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Abstract Chudnovsky and Seymour proved that every connected claw-free graph
that contains a stable set of size 3 has chromatic number at most twice its clique num-
ber. We improve this for small clique size, showing that every claw-free graph with
clique number at most 3 is 4-choosable and every claw-free graph with clique number
at most 4 is 7-choosable. These bounds are tight.
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1 Introduction

We study the relation between the clique number ω(G) and the chromatic number
χ(G) for graphs G that are claw-free, i.e., that do not contain a star on four vertices
as an induced subgraph. In general, χ is not upper-bounded by any function of ω, but
the second author observed that for every claw-free graph G, the maximum degree
�(G) is bounded by a function of ω(G) [6]. It follows that for every claw-free graph
not only the chromatic number but also the list chromatic number is bounded by a
function of the clique number. The list chromatic number of a graph G, denoted by
ch(G), is the least k such that if every vertex is given a list of at least k colors, G can
be properly colored so that every vertex receives a color from its own list.
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It was conjectured by Gravier and Maffray [4] that every claw-free graph G satis-
fies ch(G) = χ(G). This conjecture generalizes the famous list coloring conjecture,
stating that χ and ch coincide for line-graphs of loopless multigraphs.

Chudnovsky and Seymour [2] proved that every connected claw-free graph G that
has a stable set of size 3 satisfies χ(G) ≤ 2ω(G). In fact, they strengthen this to
all induced subgraphs of such graphs, which they call tame graphs. They claim their
bound is best possible, however our results show this is not the case for ω = 3, 4. The
explanation is that the graphs G ′

n defined in Section 4 of [2] satisfy ω(G ′
n) = n + 1

for n ≥ 3 (instead of the claimed ω(G ′
n) = n). Thus χ(G ′

n) = 2ω(G ′
n) − 2 holds for

their example, showing that their result is at most 2 away from best possible. It is also
proved in [2] that if further technical conditions are added, then also ch(G) ≤ 2ω(G).

The upper bound 2ω on χ and ch in [2] is a consequence of a deep decomposition
theorem for connected claw-free graphs having a stable set of size 3. Unfortunately,
graphs with no stable set of size 3 have no nice decomposition, and their structure dic-
tates the general behavior of χ and ch with respect to ω in the whole class of claw-free
graphs, as we will see below. In fact, as Table 1 shows, the bound 2ω on χ fails for
ω ≥ 7.

Our aim here is to improve the bound of χ ≤ 2ω for small values of ω but for all
claw-free graphs (that is, without using any decomposition theorem) and to show that
the better bounds hold in the wider context of list coloring. For each integer k, let Ck

be the class of claw-free graphs that contain no clique of size k. Let

χ(Ck) = max{χ(G) | G ∈ Ck} and ch(Ck) = max{ch(G) | G ∈ Ck}.

Our purpose is to determine the exact values of χ(Ck) and ch(Ck) for small values of
k.

Ramsey [11] proved that for any two integers k ≥ 1 and � ≥ 1 there exists an integer
N such that every graph with N vertices contains either a clique of size k or a stable set
of size �. The smallest such integer N is denoted by R(k, �). Consequently, there exists
at least one graph on R(k, �)−1 vertices that contains no clique of size k and no stable
set of size �; any such graph is called a Ramsey graph. The exact value of R(k, �), and
the corresponding Ramsey graphs, are known only for small values of k and �. We
will be interested in R(k, 3), for the following reasons. Suppose that G is a graph with
no clique of size k and no stable set of size 3. Then G is claw-free. Moreover, since
G has no stable set of size 3, its chromatic number is at least |V (G)|/2. This holds in
particular when G is any Ramsey graph that corresponds to the pair (k, 3). It follows
that:

Table 1 Ramsey numbers and
bounds on χ(Ck )

k 3 4 5 6 7 8 9 10

R(k, 3) 6 9 14 18 23 28 36 40–43

χ(Ck ) ≥ 3 4 7 9 11 14 18 20

χ(Ck ) ≤ 3 5 7 10 13 16 19 23

ch(Ck )
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χ(Ck) ≥
⌈

R(k, 3) − 1

2

⌉
. (1)

