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a b s t r a c t

In this paper we show that properly edge-colored graphs G with |V (G)| ≥ 4δ(G) − 3 have
rainbow matchings of size δ(G); this gives the best known bound for a recent question of
Wang. We also show that properly edge-colored graphs G with |V (G)| ≥ 2δ(G) have rain-
bow matchings of size at least δ(G) − 2δ(G)2/3. This result extends (with a weaker error
term) the well-known result that a factorization of the complete bipartite graph Kn,n has a
rainbowmatching of size n − o(n), or equivalently that every Latin square of order n has a
partial transversal of size n−o(n) (an asymptotic version of the Ryser–Brualdi conjecture).
In this direction we also show that every Latin square of order n has a cycle-free partial
transversal of size n − o(n).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction—Rainbowmatchings in proper colorings

In this paper we consider properly edge-colored graphs, i.e. two edges with the same color cannot share an endpoint,
so each color class is a matching. A matching is rainbow if its edges have different colors. The minimum degree of a graph
is denoted by δ(G). Recently, Wang [7] proposed to find the largest guaranteed size of a rainbow matching in terms of the
minimum degree in a properly edge-colored graph. More precisely, [7] raised the following problem.

Problem 1. Does there exist a function f such that |V (G)| ≥ f (δ(G)) implies that a properly edge-colored graph G contains
a rainbow matching of size δ(G)?

Positive answers to Problem 1 were given in [8,2]. In [2] it was proved that f (k) =
98k
23 is sufficient. In this paper we give

a better bound, namely 4δ(G) − 3.

Theorem 1. Every properly edge-colored graph G with at least 4δ(G) − 3 vertices contains a rainbow matching of size δ(G).

We note that after submission we learned that Lo and Tan [4] independently proved Theorem 1.
Wang notices that the ‘‘best’’ function in his problem must be greater than 2δ(G) because certain Latin squares have no

transversals. For δ(G) ∈ {2, 3} Theorem 1 is best possible, as shown by a properly 2-edge-colored C4 and by two vertex
disjoint copies of a 1-factorization of K4. Our next result shows that if |V (G)| ≥ 2δ(G), then we can find a rainbowmatching
almost as large as the desired δ(G).

✩ The authors were supported in part by OTKA K104373.
∗ Corresponding author at: Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.

E-mail addresses: gyarfas.andras@renyi.mta.hu (A. Gyárfás), gsarkozy@cs.wpi.edu, sarkozy.gabor@renyi.mta.hu (G.N. Sárközy).

http://dx.doi.org/10.1016/j.disc.2014.03.010
0012-365X/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2014.03.010
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2014.03.010&domain=pdf
mailto:gyarfas.andras@renyi.mta.hu
mailto:gsarkozy@cs.wpi.edu
mailto:sarkozy.gabor@renyi.mta.hu
http://dx.doi.org/10.1016/j.disc.2014.03.010


A. Gyárfás, G.N. Sárközy / Discrete Mathematics 327 (2014) 96–102 97

Theorem 2. Every properly edge-colored graph G with at least 2δ(G) vertices contains a rainbow matching of size at least
δ(G) − 2(δ(G))2/3.

Theorem2 relates to partial transversals of Latin squares. A Latin square of order n is an n×n array [aij] inwhich each sym-
bol occurs exactly once in each row and exactly once in each column. A partial transversal of a Latin square is a set of distinct
symbols, with atmost one in each row or column. Latin squares can be also viewed as 1-factorizations of the complete bipar-
tite graph Kn,n, bymapping rows and columns to vertex classes R, C of Kn,n and considering the symbol [aij] to be the color of
the edge ij, for i ∈ R and j ∈ C . The color classes then form a 1-factorization of Kn,n, and partial transversals become rainbow
matchings. A well-known conjecture of Ryser [5] states that for odd n every 1-factorization of Kn,n has a rainbow matching
of size n. The companion conjecture, attributed to Brualdi, is that for every n, every 1-factorization of Kn,n has a rainbow
matching of size at least n − 1. These conjectures are known to be true in an asymptotic sense, i.e., every 1-factorization of
Kn,n has a rainbow matching containing n − o(n) symbols. For the o(n) term, Woolbright [9] and independently Brouwer
et al. [1] proved

√
n. Shor [6] improved this to 5.518(log n)2, but his proof had an error, which was corrected in [3]. Theo-

rem 2 extends these results in two senses. It allows proper colorings (instead of factorizations) of arbitrary graphs (instead of
complete bipartite graphs). The pricewe pay is that our error term isweaker than the logarithmic one of Hatami and Shor [3].

