edge forms a trivial component with one vertex v and no edge.

^{*}Contract grant sponsor: OTKA K104373.

2 GYÁRFÁS

The size of the largest monochromatic component in edge colorings of complete graphs and hypergraphs is well investigated, for a present survey see [5]. For example, in every 3-coloring of the edges of the complete graph K_n there is a monochromatic connected component of size at least n/2 and in every 3-coloring of the edges of K_n^3 , the complete 3-uniform hypergraph, there is a monochromatic spanning component. What happens in between, when the blocks of a Steiner triple system (V, \mathcal{B}) are colored? For example, in every coloring of the blocks of STS(9) with three colors, there is a monochromatic connected component of size at least seven but in the 4-coloring of its blocks defined by the four parallel classes, every component in every color has only three points. Let f(n) denote the largest m such that in every 3-coloring of the blocks of any STS(n) there is a monochromatic connected component on at least m points. It is easy to see that f(7) = 6, f(9) = 7. Our main result is the following.

Theorem 1. $f(6k+3) \ge 4k+3$ with equality if k is divisible by 3. Moreover, $f(6k+1) \ge 4k+2$.

In fact, the inequalities of Theorem 1 are probably always sharp (one can easily check the cases k = 1, 2):

Conjecture 2. For every positive integer k, f(6k + 1) = 4k + 2, f(6k + 3) = 4k + 3.

Three pairwise disjoint *m*-element sets of points, $X_1, X_2, X_3 \subset V$, is a *cross-free set* of size *m* in a Steiner triple system (V, \mathcal{B}) if no block $B \in \mathcal{B}$ intersects each X_i in exactly one point. To obtain the upper bound in Theorem 1, we need some STS with a cross-free set of size almost n/3. In Theorem 4, we construct an STS(6k + 3) for the case $k \equiv 0 \pmod{3}$ that contains a cross-free set of size 2k (and this is best possible).

It is worth noting that constructions of Colbourn, Dinitz, and Rosa in [2] provide $STS(n)_s$ with cross-free sets of size asymptotic to n/3. They construct 3-bichromatic STSs where all points are partitioned into X_1, X_2, X_3 so that every block intersects precisely two of the X_i -s and they can also control the sizes of the X_i s. In particular, they provide 3-bichromatic STS(n)s where the sizes are nearly equal to n/3. However, it follows easily that in 3-bichromatic STS(n)s with $|X_1| \le |X_2| \le |X_3|, n/3 - |X_i|$ tends to infinity with n. Therefore, to achieve a cross-free set of size 2k in an STS(6k + 3) the number of blocks inside the X_i s tends to infinity with n.

To see the connection of cross-free sets to f(n), let G(n) be the size of the largest cross-free set present in **some** STS(n).

Lemma 3.
$$f(n) \leq n - G(n)$$
.

Proof. Suppose $|X_1| = |X_2| = |X_3| = G(n)$ for a cross-free set $X_1, X_2, X_3 \subset V$ in some STS(n). Then coloring any block B with the smallest i such that $B \subset V \setminus X_i$, we have a 3-coloring of the blocks with one nontrivial monochromatic connected component of size n - G(n) in each color.

The next result implies the equality f(6k+3) = 4k+3 for k divisible by 3 in Theorem 1.

Theorem 4. For n = 18k + 3, G(n) = 6k.

In fact, Theorem 4 probably can be extended, it would imply Conjecture 2.

Conjecture 5.
$$G(6k + 3) = 2k$$
, $G(6k + 1) = 2k - 1$.

It is easy to see that Conjecture 5 is sharp (if true). Indeed, a cross-free set of size 2k + 1 in an STS(6k + 3) would mean that there are at most $3(\frac{2k+1}{2})$ blocks and that is less than $\binom{6k+3}{2}/3$. Similarly, a cross-free set of size 2k in an STS(6k + 1) would show that there are at most $3k + 3(\frac{2k}{2})$ blocks, less than $\binom{6k+1}{2}/3$.

