
Research Article
Noncrossing Monochromatic Subtrees and
Staircases in 0-1 Matrices

Siyuan Cai,1 Gillian Grindstaff,2 András Gyárfás,3 and Warren Shull4

1 Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208-2730, USA
2Department of Mathematics, Pomona College, 640 North College Avenue, Claremont, CA 91711, USA
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The following question is asked by the senior author (Gyárfás (2011)). What is the order of the largest monochromatic noncrossing
subtree (caterpillar) that exists in every 2-coloring of the edges of a simple geometric 𝐾

𝑛,𝑛
? We solve one particular problem asked

by Gyárfás (2011): separate the Ramsey number of noncrossing trees from the Ramsey number of noncrossing double stars. We
also reformulate the question as a Ramsey-type problem for 0-1 matrices and pose the following conjecture. Every 𝑛 × 𝑛 0-1 matrix
contains 𝑛− 1 zeros or 𝑛− 1 ones, forming a staircase: a sequence which goes right in rows and down in columns, possibly skipping
elements, but not at turning points. We prove this conjecture in some special cases and put forward some related problems as well.

1. Introduction

A geometric graph (see [1]) is a graph whose vertices are in
the plane in general position and whose edges are straight-
line segments joining the vertices. A subgraph of a geometric
graph is noncrossing if no two edges have a common interior
point. A geometric bipartite graph 𝐺(𝑛, 𝑛) is a geometric
graph, whose 2𝑛 vertices are in two disjoint 𝑛-element sets
𝐴 and 𝐵, and its edges are some segments 𝑎𝑏 with 𝑎 ∈

𝐴 and 𝑏 ∈ 𝐵. The following representation, apparently
studied first in [2], seems to be a more natural subclass
of balanced geometric bipartite graphs 𝐺(𝑛, 𝑛) (in fact a
standard way of drawing bipartite graphs). The partite sets
of 𝐺 in 𝑅

2 are 𝐴 = {𝑎
1

= (1, 0), 𝑎
2

= (2, 0), . . . , 𝑎
𝑛

=

(𝑛, 0)} and 𝐵 = {𝑏
1

= (1, 1), 𝑏
2

= (2, 1), . . . , 𝑏
𝑛

=

(𝑛, 1)} and the edge 𝑎
𝑖
𝑏
𝑗
is the line segment joining 𝑎

𝑖
∈

𝐴 and 𝑏
𝑗

∈ 𝐵. This representation is called a simple
𝐺(𝑛, 𝑛).

Analogues of Turán and Ramsey theories have been con-
sidered for geometric graphs, see; [1, 3–9] and its references.
Our starting point is the following Ramsey-type problem for
simple 𝐺(𝑛, 𝑛)-s.

Problem 1 (see [5]). Find 𝑓(𝑛), the order of the largest
monochromatic noncrossing subtree that exists in every 2-
coloring of the edges of a simple geometric 𝐾

𝑛,𝑛
. The lower

bound is 4𝑛/5 and the upper bound is 𝑛 for even and 𝑛+1 for
odd 𝑛.

Noncrossing subgraphs of simple 𝐺(𝑛, 𝑛)-s can be easily
characterized.

Proposition 2 (see [10]). Every connected component of a
noncrossing subgraph of simple 𝐺(𝑛, 𝑛) is a caterpillar (a tree
in which the vertices of degree larger than one form a path).

In fact, the lower bound 4𝑛/5 ≤ 𝑓(𝑛) is proved in a
stronger form.

Theorem 3 (see [5]). In every 2-coloring of the simple 𝐾
𝑛,𝑛

there is a noncrossing monochromatic double star with at least
4𝑛/5 vertices. This bound is asymptotically best possible.

Since Theorem 3 is asymptotically sharp, it was asked in
[5] whether one can separate 𝑓(𝑛) and 4𝑛/5. Here, we answer
this question positively, although with a small margin.
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Theorem 4. Consider (4/5 + 𝜀)𝑛 ≤ 𝑓(𝑛), where 𝜀 = 1/880.