Reed [12] conjectured that every graph G satisfies χ(G) ≤ ��(G)+ω(G)+1
2 �. King [9]

proved this conjecture for claw-free graphs. Note that if G is any claw-free graph with
no clique of size k, then the subgraph of G induced by the neighborhood of any vertex
x contains no clique of size k − 1 and no stable set of size 3, so the degree of every
vertex is at most R(k − 1, 3) − 1. Hence King’s result implies that:

χ(Ck) ≤
⌈

R(k − 1, 3) + k

2

⌉
. (2)

Inequalities (1) and (2) are illustrated in the table below, based on the known value of
R(k, 3) for small k (see [10]). It follows from (1) together with the upper bound on �

and [1,8] that there exist constants c and c′ such that ck2/ log k ≤ χ(Ck) ≤ ch(Ck) ≤
c′k2/ log k. If the conjecture in [4] is true, the last three lines in the table should be
equal.

It is easy to see that every graph G in C3 is the disjoint union of cycles of length at
least 4 and paths, and, consequently, G satisfies either χ(G) = ch(G) = 1 (if G has no
edge) or χ(G) = ch(G) = 2 (if G has an edge and no odd cycle) or χ(G) = ch(G) = 3
(if G contains an odd cycle). This establishes the equality ch(C3) = 3 in the first empty
box of the table. We shall now establish the exact value of χ(Ck) and ch(Ck) for the
next two values of k:

χ(C4) = ch(C4) = 4

and

χ(C5) = ch(C5) = 7.

The lower bounds for classes C4 and C5 in Table 1 are based on Ramsey graphs with
no stable set of size 3. However, χ(C4) ≥ 4 can also be demonstrated by a connected
claw-free graph with a stable set of size 3, for example by the graph that consists in
a 5-wheel with an additional vertex joined to two consecutive vertices on the 5-cycle.
We do not know whether χ(C5) ≥ 7 can be demonstrated by a tame graph or, on the
contrary, every tame graph G with ω(G) = 4 satisfies χ(G) ≤ 6. This would be best
possible since [2] exhibits tame graphs with χ(G) = 2ω(G) − 2; for example, the
graph called G ′

3 in [2, p. 569] is tame and satisfies ω(G ′
3) = 4 and χ(G ′

3) = 6.
The proofs of the upper bounds are given in Sects. 3 and 4. Section 2 provides

useful tools that will be used repeatedly in the proofs of the two main results.

2 List-Coloring

Given a list assignment L of colors to the vertices of a graph G, an L-coloring of G
is a proper coloring of G such that every vertex v has a color from L(v). If such a
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coloring exists, G is said to be L-colorable. A graph G is k-choosable if, for every
list assignment L to the vertices of G such that |L(v)| ≥ k for every vertex v, G is
L-colorable. The following result, due to Erdős et al. [3], can be seen as an analogue
of Brooks theorem for list-coloring.

Theorem 1 ([3]) Let G be a graph and, for each vertex v of G, let L(v) be a list of
allowed colors with |L(v)| ≥ dG(v). Then either G has an L-coloring, or every block
of G is a clique or an odd cycle.

A diamond is a graph obtained from a clique of size 4 by removing an edge. A
triangle is a clique of size 3.

Lemma 1 Let G be a diamond and L be a list assignment on V (G) such that |L(v)| ≥
2 for every vertex v ∈ V (G). Then G is L-colorable unless the three lists on the vertices
of some triangle of G have size 2 and are identical.

Proof Let v1, v3 be the vertices of degree 3 and v2, v4 be the vertices of degree 2.
Let Li = L(vi ) for each i ∈ {1, . . . , 4}. We assume that among v1, v2, v3 (resp.
v1, v3, v4), two vertices have non-identical lists.

If L1 �= L3 there are at least three sets {a, b} with a �= b and (a, b) ∈ L1 × L3.
Hence, we can choose a and b such that for i = 2, 4, either |Li | ≥ 3 or Li �= {a, b}.
Hence, we can color v1 and v3 with a and b respectively and extend this to an L-col-
oring of G. If L1 = L3, both L2 and L4 are distinct from L1 and L3, and G can also
be L-colored. 	