One can define $f_r(n)$ similarly for r-colorings of blocks. A lower bound on it can be easily derived from known results.

Proposition 6. $f_r(n) \ge \lceil \frac{n}{r-1} \rceil$.

Proof. Any *r*-coloring of the blocks of an STS(*n*) defines an *r*-coloring of the edges of K_n , by coloring the three pairs defined by a block with the color of the block. In this coloring there is a monochromatic, say red connected component C with at least $\lceil \frac{n}{r-1} \rceil$ vertices, proved first in [4], a more accessible account is the survey [5]. The blocks covering the red edges of C obviously span a red connected component on C.

The lower bound of Proposition 6 is trivially sharp for r=2 but also for certain other values of r, starting with r=4,8,10,14,...

Proposition 7. $f_r(n) = \frac{n}{r-1}$ for infinitely many n if r-1 is in the form 3^m , p^m , q^{2m} where $m \ge 1$, p, q are primes, $p \equiv 1 \pmod{6}$, $q \equiv -1 \pmod{6}$.

Proof. $f_r(n) \ge \frac{n}{r-1}$ follows from Proposition 6. Suppose r-1 is a prime power in the form 3^m , p^m , q^{2m} where $m \ge 1$, p, q are primes, $p \equiv 1 \pmod{6}$, $q \equiv -1 \pmod{6}$. This implies that $r-1 \equiv 1 \pmod{6}$ or $r-1 \equiv 3 \pmod{6}$. Then there exists an affine plane P of order r-1 and we can define an STS($(r-1)^2$) by substituting each line of P by a copy of an STS(r-1). Then the blocks of STS($(r-1)^2$) can be naturally colored with r colors according to the r parallel classes of P. In this coloring every component has size $r-1 = \frac{(r-1)^2}{r-1}$, providing an example with equality. To get infinitely many, we can apply the well-known direct product construction (see [1]) of STS(n_1n_2) from STS(n_1), STS(n_2). Assume we already know that for some $t \ge 0$ the blocks of STS($3^t(r-1)^2$) can be r-colored so that each color class has r-1 nontrivial components (of size $3^t(r-1)$) and consider the STS($3^{t+1}(r-1)^2$) defined as STS($3^t(r-1)^2$) × T where T is a single block on three points. Then each component T0 in each color class of STS(T1) defines a component T2 in STS(T2) whose blocks in T3 can be colored with the same color. This defines a natural T3 nontrivial components.

Our problem to determine f(n) led to find G(n), the size of the largest cross-free set present in **some** STS(n). It seems natural and interesting to find or estimate the size g(n) of the largest cross-free set present in **any** STS(n). Obviously,

$$G(n) \ge g(n) \ge \frac{\alpha(n)}{3}$$

where $\alpha(n)$ is the largest independent set present in *any* STS(n). For the most recent result and history on $\alpha(n)$ see [3].

Problem 8. *Is* g(n) *significantly smaller than* G(n)?

4 GYÁRFÁS

2. PROOF OF THEOREMS 1, 4

We prove first that $f(6k + 3) \ge 4k + 3$, $f(6k + 1) \ge 4k + 2$.

Suppose that the blocks of an STS (V, \mathcal{B}) with |V| = n are 3-colored and consider the three components C_1, C_2, C_3 in colors 1, 2, 3 containing a point $v \in V$. There are some cases according to the number of C_i s with points covered only by C_i , we call such points as "private parts" of C_i .

Case 1. No C_i has private part. In this case, the sets C_i doubly cover $V \setminus \{v\}$ and v is triply covered. This implies easily that $f(6k+3) \ge 4k+3$ and also $f(6k+1) \ge 4k+2$, unless if the C_i s intersect in one point and all the three doubly covered sets have size 2k. However, in this case we can have 3k blocks covering v and any other block must cover a pair of $(C_i \cap C_j) \setminus \{v\}$. Thus altogether we have at most $3k+3\binom{2k}{2} < \frac{\binom{6k+1}{2}}{3}$ blocks in STS(6k+1) and that is a contradiction.