We also prove that Latin squares have a large partial transversal without short cycles. A cycle of length l in a Latin square
L is a set (i1, j1), (i2, j2), . . . , (il, jl) of positions such that j1 = i2, j2 = i3 . . . , jl = i1 and no row index or column index is
repeated. For example, a cycle of length 1 is a diagonal position in L, a cycle of length 2 is a pair of positions symmetric to the
main diagonal, etc. In the complete bipartite graph formulation, considering C as a permutation π of R, a cycle of length l is
an l-cycle of π . There is another reformulation of Latin squares, explaining further the notion of cycles; in fact, Theorem 3
will be proved in that form. Associate the symbol aij ∈ L as a color to the edge ij of the complete directed graph

−→
Kn , wherewe

have a loop (i, i) at each vertex i and joining any two distinct vertices i and j there are two oriented edges (i, j) and (j, i). Then
we have an n-coloring on the edges of

−→
Kn where each color class is a 1-regular subgraph and a partial transversal becomes

a rainbow subgraph with maximum indegree and outdegree 1. In this representation an l-cycle indeed becomes a directed
cycle of length l.

Theorem 3. For positive integers n and k ≥ 2, every Latin square of order n has a partial transversal with at least n − 6n
k−1
k

elements containing no cycle of length at most k.

Using the reformulation above, Theorem 3 has the following form.

Theorem 4. For positive integers n and k ≥ 2, consider an edge coloring of
−→
Kn with n colors where each color class is a 1-regular

digraph. Then there is a rainbow subgraph with maximum indegree and outdegree 1 that has at least n − 6n
k−1
k edges and has

no directed cycle of length at most k.

Applying Theorem 3 with

k =


log n

3 log log n


,

there is a partial transversal with at least n − 6n
k−1
k elements that does not contain a cycle of length l for l ≤ k. From each

cycle (of length at least k+1) we remove an arbitrary element of the transversal. In the resulting partial transversal we have
at least

n −
n

k + 1
− 6n

k−1
k ≥ n −

3n log log n
log n

− 6n
k−1
k ≥


1 −

4 log log n
log n


n

elements and we get the following.

Corollary 1. Every Latin square of order n has a partial transversal T of order

1 −

4 log log n
log n


n such that T has no cycles at all.

Notice that the error term in the corollary is much worse than in Theorem 2. It is possible that the corollary holds in the
following strong form (in the spirit of the Ryser–Brualdi conjecture).

Conjecture 1. Any Latin square of order n has a cycle-free partial transversal of order n − 2.

Conjecture 1 would be best for n = 4, as shown by the Latin square L with rows 1234, 2143, 3412, 4321. (Any use of
symbol 1 would form a cycle of length 1, and only two of {2, 3, 4} can be selected to avoid a 3-cycle.)

2. Proofs

2.1. Proof of Theorem 1

Consider a properly edge-colored graph Gwith |V (G)| ≥ 4δ(G) − 3. Let c(e) denote the color of edge e and let δ = δ(G).
We start from a ‘‘good’’ configuration H = M1 ∪ M2 ∪ M3 ∪

s
i=1 Fi defined as follows.
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• For some integer k ≥ 0 M1 = {ei : i = 1, 2, . . . , k} and M2 = {fi : i = 1, 2, . . . , k} form two vertex disjoint rainbow
matchings in G, c(ei) = c(fi).

• M3 = {gi : i = k + 1, . . . , δ − 1} is a rainbow matching, vertex disjoint from M1 ∪ M2 and c(gi) ≠ c(ej) for 1 ≤ j ≤ k
and k + 1 ≤ i ≤ δ − 1. ThusM1 ∪ M3 (likewise M2 ∪ M3) is a rainbow matching of size δ − 1.

• F1 = {hi : i = k + 1, . . . , t1} is a matching, vertex disjoint from M1 ∪ M2, and hi ∩ M3 = {vi} ∈ gi. Moreover, c(hk+1) ∉

{c(e) : e ∈ M1 ∪ M3} and for t1 ≥ i > k + 1,

c(hi) ∈


k+1≤j<i

c(gj).