A vertex of degree k is called a k-vertex. A k-wheel is a graph with k + 1 vertices
v, v1, . . . , vk such that vertices v1, . . . , vk induce a cycle and they are all adjacent to
v. Vertex v is called the center of the k-wheel. Let N (x) denote the neighborhood of a
vertex x.

Lemma 2 Let G be a 4-wheel with center v and L be a list assignment on V (G) such
that |L(v)| ≥ 4, every neighbor w of v satisfies |L(w)| ≥ 2, and there is a neighbor
u of v with |L(u)| ≥ 3. Then G is L-colorable.

Proof Let v have neighbors v1, . . . , v4 with edges v1v2, v2v3, v3v4, v4v1, and let
u = v1. For each i ∈ {1, . . . , 4}, put Li = L(vi ).

First suppose that L2 ∩ L4 �= ∅. Assign v2 and v4 one color from L2 ∩ L4, then
greedily color v3, v and v1 (in this order) with colors from their lists. The size of
the list of each vertex is always one more than the number of distinct colors in its
neighborhood, so this gives an L-coloring of G.

Suppose now that L2 ∩ L4 = ∅. Since |L2 ∪ L4| = 4, one of L2, L4, say L2,
contains a color i that does not appear in L1. Color v2 with i , and then greedily color
v3, v4, v and v1 (in this order) with colors from their lists. 	

Lemma 3 Let G be a 5-wheel with center v and L be a list assignment on V (G) such
that |L(v)| ≥ 4, every neighbor w of v satisfies |L(w)| ≥ 2, and there are two adjacent
neighbors u, u′ of v such that |L(u)| ≥ 3 and |L(u′)| ≥ 3. Then G is L-colorable.
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Proof Let v have neighbors v1, . . . , v5 with edges v1v2, v2v3, v3v4, v4v5, v5v1, and
let u = v1 and u′ = v5. For each i ∈ {1, . . . , 5} put Li = L(vi ).

Assume first that there is a color a ∈ L4\L5. Color v4 with a, and then greedily
color v3, v2, v, v1 and v5 (in this order) with colors from their lists. This yields a
proper coloring of G. Hence, we can assume in the following that L4 ⊂ L5 and (by
symmetry) L2 ⊂ L1.

Suppose that L2 ∩ L4 �= ∅. Pick any a ∈ L2 ∩ L4. By the preceding remark we have
a ∈ L5 ∩ L1. Take b ∈ L2\{a} and c ∈ L3\{a}. If b �= c, color vertices v1, v4 with a,
vertices v2 and v3 with b and c respectively, and then greedily color v and v5 (in this
order) with colors from their lists. If b = c, we may assume that L2 = L3 = {a, b}.
By symmetry, we also have L4 = {a, b} and the previous paragraph implies that L1
and L5 both contain a and b. In this case, color vertices v1, v3 with a, vertices v2, v4
with b, and greedily extend this coloring to v5 and v (in this order).

We may now assume that L2∩L4 = ∅. Without loss of generality, L4 = {a, b} ⊂ L5
and L2 = {c, d} ⊂ L1. By symmetry, we may assume that L3 contains a color distinct
from a, b and c. Color v3 with this color and v2 with c. Remove c from L(v) and L1,
and remove the color of v3 from L(v). What remains to color is the diamond induced
by v1, v4, v5, v with lists of size 2, except for v5 which has a list of size 3. By Lemma 1,
the precoloring of G can be extended to the diamond, and thus G is L-colorable. 	


3 {claw, K4}-Free Graphs

Recall that the main result of [2] implies that every connected claw-free graph with a
stable set of size 3 and no K4 is 6-colorable. Our main result is the following.

Theorem 2 Let G be a {claw, K4}-free graph. Then G is 4-choosable.