Case 2. Only C_1 has a private part. Now there is no point $w \in V$ that belongs to $(C_2 \cap C_3) \setminus C_1$, otherwise no block can cover wx where x is from the private part of C_1 . Thus in this case C_1 covers V.

Case 3. Two C_i s, say C_1 , C_2 have private parts. Now $(C_1 \cap C_3) \setminus C_2$ and $(C_1 \cap C_2) \setminus C_3$ are both empty and any pair of points x, y from the private parts of C_1 , C_2 , respectively, must be in a block colored with color 3. Thus the union of the private parts of C_1 , C_2 is part of a component C of color 3. We can now apply the argument of Case 1 to the components C, C_1 , C_2 .

Case 4. All C_i s have private parts. Now sets covered by precisely two of C_1 , C_2 , C_3 must be empty and the private parts $X_i \subset C_i$ together with $X_4 = C_1 \cap C_2 \cap C_3$, partition V. Pairs of points $x \in X_1$, $y \in X_2$ must be in a block of color 3, pairs of points $x \in X_1$, $y \in X_3$ must be in a block of color 2, pairs of points $x \in X_2$, $y \in X_3$ must be in a block of color 1, thus the union of any two X_i s is covered by (in fact equal to) a monochromatic component. Observe that every block of our (V, \mathcal{B}) must contain a pair from some of the X_i s, thus

$$s = \sum_{i=1}^{4} {|X_i| \choose 2} \ge \frac{{n \choose 2}}{3}.$$
 (1)

First let n = 6k + 3, assume w.l.o.g that

$$|X_1| \le |X_2| \le |X_3| \le |X_4|.$$

If $|X_1| \ge 3k + 1 + t$ for some positive integer t then let X_j be the largest among X_2, X_3, X_4 . Then

$$|X_1| + |X_j| \ge 3k + 1 + t + \frac{3k - t + 2}{3} \ge 4k + 3$$

proving what we need. However, if $|X_1| \le 3k + 1$ then the maximum of s (under the condition that each component has size at most 2k + 2) is obtained when $|X_1| = 3k + 1$, $|X_2| = |X_3| = k + 1$, $|X_4| = k$. But this contradicts to (1). Similar argument works if n = 6k + 1, then

$$|X_1| = 3k + 1, |X_2| = |X_3| = |X_4| = k$$

gives the largest s and the contradiction.

This finishes the proof of the two inequalities of Theorem 1. It is left to prove that f(6k+3) = 4k+3 if k is divisible by 3, i.e. to prove Theorem 4. In fact we need to prove only that $G(n) \ge 6k$, however G(n) < 6k+1 follows easily: a partition of V for a STS(18k+3) into three sets of size 6k+1 cannot be cross-free since then there are at most $t=3\binom{6k+1}{2}$ blocks and t is less than the number of blocks required in an STS(18k+3).

We construct an STS(18k + 3) with a cross-free set of size 6k as follows. Let H_k be the graph with 6k vertices and 4k edges, having 2k components, k of them a P_4 , a path on four vertices, and k of them a single edge. We call the *middle* of H_k the union of the middle edges of the P_4 components in H_k . A *near factor* of a graph with 2m (or 2m - 1) vertices means m - 1 pairwise disjoint edges.

Lemma 9. Let T be the graph containing k vertex disjoint edges on 6k vertices. Then the edge set of $G_k = K_{6k} \setminus T$ can be partitioned into 2k factors F_1, \ldots, F_{2k} and 4k near factors E_1, \ldots, E_{4k} in such a way that the pairs uncovered by the near factors form a graph isomorphic to H_k and in the isomorphism the middle of H_k corresponds to the pairs of T.