We give a new construction showing that the upper
bound in Problem 1 can be decreased by one when 𝑛 is odd.

Proposition 5. Consider 𝑓(𝑛) ≤ 𝑛 for 𝑛 ≥ 2.

Theorem 3 and Proposition 5 show that the noncrossing
condition is important because it is easy to see that for
odd 𝑛 there is a monochromatic tree of order 𝑛 + 1 in
every 2-coloring of the edges of 𝐾

𝑛,𝑛
. We suspect that the

bound of Proposition 5 is best possible and risk the following
conjecture.

Conjecture 6. For every 𝑛 ≥ 2, 𝑓(𝑛) = 𝑛.

We also reformulate Conjecture 6 (and Problem 1) into
a more attractive (and perhaps more inspiring) form. Let
𝐴 be an 𝑛 × 𝑛 0-1 matrix. A 0-staircase is a sequence of
zeroes in 𝐴 which goes right in rows and down in columns,
possibly skipping elements, but zero at each turning point. A
1-staircase is defined similarly on ones of 𝐴. A homogeneous
staircase in 𝐴 is either a 0- or a 1-staircase. The length
of a homogeneous staircase is the number of elements in
it. Let 𝑠𝑡(𝐴) be the maximum among the lengths of the
homogeneous staircases of 𝐴. Finally, set

𝑠𝑡 (𝑛) = min {𝑠𝑡 (𝐴) : 𝐴 is an 𝑛 × 𝑛 0-1 matrix} . (1)

An example with 𝑛 = 7 is the matrix 𝐴 below where a 1-
staircase of length 6 is shown:

1 0 1 0 0 1 1

0 1 0 1 1 1 0

1 0 1 0 1 0 1

0 1 0 1 1 0 0

1 0 1 0 1 1 0

0 1 0 1 1 0 0

1 0 1 1 0 0 1

(2)

One can easily compute 𝑠𝑡(𝐴) for any 𝑛 × 𝑛 matrix with
the following procedure. We define an 𝑛 × 𝑛 matrix 𝐵 =

[𝑏
𝑖,𝑗
], the staircase matrix of 𝐴, where 𝑏

𝑖,𝑗
is the length of

the longest homogeneous staircase of 𝐴 ending in position
(𝑖, 𝑗). The matrix 𝐵 can be easily computed recursively from
𝐴, following a linear order of the elements of 𝐵, such that 𝑏

𝑖,𝑗

comes after all elements of 𝐿(𝑖, 𝑗) = {𝑏
𝑖,𝑙

: 1 ≤ 𝑙 < 𝑗, 𝑎
𝑖,𝑙

= 𝑎
𝑖,𝑗
}

and also after all elements of 𝑈(𝑖, 𝑗) = {𝑏
𝑘,𝑗

: 1 ≤ 𝑘 < 𝑖, 𝑎
𝑘,𝑗

=

𝑎
𝑖,𝑗
}. Note that 𝐿(𝑖, 1) = 𝑈(1, 𝑗) = 0 for all 𝑖 and 𝑗. A natural

linear order with this property can be defined by taking the
first row left to right then the first columndownwards starting
at 𝑏
2,1

and repeating this for the remaining (𝑛 − 1) × (𝑛 − 1)

matrix. Under this linear ordering, we define inductively

𝑏
𝑖,𝑗

= 1 +max {max 𝐿 (𝑖, 𝑗) ,max𝑈(𝑖, 𝑗)} , (3)

where the maximum of the empty set is defined to be zero;
for example,

𝑏
1,1

= 1 +max {max 𝐿 (1, 1) ,max𝑈 (1, 1)}

= 1 +max {max 0,max 0} = 1 +max {0, 0} = 1.