Proof We prove the theorem by induction on the number of vertices of G. For each
vertex v, let L(v) be a list of 4 colors allowed for v. We may assume that G is connected,
for otherwise we can handle each component of G separately. If a vertex x has degree
at most 3, then, by the induction hypothesis, G\x has an L-coloring, and this can be
extended to x since some color in L(x) is not used in N (x). Now let us assume that
every vertex has degree at least 4. Suppose that all vertices of G have degree at most 4.
If G is not L-colorable, then, by Theorem 1, every block of G is either a clique (of size
at most 3, since G is K4-free) or an odd cycle; but then, considering a terminal block,
we see that G has a vertex of degree at most 2, a contradiction. So G is L-colorable.
Now assume that G has a vertex of degree at least 5. It follows from a classical result
in Ramsey theory that every vertex has degree at most 5 (for if a vertex v has degree at
least 6, then its neighborhood contains either a clique of size 3 or a stable set of size 3,
and then adding v we find a K4 or a claw). Moreover, if a vertex has degree 5, then its
neighborhood induces a 5-cycle; and, by the same argument, if the neighborhood of a
vertex contains a 4-cycle, then this vertex does not have a fifth neighbor.

We claim that:

Either G has a 5-vertex whose neighborhood contains two adjacent

4-vertices, or G is one of the graphs G9, G10 or G12 depicted in Fig. 1.
(3)
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Fig. 1 The graphs G9 (left), G10 (center), and G12 (right)

Proof We first assume that all vertices in G have degree 5. Let v1 be a vertex, and
let v2, v3, v5, v7, v6 be the 5-cycle induced by its neighborhood. Vertex v2 has two
additional neighbors v4, v8 not in {v1, v2, v3, v5, v6, v7}, and since N (v2) induces a
5-cycle we may assume by symmetry that this 5-cycle is v1, v3, v4, v8, v6. Vertex v3
has a fifth neighbor distinct from all vi ’s, i ≤ 8, say v9, and since its neighborhood is
a 5-cycle, v9 is adjacent to v4 and v5. Similarly, v6 has a neighbor v12 (distinct from
all vertices vi with i ≤ 9) that is adjacent to v7 and v8. Now v4 has a neighbor v10
(distinct from all vertices vi with i ≤ 9 or i = 12) that is adjacent to v8 and v9. Since
the neighborhood of v8 is a 5-cycle, the vertex v10 is also adjacent to v12. At this point
the neighborhood of each vertex vi with i = 5, 7, 9, 10, 12 induces a path on four
vertices. It follows that these five vertices have a common neighbor, say v11, and G is
the icosahedron G12.

Now suppose that G has 5-vertices and 4-vertices. So some 5-vertex v is
adjacent to some 4-vertex. Let v1, . . . , v5 be the neighbors of v, with edges
v1v2, v2v3, v3v4, v4v5, v5v1.

First suppose that v1 is the only 4-vertex adjacent to v. Since v2 is a 5-vertex, it
has two neighbors u, w not in {v, v1, v3}, and N (v2) induces a 5-cycle, so we may
assume that uv1, uw,wv3 are edges (and wv1, uv3 are not edges). Likewise, v3 has a
neighbor x not in {v, v2, v4, w}, with edges wx, xv4 (and xv2 and wv4 are not edges).
Note that the adjacency relations imply u �= x . Likewise v4 has a neighbor y not
in {v, v3, v5, x}, with edges xy, yv5, and non-edges yv3, xv5, and w �= y. Since v1
is a 4-vertex, we have N (v1) = {v, v2, v5, u}. Consequently, since v5 is a 5-vertex,
and N (v5) must induce a 5-cycle, it must be that N (v5) = {v1, v, v4, y, u} and there
are edges uv5, uy. Now u is a 5-vertex, so we must have edge wy, and w and y are
5-vertices. Since N (x) contains a 4-cycle, the vertex x cannot have a fifth neighbor.
It follows that, since G is connected, there is no other vertex in G. So G is the graph
G10.