We call F1 a chain. Note that F1 is not necessarily rainbow, for example, c(hi) = c(gk+1) for k + 1 < i ≤ t1 satisfies the
definition.

• We allow several further disjoint chains F2, . . . , Fs where for s ≥ j ≥ 2, Fj = {hi : i = tj−1 + 1, . . . , tj} is a matching,
vertex disjoint fromM1∪M2∪F1∪· · ·∪Fj−1 and hi∩M3 = {vi} ∈ gi. Moreover, as before, c(htj−1+1) ∉ {c(e) : e ∈ M1∪M3}

and for tj ≥ i > tj−1 + 1,

c(hi) ∈


tj−1+1≤l<i

c(gl).

One can easily see that a good configuration exists. Indeed, by induction there is a rainbowmatchingM with δ−1 colors.
Let v be a vertex not in V (M), and select an edge vw of G such that c(vw) ∉ {c(e) : e ∈ M}. If w is not in V (M), then vw
extendsM to a rainbow matching of size δ and the proof is finished. Otherwise with k = 0, t1 = 1,M1 = M2 = ∅,M3 = M
and F1 = {vw} = h1 we have a good configuration.

Select a good configurationH with the largest possible k. Then selectmaximal chains F1, F2, . . . , Fs to cover themaximum
number of vertices of M3 by ∪

s
i=1 Fi. If k = δ − 1, i.e., M3 = F1 = ∅, then select any vertex v not in V (H) and an edge vw

such that c(vw) ∉ {c(e) : e ∈ M1}. Since every color appears in bothM1 andM2, we find a rainbowmatching of size δ. Thus
we may assume k < δ − 1. Recall that vi = gi ∩ hi for i ∈ {k + 1, . . . , ts}.

Consider a vertex v ∉ V (H) and an edge e = vw such that c(vw) ∉ {c(f ) : f ∈ M1 ∪i>ts gi} andw ≠ vi for i ∈ {k+1, . . . ,
ts}. There is such an e since we have precisely δ − 1 restrictions on the choice of w and since δ(v) ≥ δ.
Case 1.w ∈ (M1)∪V (M2). Note that c(vw) ∉ {c(f ) : f ∈ M1} by construction. If j = c(vw) ∉ {c(f ) : f ∈ M1 ∪M3}, thenwe
obtain a rainbowmatching of size δ by adding vw toM2 ∪ M3 if w ∈ V (M1) (similarly if w ∈ V (M2)). Otherwise, the choice
ofw yields j = c(vw) = c(gi) for some iwith ts +1 > i > k. We can now define a rainbowmatching of size δ as follows: for
1 ≤ i ≤ k take either ei or fi so that the selected edges are not incident to v or w. This gives a matching with colors 1, . . . , k
and color j. Remove (the j-colored) gi fromM3 and add hi (from the chain Fl covering vi). By definition of the chain, the color
c(hi) equals c(gi1) for some i1 with tl−1 +1 ≤ i1 < tl. Remove gi1 and add hi1 from Fl and continue the procedure. Eventually
we add htl−1+1, and the resulting matching is a rainbow matching of size δ.

Case 2. w ∈
s

i=1 V (fi). For c(vw) ∈ {c(f ) : f ∈ M1 ∪ M3} (i.e., c(vw) ∈ {c(f ) : f ∈ M3}), this contradicts the choice of k,
since vw can be added to the matching M1 ∪ M2 ∪ M3 to get a new repeated color. For c(vw) ∉ {c(f ) : f ∈ M1 ∪ M3} we
can add vw to M1 ∪ M3 to get a rainbow matching of size δ.
Case 3. w ∈

ts
i=k+1 V (gi), say gi = wvi (by the choice of c(vw), w ≠ vi). Since vi is in some chain Fl, we can add the

edge vw, delete gi, add hi ∈ Fl, repeatedly until we end up adding an edge of the chain Fl that has color not in the color set
{c(f ) : f ∈ M1 ∪ M3}. Thus we get either a new good configuration with δ − 1 colors in which the color c(vw) is repeated
or a matching with at least δ colors. The latter case finishes the proof, and the former contradicts the choice of k.
Case 4. w ∈


i>ts V (gi). This contradicts the maximality of the chain cover. Indeed, if c(vw) ∉ {c(f ) : f ∈ M1 ∪ M3} then

we can start a new chain, and if c(vw) ∈ {c(f ) : f ∈ M3} then we can continue an existing chain.
Since the good configurations involved have at most 4(δ − 1) vertices and one further vertex w is required to get the

rainbow matching of size δ(G) from it, |V (G)| ≥ 4δ(G) − 3 is indeed a sufficient condition. �

2.2. Proof of Theorem 2

Let M1 = {e1, . . . , ek} be a largest rainbow matching in a properly edge-colored graph G. Assume to the contrary that
k < δ(G) − 2(δ(G))2/3. Set δ = δ(G), R = V (G) \ V (M1) and let C1 be the set of ‘‘unused’’ colors, i.e., colors not used onM1.
Since |V (G)| ≥ 2δ(G) we have

|R| > 4δ2/3. (1)
Select an arbitrary v ∈ R. Since deg(v) ≥ δ andM1 is maximum, at least δ−k > 2δ2/3 edges in colors C1 go from v toM1:

degC1(v, V (M1)) > 2δ2/3. (2)

Indeed, otherwise we could increase the size of our matching M1. This implies in particular that δ − 2δ2/3 > δ2/3 (indeed,
since |M1| has to be at least δ2/3, so |M1| = k ≥ δ2/3 but on the other hand we have k < δ − 2δ2/3), i.e.

δ1/3 > 3. (3)
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Furthermore, this also implies that for the number of edges in C1 betweenM1 and R we have the following lower boundEC1(R, V (M1))
 > 2δ2/3

|R|. (4)

In order to define the sets M2 and C2 in the next iteration we do the following. We partition the edges ei in M1 into two
classes. We put ei = xiyi intoM ′

1 if and only if

degC1(xi, R) + degC1(yi, R) ≥ 4δ1/3, (5)

which is greater than 12 by using (3).
We define M2 = M1 \ M ′

1 and C2 = C1 ∪ {c(ei) : ei ∈ M ′

1}, where again c(ei) denotes the color of edge ei. We have the
following two crucial claims.

Claim 1. |M ′

1| ≥
δ2/3

2 , i.e. |M2| ≤ |M1| −
δ2/3

2 .

Otherwise, using (1) we getEC1(R, V (M1))
 ≤ |M ′

1|(2|R|) + |M2|(4δ1/3) < δ2/3
|R| + 4δ4/3 < 2δ2/3

|R|,

which contradicts (4).

Claim 2. For every vertex v ∈ R, we have

degC2(v, V (M2)) > 2δ2/3.

For the proof of this claim observe first that if ei = xiyi ∈ M ′

1, then all C1-edges to R incident to this edgemust be incident
to the same endpoint (say xi) since otherwise we could increaseM1 (using (5)). Denote by X1 the set of these xi endpoints in
M ′

1 and by Y1 the set of other endpoints. Thus there is no C1-edge between Y1 and R, and for every xi ∈ X1 there are at least
4δ1/3C1-edges from xi to R.

Consider an arbitrary v ∈ R and an edge vw with c(vw) ∈ C2. First note that w ∉ R. Otherwise, if c(vw) ∈ C1, then we
can clearly increaseM1; if c(vw) = c(ei) for some ei ∈ M ′

1, then we can increaseM1 by exchanging ei with vw and adding a
C1-edge from xi to a free neighbor in R (using (5) again). Here and henceforth, a free neighbor is a neighbor that is not covered
by the current matching, so in particular here it is a neighbor in R outside {v, w}.

Thus w ∈ V (M1). Next we show that w ∉ Y1. Assume otherwise that w = yj for some yj ∈ Y1. If c(vw) ∈ C1, then again
we can increaseM1 by exchanging ej with vw and adding another C1-edge from xj to a free neighbor in R such that this edge
has a different color from c(vw) (using (5)). If c(vw) = c(ei) for some ei ∈ M ′

1, then we could increase M1 by deleting ei
and ej, adding vw and adding one C1-edge from xi, one C1-edge from xj to free neighbors in R such that the two edges have
different colors.