Based on the lemma, we define an STS(18k+3) with a cross-free set of size 6k. Take three disjoint copies of H_k on vertex sets X_0, X_1, X_2 and define \mathcal{T} as a partial triple system PTS(18k) on $\bigcup_{i=0}^2 X_i$ as follows. Partition each X_i into k P_4 paths $a_{6j+1}^i, a_{6j+3}^i, a_{6j+4}^i$ and k edges a_{6j+5}^i, a_{6j+6}^i for $j=0, \ldots k-1$. This way each X_i spans a copy of H_k .

Now Lemma 9 can be applied with vertex set X_0 to obtain 2k factors and 4k near factors with the required properties (with respect to the copy of $H_k \subset X_0$). We can extend these factors and near-factors to blocks of \mathcal{T} , using vertices of X_1 as follows. Let a_{6j+4}^1 define blocks with the pairs of the near factor E_{4j+1} with uncovered pair a_{6j+2}^0 , a_{6j+3}^0 , $j=0,\ldots,k-1$. Then a_{6j+5}^1 defines blocks with the pairs of the near factor E_{4j+2} with uncovered pair a_{6j+5}^0 , a_{6j+6}^0 , $j=0,\ldots,k-1$; similarly a_{6j+6}^1 defines blocks with the pairs of the near factor E_{4j+3} with uncovered pair a_{6j+1}^0 , a_{6j+2}^0 , $j=0,\ldots,k-1$; and a_{6j+5}^1 defines blocks with the pairs of the near factor E_{4j+4} with uncovered pair a_{6j+3}^0 , a_{6j+4}^0 , $j=0,\ldots,k-1$. Finally, a_{6j+2}^1 , a_{6j+3}^1 define blocks with the pairs of the factors a_{6j+1}^0 , a_{6j+2}^0 , a_{6j+3}^1 , a_{6j+4}^1 , a_{6

The construction of the previous paragraph can be repeated cyclically, defining blocks with one vertex in X_2 and two in X_1 , and a third time defining blocks with one vertex in X_0 and two in X_2 . By Lemma 9, the partial STS \mathcal{T} defined this way covers all pairs of $X_0 \cup X_1 \cup X_2$ except a 3-regular graph U of with the following edges: a_{6j+2}^i , a_{6j+3}^i for i=0,1,2 and $j=0,\ldots,k-1$ (formed by the middle of the three copies of H_k) and the $3\times 8k$ edges between the pairs X_i , X_j that belong to the uncovered pairs of the $3\times 4k$ near factors. It can be easily seen that the graph U can be factored into three 1-factors. In fact, these factors are

$$\begin{aligned} &a_{6j+2}^{i},a_{6j+3}^{i},a_{6j+1}^{i},a_{6j+6}^{i-1},a_{6j+5}^{i},a_{6j+4}^{i-1},\\ &a_{6j+4}^{i},a_{6j+2}^{i-1},a_{6j+5}^{i},a_{6j+3}^{i-1},a_{6j+6}^{i},a_{6j+1}^{i-1},\\ &a_{6j+1}^{i},a_{6j+5}^{i-1},a_{6j+4}^{i},a_{6j+3}^{i-1},a_{6j+6}^{i},a_{6j+2}^{i-1},\end{aligned}$$

6 GYÁRFÁS

where i = 0, 1, 2 and j = 0, ...k - 1 with arithmetic on i, j-s are modulo 3, 6, respectively.

Finally, T is extended to an STS(18k + 3) by extending each factor of U to a block with one of three new points A, B, C that also forms the last block. This finishes the proof of Theorem 4 and with it Theorem 1.

Proof of Lemma 9. The required partition is constructed from the *standard factorization* of K_{6k} on vertex set $\{1, 2, ..., 6k - 1\} \cup \infty$ where (for i = 1, 2, ..., 6k - 1) factor F_i contains (i, ∞) and $\{(i - j, i + j) : 1 \le j \le 3k - 1\}$ with mod 6k - 1 arithmetic.