Now suppose that v has two neighbors that are 4-vertices and are not adjacent.
Say v2 and v4 are 4-vertices, while v1, v3, v5 are 5-vertices. By the same argument as
above, v3 has two neighbors u, w not in {v, v2, v4}, with edges uv2, uw,wv4 (and uv4
and wv2 are not edges). Since v1 is a 5-vertex, v2 must have two neighbors in N (v1),
so there is a vertex x such that N (v1) = {v, v2, u, x, v5}, where ux, xv5 are edges
and uv5, xv2 are not edges. Likewise, considering N (v5), it follows that wv5, wx are
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edges. Now N (x) contains a 4-cycle, so x cannot have a fifth neighbor, so G has no
other vertex and is a G9. Thus (3) holds.

By (3), we can break the proof into the following four cases. 	

Case 1: G has a 5-vertex v whose neighborhood contains two adjacent 4-vertices. Let
v1, . . . , v5 be the neighbors of v, with edges v1v2, v2v3, v3v4, v4v5, v5v1. Let v1 and
v5 be 4-vertices. By the induction hypothesis, the graph G\{v, v1, . . . , v5} is 4-choo-
sable. Pick an L-coloring γ of this graph. For each i ∈ {1, . . . , 5}, let Ni be the set
of neighbors of vi in V (G)\{v, v1, . . . , v5}, and let L ′

i be the reduced list of vi , i.e.,
L ′

i = L(vi )\γ (Ni ). Thus we have |L ′
i | ≥ 2 for each i ∈ {1, . . . , 5} and |L ′

j | ≥ 3
for j ∈ {1, 5} because |N j | = 1. Note that {v, v1, . . . , v5} induces a 5-wheel. So this
subgraph and the reduced lists satisfy the hypothesis of Lemma 3, and consequently
we can extend γ to an L-coloring of G using for each vertex vi a color from L ′

i and
for v a color from L(v).

Case 2: G is G9. For each i ∈ {1, . . . , 9}, let vi be the vertex labeled i on Fig. 1 (left),
and let Li = L(vi ). If all the lists are equal, then since G9 is 4-colorable, it is also
L-colorable. So we can assume that there are i, j such that Li �= L j . Moreover, since
the set of edges between vertices of degree 4 and vertices of degree 5 forms a spanning
subgraph of G, we may assume that vi and v j have degree 4 and 5, respectively; and
since all edges between vertices of degree 4 and 5 play the same role we may assume
that L1 �= L5. We assign a color a ∈ L1\L5 to v1 and then greedily color v2 and
v3 with colors from their lists. For each i ∈ {4, . . . , 9}, let L ′

i be the list obtained
from Li by removing the colors of the neighbors of vi in {v1, v2, v3}. Observe that
|L ′

7| ≥ 2, |L ′
9| ≥ 2, |L ′

6| ≥ 3, |L ′
8| ≥ 3 and |L ′

4| ≥ 4. By the choice of color a, we
have |L ′

5| ≥ 3. The graph induced by {vi | 4 ≤ i ≤ 9} is a 5-wheel centered at v4, so
Lemma 3 implies that the precoloring of {v1, v2, v3} can be extended to an L-coloring
of G.

Case 3: G is G10. For each i ∈ {1, . . . , 10}, let vi be the vertex labeled i on Fig. 1
(center), and let Li = L(vi ). First suppose that L1 �= L2. We color v1 with any
a ∈ L1\L2 and then greedily color v9, v3, v5 and v7 (in this order) with colors from
their lists. For each even i, let L ′

i be the list obtained from Li by removing the colors
of the neighbors of vi in the set Vo = {v j , j odd}. Observe that |L ′

i | ≥ 2 for each
i ∈ {4, 6, 8}, |L ′

10| ≥ 4, and |L ′
2| ≥ 3 since a �∈ L2. The graph induced by the set

{v j , j even} is a 4-wheel centered at v10, so Lemma 2 implies that the precoloring of
Vo can be extended to an L-coloring of G10.

Now we may assume that L1 = L2 and, similarly Li = Li+1 for all i ≤ 7. It
follows that the eight sets L1, . . . , L8 are equal. Let L1 = · · · = L8 = {0, 1, 2, 3}.
For every i ≤ 8, assign color i (mod 4) to vi , and then greedily color v9 and v10 with
colors from their lists (each of them has only two distinct colors in its neighborhood).
This yields an L-coloring of G.