Thus if w ∈ V (M ′

1), then w ∈ X1 and this implies Claim 2, since by using (2) we get

degC2(v, V (M2)) ≥ degC1(v, V (M1)) + |M ′

1| − |M ′

1| > 2δ2/3.

Indeed, we get degC1(v, V (M1)) + |M ′

1| from the C1-edges and the edges using colors from M ′

1, and there is at most one
C2-edge from v to each edge inM ′

1.
Suppose now thatMj and Cj are already defined for j ≥ 2 such that the two claims are true for j, i.e.

|Mj| ≤ |Mj−1| −
δ2/3

2
, (6)

and

degCj(v, V (Mj)) > 2δ2/3. (7)

In order to defineMj+1 and Cj+1 we put the edges ei = xiyi ∈ Mj into M ′

j if and only if

degCj(xi, R) + degCj(yi, R) ≥ 4δ1/3.

We defineMj+1 = Mj \ M ′

j and Cj+1 = Cj ∪ {c(ei) : ei ∈ M ′

j }.
We have to show that the two claims remain true for j + 1. The proof of Claim 1 for j + 1 is identical (replacing indices

1, 2 by j, j + 1). The proof of Claim 2 for j + 1 is also similar, but we will have longer exchange sequences. First we show
again that if ei = xiyi ∈ M ′

j , then all Cj-edges to Rmust be incident to the same endpoint (say xi). Assume otherwise that we
have two Cj-edges of different colors xiv1 and yiv2, where v1, v2 ∈ R.

We ‘‘trace back’’ both edges to aC1-edge. If c(xiv1) ∈ C1 (and similarly for yiv2), thenweare done. Otherwise, by definition,
there exists j1 < j such that there exists an edge xi1yi1 ∈ M ′

j1
with c(xiv1) = c(xi1yi1). We find a Cj1-edge xi1vi1 such that

vi1 is a free neighbor of xi1 in R. If c(xi1vi1) ∈ C1, then we are done. Otherwise, we trace this edge back further until we find
an edge xisyis ∈ M ′

js for which there is a free C1-neighbor vis of xis in R. We proceed similarly for yiv2, but we always select
Cjt -edges in unused colors to free vertices in R. At this point we can define a larger rainbowmatchingM∗ fromM by deleting
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the edges xiyi, xit yit for t ∈ {1, . . . , s} and adding the edges xiv1, xit vit for t ∈ {1. . . . , s} and similarly for yiv2. Note that
the above procedure succeeds if the number of available neighbors in R is at least 2(j + 1). Since the number of available
neighbors is at least 4δ1/3, the above works for j+1 as long as j+1 ≤ 2δ1/3. Let us denote again the set of these xi endpoints
inM ′

j by Xj and the set of other endpoints by Yj. Thus there is no Cj-edge between Yj and R, and for every xi ∈ Xj there are at
least 4δ1/3Cj-edges from xi to R.

Consider again an arbitrary v ∈ R and an edge vw with c(vw) ∈ Cj+1. First we show again that w ∉ R. As above we trace
vw back to a C1-edge. If c(vw) ∈ C1, then we are done. Otherwise, as above for t ∈ {1, . . . , s} we find edges xit yit ∈ M ′

jt and
xit vit with vit ∈ R such that

c(vw) = c(xi1yi1) ∈ Cj+1, c(xit vit ) = c(xit+1yit+1) ∈ Cjt for t ∈ {1, . . . , s − 1}

and

c(xisvis) ∈ C1.

Again we can define a larger rainbow matching M∗ from M by deleting the edges xit yit for t ∈ {1, . . . , s} and adding the
edges vw and xit vit for t ∈ {1. . . . , s}. Again this works for j + 1 when j + 1 ≤ 2δ1/3.

Thus w ∈ V (Mj). Finally we show again that w ∉ Yj. Assume otherwise that w = yi for some yi ∈ Yj. As above we can
trace back this vw edge to a C1-edge and thus we could increase our matching. Thus if w ∈ V (M ′

j ), then w ∈ Xj, and this
implies Claim 2 for j + 1 (assuming j + 1 ≤ 2δ1/3), since by using (7) we get

degCj+1
(v, V (Mj+1)) ≥ degCj(v, V (Mj)) + |M ′

j | − |M ′

j | > 2δ2/3.