We shall keep 2k-1 of the factors F_i and define the near factors E_1, \ldots, E_{4k} by deleting one edge from each of the other 4k factors so that the deleted edges form a graph isomorphic to H_k . The factor formed by the middle of H_k is left uncovered and all other edges of H_k form a new factor F^* that is added as the 2k-th factor in the partition. To define the construction, it is enough to specify the set of 4k pairs (all from different F_i) that form a graph Z_k isomorphic to H_k . The construction is the simplest for $k \equiv 1 \pmod{2}$ so we describe that first.

Suppose that $k \equiv 1 \pmod{2}$ and set $W = \{(1, 3), (2, 4), (3, 5), (5, \infty)\}$. Moreover, for $m \in \{6, 12, \dots, 6(k-2)\}$ let $L_m = A_m \cup B_m$ be the following set of eight pairs on 12 consecutive numbers:

$$A_m = \{(m, m+2), (m+2, m+4), (m+4, m+6), (m+1, m+3)\},$$

$$B_m = \{(m+5, m+7), (m+7, m+9), (m+9, m+11), (m+8, m+10)\}.$$

It is immediate to check that W, A_m , B_m are all define (6-vertex) graphs with a P_4 component and a K_2 component. Thus the graph Z_k defined by W (for k=1) and by $W \cup_{m=6}^{6(k-2)} L_m$ (for odd k>1) is isomorphic to H_k . Moreover, since all edges (apart from $(5,\infty)$) of Z_k are in the form (j,j+2) and $j\neq 4$, each edge of Z_k belongs to different F_i .

The case $k \equiv 0 \pmod{2}$ is slightly more involved, we use another type of components C_m , D_m (beside W) to define Z_k .

$$C_m = \{(m, m+1), (m, m+2), (m+2, m+4), (m+3, m+5)\},$$

$$D_m = \{(m, m+2), (m+1, m+2), (m+1, m+3), (m+4, m+5)\}.$$

For k=2 we use W followed by C_6 to define Z_2 . For k>2 start with W, then $\frac{k}{2}$ copies of C_m ($m=6,12,\ldots,3k$) then $\frac{k-2}{2}$ copies of D_m ($m=3k+6,\ldots,6(k-1)$). To check here that each edge of Z_k belongs to different F_i , note that "jumping pairs" (j,j+2) are obviously from different F_i (from F_{j+1}). The same is true for the "consecutive pairs" (j,j+1). To check consecutive pairs against jumping pairs, notice that for $m=6,12,\ldots,3k$ the pair (m,m+1) of C_m belongs to F_{3k+m} , a starting point of the D-block opposite to C_m thus it is not skipped by any jumping pair. Similarly, for $m=3k+6,\ldots,6(k-1)$, the pairs (m+1,m+2) and (m+4,m+5) in D_m belong to F_{m+2-3k} and F_{m+5-3k} , respectively, and they are not skipped in their opposite C-blocks.

ACKNOWLEDGMENT

Thanks for the remarks of the referees, especially for calling my attention to [2], showing the connection of 3-bichromatic Steiner triple systems and the ones with large cross-free sets.

REFERENCES

- [1] C. J. Colbourn and A. Rosa, Triple Systems, Calendron Press, Oxford, 1999.
- [2] C. J. Colbourn, J. H. Dinitz, and A. Rosa, Bicoloring Steiner triple systems, Electron J Combin 6 (1999), R25.
- [3] A. Eustis and J. Verstraëte, On the independence number of Steiner systems, Combin Prob Comput 22 (2013) 241–252.
- [4] A. Gyárfás, Partition coverings and blocking sets in hypergraphs (in Hungarian), Communications of SZTAKI 71 (1997), 62.
- [5] A. Gyárfás, "Large monochromatic components in edge colorings of graphs: a survey," Book chapter in Ramsey Theory, Yesterday, Today and Tomorrow, Progress in Mathematics 285, A. Soifer (Editors), Birkhauser, 2011, pp. 77–96.