Case 4: G is G12. For each i ∈ {1, . . . , 12}, let vi be the vertex labeled i on Fig. 1
(right), and let Li = L(vi ). Note that every edge of G is in exactly two triangles and
that G is vertex-, edge-, and triangle-transitive, i.e., for any two vertices (resp. edges,
triangles) α and β, there is an automorphism of G that maps α to β. Moreover, G is
planar and thus 4-colorable. We claim that we may assume that:
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If {vi , v j , vk} is any triangle in G, then Li ⊆ L j ∪ Lk . (4)

Proof By transitivity, we may assume that i = 1 and { j, k} = {2, 3}. Suppose
that there is a color a in L1\(L2 ∪ L3). We assign a to v1 and then greedily color
v5, v6, v7, v11, v12 (in this order) with colors from their lists. For each uncolored ver-
tex vi (i ∈ {2, 3, 4, 8, 9, 10}), let L ′

i be the list obtained from Li by removing the colors
of the neighbors of vi in {v1, v5, v6, v7, v11, v12}. The graph induced by the uncolored
vertices is a 5-wheel centered at v4. Observe that |L ′

i | ≥ 2 for each i ∈ {8, 9, 10},
|L ′

4| ≥ 4, and |L ′
2| ≥ 3 and |L ′

3| ≥ 3 because a �∈ L2 ∪ L3. By Lemma 3, the
precoloring can be extended to an L-coloring of G12. Therefore we may assume that
(4) holds.

Let the weight of an edge viv j of G be the cardinality of Li ∩ L j . Hence the weight
of any edge is at most 4. Suppose that there is an edge viv j of weight 4, i.e., Li = L j .
If all edges have weight 4, then all lists are equal, and since G12 is 4-colorable, it is
also L-colorable. So suppose that some other edge has weight at most 3. Then there
exists a triangle viv jvk such that viv j has weight 4 and vivk has weight at most 3, so
there is a color a ∈ Lk\(Li ∪ L j ); but then {vk, vi , v j } violates (4).

We may now assume that every edge has weight at most 3. Suppose that there
is an edge, say v1v2, of weight at most 2. If the weight of v1v2 is 0 or 1, then, by
(4), L3 contains the symmetric difference of L1 and L2, which has size at least 6, a
contradiction. If the weight of v1v2 is 2, let L1 = {1, 2, 3, 4} and L2 = {1, 2, 5, 6}.
By (4), we must have L3 = L6 = {3, 4, 5, 6}, and then, by (4) again, we must have
L5 = L7 = {1, 2, 5, 6}, a contradiction.

Therefore all edges have weight 3. We may assume that L1 = {1, 2, 3, 4} and
L2 = {1, 2, 3, 5}. Then:

Every vertex vi of G satisfies Li ⊂ {1, 2, 3, 4, 5}. (5)

We prove this by induction on i. For i = 2, this is our assumption. If i ≥ 3, it is easy
to see that there exists a triangle {vi , v j , vk} with k < j < i . If Li contains some color
a �∈ {1, 2, 3, 4, 5}, then by (4) at least one of L j , Lk contains a, a contradiction. Thus
(5) holds.

By (5), the intersection of any three lists has size at least 2. Hence L1, L8 and
L11 have a color a in common, and L2, L9 and L12 have a color b in common with
b �= a. Color vertices v1, v8, v11 with a, vertices v2, v9, v12 with b, and remove a and
b from the lists of the remaining vertices. The remaining vertices induce a path and
their reduced lists all have size at least 2, so the precoloring can be extended to an
L-coloring of G12. This completes the proof of the theorem. 	