Indeed, we get degCj(v, V (Mj)) + |M ′

j | from the Cj-edges and the edges using colors from M ′

j , and there is at most one
Cj+1-edge from v to each edge in M ′

j .
However, applying Claims 1 and 2 with l = ⌊2δ1/3

⌋ we get

degCl(v, V (Ml)) > 2δ2/3,

while

|Ml| ≤ |M1| − (l − 1)
δ2/3

2
< δ − 2δ2/3

− (2δ1/3
− 2)

δ2/3

2
= −δ2/3 < 0,

a contradiction. �

2.3. Proof of Theorem 4

Consider a coloring of
−→
Kn where each color class is a 1-regular directed graph, we may refer to it as a 1-factorization.

Subgraphs of 1-regular digraphs will be called linear digraphs.We start from a rainbow linear digraph G1 on n vertices with
the most edges that does not contain a directed cycle with length at most k. Let t be the number of edges in G1.

We will show that

t ≥ n − 6n
k−1
k .

ThusG1 is a collection of directed cycleswith length greater than k, directed paths, and isolated vertices.We consider isolated
vertices as paths of length 0. If the directed edge uv is a part of a cycle or a path in G1, then we call v the forward neighbor
of u. Thus every vertex other than an endpoint of a path has a forward neighbor.

Wewill define two nested sequences A1 ⊂ A2 ⊂ · · · and B1 ⊂ B2 ⊂ · · · of sets. Define A1 as the set of beginning vertices
of the paths and B1 as the set of end vertices of the paths. We clearly have

|A1| = |B1| = n − t.

Consider the edges with the head in A1 and having one of the n − t colors not used in G1, which we call new colors. Denote
the set of these edges by E1. We will designate some edges in E1 as forbidden edges. For a beginning vertex u ∈ A1 of a path
P in G1 the edge vu is forbidden if v is a vertex on the path P at a distance l from u, where 2 ≤ l ≤ k − 1. Indeed, these
edges may potentially create short rainbow cycles, which are not allowed. Thus altogether we have at most (k − 2)(n − t)
forbidden edges in E1. This implies that there is a new color (denoted by c1) that contains at most k− 2 forbidden edges. Let
f1 = k−2 (f2, f3, . . .will be defined later). Consider those edges in E1 that have color c1, and remove the at most f1 forbidden
edges. Denote the resulting edge set by Ec1

1 . We have the following claim.

Claim 3. If vu ∈ Ec1
1 with u ∈ A1, then v ∉ B1.

Indeed, otherwise we would get a rainbow linear subgraph with t + 1 edges that does not contain Cl with l ≤ k (since the
forbidden edges were removed), contradicting that t was maximum.

Nowwe are ready to define A2 and B2. Since we have a 1-factorization, every vertex is the ending point of an edge colored
with c1, and thus

|Ec1
1 | ≥ n − t − f1. (8)
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Consider the set {v : vu ∈ Ec1
1 , u ∈ A1}. By Claim 3 this is disjoint from B1. Define

B2 = B1 ∪ {v : vu ∈ Ec1
1 , u ∈ A1}.

By (8), we have |B2 \ B1| ≥ n − t − f1. The set A2 \ A1 is the forward neighbors of the vertices in B2 \ B1. These forward
neighbors all exist since the vertices in B2 \B1 cannot be ends of the paths (those vertices are in B1). Furthermore, clearly this
set is disjoint from A1, since we are moving away from the beginning vertices of the paths. Finally, define G2 as the union of
G1 and the edge set Ec1

1 . If G2 contains a rainbow cycle C of length at most k, then C contains exactly one edge colored with
c1 (since G1 has no rainbow cycle with length at most k), but then this edge is forbidden and was removed, a contradiction.

At this point we have the following four properties for i = 2 (with f1 = k − 2):
(1) Ai−1 ⊂ Ai and Bi−1 ⊂ Bi,
(2) n − t ≥ |Ai \ Ai−1| = |Bi \ Bi−1| ≥ n − t − fi−1,
(3) Gi does not contain a rainbow cycle with length at most k,
(4) for every u ∈ Ai there is a linear rainbow subdigraph of Gi with t edges such that the set of endpoints of the paths is

exactly B1 and one of the paths begins at u.