(4)

With the example matrix 𝐴, we get the following staircase
matrix 𝐵, showing that 𝑠𝑡(𝐴) = 8 and providing an easy way
to trace back the 0-staircase of length 8 in 𝐴 ending at 𝑎

6,7
.

The 0-values are shown in bold:

1 1 2 2 3 3 4

1 1 2 2 3 4 3
2 2 3 3 4 4 5

2 2 3 3 5 5 6
3 3 4 4 6 7 7
3 3 4 4 7 6 8
4 4 5 6 5 7 7

(5)

The following easy but important observation shows that
the Ramsey-type problems for noncrossing subtrees in simple
geometric𝐾

𝑛,𝑛
and for staircases in 𝑛 × 𝑛 0-1 matrices are the

same problems in different formulations.

Theorem 7. Consider 𝑠𝑡(𝑛) = 𝑓(𝑛) − 1.

Proof. A 2-coloring of the edges of a simple geometric 𝐾
𝑛,𝑛

can be considered as an 𝑛 × 𝑛 0-1 matrix where the element
in row 𝑖 and column 𝑗 is zero or one according to the
color of the edge 𝑎

𝑖
𝑏
𝑗
. By Proposition 2, every noncrossing

monochromatic subtree is a caterpillar. The edges of the
base path of the caterpillar correspond to turning points
of a homogeneous staircase and the pending edges of the
caterpillar correspond to elements in the same row or column
between consecutive turning points (except at the beginning
and the end). Thus, a monochromatic noncrossing subtree
on 𝑚 vertices (𝑚 − 1 edges) corresponds to a homogeneous
staircase of length𝑚−1.The correspondenceworks backward
as well, proving the theorem.

Theorem 7 allows to put forward Conjecture 6 in a more
challenging form.

Conjecture 8. Every 𝑛 × 𝑛 0-1 matrix has a homogeneous
staircase of size 𝑛 − 1.

Another advantage of the staircase formulation is that it
gives “a proof without words” to Proposition 5. Indeed, let 𝐴
be the 𝑛 × 𝑛 matrix with 𝑎

𝑖,𝑗
= 1 if 𝑖 + 𝑗 ≤ 𝑛 or 𝑖 = 𝑗 = 𝑛 and

zero otherwise (see below for 𝑛 = 7):

1 1 1 1 1 1 0

1 1 1 1 1 0 0

1 1 1 1 0 0 0

1 1 1 0 0 0 0

1 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 1

(6)

One can immediately see that the longest homogeneous
staircase of 𝐴 has 𝑛 − 1 elements, proving Proposition 5.
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We have the following propositions supporting
Conjecture 8 for various special matrices.

Proposition 9. Assume 𝑎
1,1

= 𝑎
𝑛,𝑛

= 0 for the 𝑛 × 𝑛 matrix
𝐴 = [𝑎

𝑖,𝑗
] and there is no 0-staircase from 𝑎

1,1
to 𝑎
𝑛,𝑛
. Then

there is a 1-staircase of size at least 𝑛 − 1.

The next proposition settles Conjecture 8 for four of the
16 corner configurations of the lower left 2 × 2 submatrix of
𝐴.

Proposition 10. Suppose that the 𝑛 × 𝑛 matrix 𝐴 = [𝑎
𝑖,𝑗
]

satisfies 𝑎
𝑛,1

̸= 𝑎
𝑛,2

and 𝑎
𝑛,1

̸= 𝑎
𝑛−1,1

. Then 𝑠𝑡(𝐴) ≥ 𝑛 − 1.

The next special case is when there are two consecutive
columns whose binary sum is the all 1 vector (switching
columns).

Proposition 11. Suppose that 𝐴 = [𝑎
𝑖,𝑗
] is an 𝑛 × 𝑛 0-1 matrix

with switching columns; that is, there exists 1 ≤ 𝑗 < 𝑛 such that
for every 1 ≤ 𝑘 ≤ 𝑛, one has 𝑎

𝑘,𝑗
̸= 𝑎
𝑘,𝑗+1

. Then 𝑠𝑡(𝐴) ≥ 𝑛 − 1.