4 {claw, K5}-Free Graphs

In this section, all indices are considered modulo 8. Let W0 be the graph with eight
vertices w0, w1, . . . , w7 and edges wiwi+1 and wiwi+2 for each i. (So W0 is the
complement of the Wagner graph). Let W1 be the graph W0 plus one edge w�w�+4
(for some � ∈ {0, . . . , 7}), and let W2 be the graph W0 plus two edges w�w�+4 and
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Fig. 2 Graphs W0 (left), W1 (center), and W2 (right)

w�+1w�+5 (for some � ∈ {0, . . . , 7}). These graphs are depicted in Fig. 2. Green-
wood and Gleason [5] and Kéry [7] proved that R(4, 3) = 9 and determined the
corresponding Ramsey graphs. More precisely:

Theorem 3 ([5,7]) Every graph with 9 vertices contains a clique of size 4 or a stable
set of size 3. Moreover if a graph on 8 vertices contains no clique of size 4 and no
stable set of size 3, then it is isomorphic to W0, W1 or W2.

Now we can prove:

Theorem 4 Let G be a {claw, K5}-free graph. Then G is 7-choosable.

Proof We prove the theorem by induction on the number of vertices of G. For each
vertex v of G, let L(v) be a list of 7 colors allowed for v. We may assume that G is
connected, for otherwise we can handle each component of G separately.

If G contains a vertex v of degree at least 9 then by Theorem 3, the neighborhood
of v contains a stable set of size 3 (and thus G contains a claw) or a clique of size 4
(in which case G has a clique of size 5). In both cases we obtain a contradiction, since
G is claw-free and has no clique of size 5. Hence, every vertex of G has degree at
most 8.

If some vertex x has degree at most 6, then, by the induction hypothesis, G\x has an
L-coloring, and this can be extended to x since some color in L(x) is not used in N (x).
Now let us assume that every vertex has degree at least 7. Suppose that all vertices of
G have degree at most 7. If G is not L-colorable, then, by Theorem 1, every block of G
is a clique (of size at most 4, since G is K5-free) or an odd cycle; but then, considering
a terminal block, we see that G has a vertex of degree at most 3, a contradiction; so G
is L-colorable.

Now assume that G has a vertex x of degree 8. Again, since G is claw-free and
has no clique of size 5, the graph induced by the neighborhood of x has no stable
set of size 3 and no clique of size 4. It follows by Theorem 3 that the neighborhood
of x induces one of W0, W1 or W2. We call W the neighborhood of x, with verti-
ces w0, . . . , w7 and edges as at the beginning of this section (where, for some fixed
� ∈ {0, . . . , 7}, w�w�+4 may be an edge and if it is an edge then w�+1w�+5 may also
be an edge).

Let S = {x, w0, . . . , w7}. By the induction hypothesis, the graph G\S is 7-choo-
sable. Consider an L-coloring of this graph, and for each i ∈ {0, . . . , 7} let Li be the
list obtained from L(wi ) by removing the colors of the neighbors of wi (outside S).
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Since every vertex has degree at most 8, we have |Li | ≥ 4 for each i ∈ {0, . . . , 7}.
Moreover, if w jw j+4 is an edge, then |L j | ≥ 5. In order to prove the theorem, it is
now sufficient to properly color each wi with a color from Li and x with a color from
L(x). We call good pair any pair {wi , wi+3} such that Li ∩ Li+3 �= ∅.

First suppose that there is no good pair. If the lists of the vertices of S have a set of
distinct representatives, then we are done (assign to each vertex the color that is the
distinct representative of its list). In the opposite case, by Hall’s theorem, there exists
a set Z ⊆ S such that the union U of all lists of vertices z ∈ Z satisfies |U | < |Z |.
Since each such list has size at least 4, we have |U | ≥ 4, so |Z | ≥ 5. If Z contains
x , then |U | ≥ 7, so |Z | ≥ 8. In any case Z must contain at least five vertices from
S\x . This implies that Z contains two vertices wi , wi+3 for some i ∈ {0, . . . , 7}. Since
there is no good pair, Li and Li+3 are disjoint, so |U | ≥ 8, which means that |U | = 8
and Z = S. Moreover U is partitioned into two sets U1 and U2 of size 4 such that
L1 = U1, L4 = U2 (because {w1, w4} is not a good pair), and similarly L7 = U1,
etc. Hence L1 = L3 = L5 = L7 = U1 and L0 = L2 = L4 = L6 = U2. In particular,
all these lists have size 4, so each pair wiwi+4 is a non-edge (W is isomorphic to
W0). Color vertices w1, w5 with some color a ∈ U1, vertices w3, w7 with some color
b ∈ U1\a, vertices w2, w6 with some color c ∈ U2 and vertices w4, w0 with some
color d ∈ U2\c. Finally, assign to x any color from L(x)\{a, b, c, d}. This yields an
L-coloring of G.