We continue in this fashion, maintaining these properties with a suitable fi−1. Assume that A1, . . . , Ai−1 and B1, . . . , Bi−1
are already defined for some i ≥ 3. Consider the edges with the ending point in Ai−1 in one of the n− t − (i− 2) new colors
(not used in Gi−1), denote the set of these edges by Ei−1. Again we will identify some edges in Ei−1 as forbidden edges. For a
vertex u ∈ Ai−1 the edge vu ∈ Ei−1 is forbidden if there is a rainbow path of length at most k − 1 from u to v in Gi−1, where
the last edge is from G1. Indeed, these edges may potentially create short rainbow cycles, which are not allowed.

For u ∈ Ai−1, a crude upper bound on the number of these rainbow paths of length atmost k−1 (and thus for the number
of vu ∈ Ei−1 forbidden edges) is (k − 2)ik−2. Indeed, for each of the edges before the last one we have at most i possibilities
(one from G1 and one for each of the i − 2 added colors), and for the last edge we have only one possibility, since it must be
in G1.

Thus altogether we have at most kik−1(n − t) forbidden edges in Ei−1. This implies that there is a new color (denoted by
ci−1) that contains at most

fi−1 =
kik−1(n − t)

n − t − (i − 2)
(9)

forbidden edges. Consider those edges in Ei−1 that have color ci−1 and remove these forbidden edges. Denote the resulting
edge set by Eci−1

i−1 . We have the following claim.

Claim 4. If vu ∈ Eci−1
i−1 with u ∈ Ai−1, then v ∉ B1.

Otherwise from Property 4 the edge vu would join two paths or create a cycle, yielding a rainbow linear subgraph with
t + 1 edges, contradicting that t was maximum. We also would have no rainbow l-cycle with l ≤ k, since otherwise this
l-cyclemust contain exactly one edge coloredwith ci−1, namely vu (sinceGi−1 does not contain a rainbow l-cyclewith l ≤ k),
but then this edge is forbidden and was removed, a contradiction.

Nowwe are ready to define Ai and Bi. Since we have a 1-factorization, every vertex is the ending point of an edge colored
with ci−1. Define

Bi \ Bi−1 = {v : vu ∈ Eci−1
i−1 , u ∈ Ai−1, v ∉ Bi−1}.

By Claim 4 we have Property 2 for |Bi \ Bi−1|, since

|Bi \ Bi−1| ≥ |Ai−1| − fi−1 − |Bi−1 \ B1| = |Ai−1| − fi−1 − |Ai−1 \ A1| = |A1| − fi−1 = n − t − fi−1.

The set Ai \ Ai−1 is the forward neighbors of the vertices in Bi \ Bi−1. These forward neighbors all exist since the vertices in
Bi \ Bi−1 cannot be ends of the paths (those vertices are in B1). Furthermore, this set is indeed disjoint from Ai−1 since in G1
the in-degree of every vertex is at most 1.

Finally, define Gi as the union of Gi−1 and those edges in Eci−1
i−1 that start in vertices in Bi \ Bi−1. Notice that Property 4 is

maintained from the definition of the vertices of Ai \ Ai−1, Bi \ Bi−1.
Property 3 above also holds for Gi. Otherwise, there is a rainbow l-cycle in Gi with l ≤ k. Then this l-cycle contains exactly

one edge colored with ci−1 (since Gi−1 does not contain a rainbow l-cycle with l ≤ k), but then this edge is forbidden and
was removed, a contradiction. Note again that from the construction the last edge is from G1 on the rainbow path of length
at most k − 1 connecting the two endpoints of this edge.

Next we claim that

|Ai \ Ai−1| = |Bi \ Bi−1| ≥
n − t
2

for i ≤


n − t
4k

 1
k−1

. (10)

In fact, for such i Property 2 yields

|Ai \ Ai−1| = |Bi \ Bi−1| ≥ n − t −
kik−1(n − t)

n−t
2

= n − t − 2kik−1
≥

n − t
2

.
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Thus we must have

n − t
2


n − t
4k

 1
k−1

≤ n,

and therefore, using k ≥ 2,

n − t ≤ 2(4k)
1
k n

k−1
k ≤ 6n

k−1
k .

From this we get that

t ≥ n − 6n
k−1
k ,

as desired. �
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