Finally, we prove Conjecture 8 for 𝑛 = 8 and note that its
proof method still works for 𝑛 = 9 but would bemuch longer.
On the other hand, the cases where 𝑛 < 8 are obvious and left
to the reader.

Proposition 12. Every 8 × 8 0-1 matrix has a monochromatic
staircase of length at least 7.

These propositions will be proved in Section 2, and
Theorem 4 is proved in Section 3.

2. Proofs of Special Cases of Conjecture 6

Proof of Proposition 9. First, observe that 𝑎
1,𝑛

= 𝑎
𝑛,1

= 1,
because otherwise there exists a 0-staircase connecting 𝑎

1,1

to 𝑎
𝑛,𝑛
. Suppose there are 𝑎, 𝑏, 𝑐, 𝑑 zeroes in the first row,

first column, last row, and last column, respectively. A zero
from the first row and a zero from the last row cannot share
the same column, because otherwise a 0-staircase connecting
𝑎
1,1

and 𝑎
𝑛,𝑛

would be present. Therefore, 𝑎 + 𝑐 ≤ 𝑛; similarly
𝑏 + 𝑑 ≤ 𝑛. Since 𝑎

1,𝑛
= 1, the ones in the first row and in

the last column form a 1-staircase of length (𝑛 − 𝑎) + (𝑛 −

𝑑) − 1 = 2𝑛 − 𝑎 − 𝑑 − 1. In the same way, there is a 1-
staircase consisting of all ones in the first column and in the
last row, of length 2𝑛 − 𝑏 − 𝑐 − 1. The two lengths add up to
(2𝑛−𝑎−𝑑−1)+ (2𝑛−𝑏−𝑐−1) = 4𝑛−(𝑎+𝑐)−(𝑏+𝑑)−2 ≥ 2𝑛−2,
so at least one of them must be at least 𝑛 − 1.

Proof of Proposition 10. Without loss of generality, assume
𝑎
𝑛,1

= 0, 𝑎
𝑛−1,1

= 𝑎
𝑛,2

= 1. Consider two cases as follows.

Case 1. 𝑎
𝑛−1,2

= 0. Define 𝑎 to be the number of zeroes in
column 1, 𝑏 to be the number of zeroes in column 2, 𝑐 to be
the number of zeroes in row 𝑛 − 1, and 𝑑 to be the number
of zeroes in row 𝑛. The following homogeneous staircases
therefore exist:

(i) the 0-staircase in column 1 and row 𝑛, turning at 𝑎
𝑛,1

with length 𝑎 + 𝑑 − 1;

(ii) the 0-staircase in column 2 and row 𝑛 − 1, turning at
𝑎
𝑛−1,2

with length 𝑏 + 𝑐 − 1;
(iii) the 1-staircase in column 1 and row 𝑛 − 1, turning at

𝑎
𝑛−1,1

with length (𝑛 − 𝑎 − 2) + (𝑛 − 𝑐 − 2) + 1;
(iv) the 1-staircase in column 2 and row 𝑛, turning at 𝑎

𝑛,2

with length (𝑛 − 𝑏 − 2) + (𝑛 − 𝑑 − 2) + 1.

The sum of lengths of these four staircases is

𝑎 + 𝑑 − 1 + 𝑏 + 𝑐 − 1 + (𝑛 − 𝑎 − 1) + (𝑛 − 𝑐 − 1) + 1

+ (𝑛 − 𝑏 − 1) + (𝑛 − 𝑑 − 1) + 1 = 4𝑛 − 4,

(7)

so their average length is 𝑛− 1; thus at least one of themmust
have length 𝑛 − 1 or more.