We may now assume that there is a good pair, say {w0, w5}. Let S′ = S\{w0, w5}.
Pick a color a ∈ L0 ∩ L5, set L ′

i = Li\{a} for each i ∈ {1, 2, 3, 4, 6, 7} and L ′
x =

L(x)\{a}. We have |L ′
i | ≥ 3 for each i ∈ {1, 2, 3, 4, 6, 7} and |L ′

x | ≥ 6. Moreover,
if wiwi+4 is an edge, then |L ′

i | ≥ 4. Our goal is to color every vertex v of S′ with a
color from the corresponding set L ′

v . We call nice pair any pair {wi , wi+3} of vertices
of S′\{x} such that L ′

i ∩ L ′
i+3 �= ∅.

Suppose that there is no nice pair. If the lists of the vertices of S′ have a set of
distinct representatives then we are done. Otherwise, by Hall’s theorem, there exists
a set Z ⊆ S′ such that the union U of all lists of vertices z ∈ Z satisfies |U | < |Z |.
Since each such list has size at least 3, we have |U | ≥ 3, so |Z | ≥ 4. If x ∈ Z , then
|U | ≥ 6 and |Z | ≥ 7. In any case, Z contains at least four vertices of S′\x . This
implies that Z contains wi , wi+3 for some i ∈ {1, 3, 7}. Since there is no nice pair, Li

and Li+3 are disjoint, so |U | ≥ 6, which means that |U | = 6 and Z = S′. Moreover,
U can be partitioned into two sets U1 and U2 of size 3 such that L ′

1 = L ′
3 = L ′

7 = U1,
and L ′

2 = L ′
4 = L ′

6 = U2. In particular, all these lists have size 3, so the pairs w2w6
and w3w7 are non-edges. Color w2, w6 with a color b ∈ U2 and w3, w7 with a color
c ∈ U1. This coloring can be extended greedily to w1, w4, and x , which yields an
L-coloring of G.

We may now assume that there is a nice pair P = {wi , wi+3}. Up to symme-
try, P is either {v2, v7}, {v1, v4} or {v1, v6}. In any case, color wi and wi+3 with a
color b ∈ L ′

i ∩ L ′
i+3, and remove b from the lists of the neighbors of wi and wi+3. Let

S′′ = S′\P . If the four vertices of S′′ can be colored with colors from their reduced lists
(which have size at least 2), then so does x (because its reduced list has size at least 5).
If P = {v1, v4} or {v2, v7}, then the graph induced by S′′ is a subgraph of the 4-cycle,
so it is 2-choosable. In the remaining case, P = {v1, v6}, so S′′ = {w2, w3, w4, w7},
which induces a triangle plus vertex w7 that has a most one neighbor in the triangle.

123



Graphs and Combinatorics

This subgraph is not 2-choosable if and only if w2, w3, w4 have the same reduced
list of size 2. This occurs only if both a and b were removed from their original lists,
thus we have b ∈ L(w4), which implies that {w1, w4} was also a nice pair, a case
that has already been settled. Hence, G is L-colorable. This completes the proof of the
theorem. 	


5 Conclusion

The proofs of Theorems 2 and 4 are based on the fact that for small values of k, Ramsey
graphs corresponding to R(k, 3) are known and the number of such graphs is small.
It is unlikely that our techniques will be usable for larger values of k. Still it would
be interesting to establish that χ(C6) = ch(C6) and to know the exact value of this
number. As Table 1 shows, we only know that 9 ≤ χ(C6) ≤ 10. Since R(5, 3) = 14,
it follows that every graph of C6 has maximum degree at most 13, and we can easily
derive from Theorem 1 that ch(C6) ≤ 13.
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