Case 2. 𝑎
𝑛−1,2

= 1. Define 𝑎 to be the number of zeroes in
column 1 and 𝑏 to be the number of zeroes in row 𝑛. The
following homogeneous staircases therefore exist:

(i) the 0-staircase in column 1 and row 𝑛, turning at 𝑎
𝑛,1

with length 𝑎 + 𝑏 − 1;
(ii) The 1-staircase in column 1 and row 𝑛, 𝑎

𝑛−1,2
, turning

at 𝑎
𝑛−1,1

, 𝑎
𝑛−1,2

, 𝑎
𝑛,2

with length (𝑛−𝑎−2)+3(𝑛−𝑏−2).

The sum of lengths of these two staircases is 2𝑛 − 2 so at least
one of them must have length 𝑛 − 1 or more.

Proof of Proposition 11. Assume columns 𝑗, 𝑗+1 are switching
columns. Let 𝑟 and 𝑠 be the smallest and largest values of 𝑖 for
which 𝑎

𝑖,𝑗
= 0, and likewise let 𝑝 and 𝑞 are the smallest and

largest values of 𝑖 for which 𝑎
𝑖,𝑗

= 1. We may assume 𝑟, 𝑠, 𝑝

and 𝑞 all exist and are different, otherwise, column 𝑗 contains
at most one 1 or at most one 0 and the proof is finished.

Define 𝑎 to be the number of zeroes to the left of 𝑎
𝑟,𝑗

in
row 𝑟, so there are 𝑗 − 1 − 𝑎 ones there. Define 𝑐 to be the
number of zeroes to the right of 𝑎

𝑠,𝑗+1
in row 𝑠, so there are

𝑛 − 𝑗 − 1 − 𝑐 ones there.
Define 𝑑 to be the number of ones to the left of 𝑎

𝑝,𝑗
in row

𝑝, so there are 𝑗−1−𝑑 zeroes there. Define 𝑒 to be the number
of ones to the right of 𝑞, 𝑗+1 in row 𝑞, so there are 𝑛−𝑗−1−𝑒

zeroes there.
Define𝑓 to be the number of zeroes in column 𝑗, so there

are 𝑛 − 𝑓 ones in column 𝑗, and there are 𝑛 − 𝑓 zeroes and 𝑓

ones in column 𝑗 + 1.
The 0-staircase in row 𝑟, column 𝑗, and row 𝑠, which turns

at (𝑟, 𝑗) and (𝑠, 𝑗), contains 𝑎 + 𝑓 + 𝑐 zeroes.
The 1-staircase in row 𝑟, column 𝑗 + 1, and row 𝑠, which

turns at (𝑟, 𝑗 + 1) and (𝑠, 𝑗 + 1), contains (𝑗 − 1 − 𝑎) + 𝑓 + (𝑛 −

𝑗 − 1 − 𝑐) ones.
The 1-staircase in row𝑝, column 𝑗, and row 𝑞, which turns

at (𝑝, 𝑗) and (𝑞, 𝑗), contains 𝑑 + (𝑛 − 𝑓) + 𝑒 ones.
The 0-staircase in row 𝑝, column 𝑗 + 1, and row 𝑞, which

turns at (𝑝, 𝑗+1) and (𝑞, 𝑗+1), contains (𝑗−1−𝑑)+ (𝑛−𝑓)+

(𝑛 − 𝑗 − 1 − 𝑒) zeroes.
The length sum of these homogeneous staircases is 𝑎+𝑓+

𝑐 + (𝑗 − 1 − 𝑎) + 𝑓 + (𝑛 − 𝑗 − 1 − 𝑐) + 𝑑 + (𝑛 − 𝑓) + 𝑒 + (𝑗 − 1 −

𝑑) + (𝑛 − 𝑓) + (𝑛 − 𝑗 − 1 − 𝑒) = 4𝑛 − 4, so the average length
is 𝑛 − 1. Therefore, one of them has length at least 𝑛 − 1.
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Proof of Proposition 12. Let 𝐴 be an 8 × 8 0-1 matrix; without
loss of generality, suppose 𝑎

8,8
= 0. By contradiction, assume

all homogeneous staircases have length 6 or less. In the first
row and last column combined, there can be at most 6 zeroes,
so there must be at least 9 ones. Without loss of generality,
assume the first row has at least as many ones as the last
column, by assumption at most 6.

Case 1. First row contains 6 ones. The column of the right-
most 1 must contain either 7 zeroes or a 1, both giving a
homogeneous staircase of length 7, a contradiction.

Case 2. First row contains 5 ones; consequently, the last
column contains at least 4 ones. Let 𝐽 be the set of indices 𝑗
with 𝑎

1,𝑗
= 1 and let 𝐼 be the set of indices 𝑖 for which 𝑎

𝑖,8
= 1.

We have |𝐼| ≥ 4, |𝐽| = 5. Then 𝑎
𝑖,𝑗

= 0, if 𝑖 is the smallest
element of 𝐼 and 𝑗 is one of the last 4 elements of 𝐽 (otherwise
we get a 1-staircase of length at least 7). Similarly 𝑎

𝑖,𝑗
= 0, if 𝑖

is one of the first 4 elements of 𝐼 and 𝑗 is the largest element
of 𝐽. This gives seven elements of 𝐴 with 𝑎

𝑖,𝑗
= 0, forming a

0-staircase, a contradiction finishing the proof.

3. Proof of Theorem 4

Proof of Theorem 4. Consider an arbitrary red-blue coloring
of the edges of a balanced geometric bipartite graph 𝐺 =

[𝐴, 𝐵]. Let 𝐺
𝑅
and 𝐺

𝐵
denote the red and blue subgraphs of

𝐺. Set

𝐷 = max {𝑑
𝐺𝑅

(𝑎
1
) , 𝑑
𝐺𝑅

(𝑏
𝑛
) , 𝑑
𝐺𝐵

(𝑎
1
) , 𝑑
𝐺𝐵

(𝑏
𝑛
)} . (8)

We will show that there is a noncrossing subtree in 𝐺
𝑅
or

in𝐺
𝐵
with (4/5+𝜀)𝑛 vertices, where 𝜀 is computed during the

proof.
Assume first that 𝐷 ≥ (6/10 + 2𝜀)𝑛; without loss of

generality, the maximum is attained at 𝑏
𝑛
in the red color.

Let 𝑖 denote the smallest index for which 𝑎
𝑖
𝑏
𝑛
is red. If 𝑎

𝑖

has at least (2/10 − 𝜀)𝑛 red neighbors in 𝐵, we have a red
noncrossing double star on 𝑎

𝑖
𝑏
𝑛
spanning at least (4/5 + 𝜀)𝑛

vertices. Otherwise 𝑎
𝑖
has at least (8/10 + 𝜀)𝑛 blue neighbors

in 𝐵 giving a blue star that is as large as required.
From now on we consider the case 𝐷 < (6/10 +

2𝜀)𝑛; 𝑎𝑠𝑠𝑢𝑚𝑒(𝑤.𝑙.𝑜.𝑔.) that edge 𝑎
1
𝑏
𝑛
is red. Now—from the

definition of𝐷—both 𝑑
𝐺𝑅

(𝑎
1
) and 𝑑

𝐺𝑅
(𝑏
𝑛
) are strictly greater

than (4/10−2𝜀)𝑛; therefore, we have a noncrossing red double
star 𝑇 on 𝑎

1
𝑏
𝑛
with more than (4/10 − 2𝜀)𝑛 vertices in both

𝐴 and 𝐵. We may assume that 𝑇 has less than (4/10 + 3𝜀)𝑛

vertices on both𝐴 and 𝐵; otherwise 𝑇 has at least (8/10 + 𝜀)𝑛

vertices. Therefore, 𝑎
1
is adjacent in blue to a set 𝐵

1
⊂ 𝐵 such

that |𝐵
1
| > (6/10 − 3𝜀)𝑛. Similarly, 𝑏

𝑛
is adjacent in blue to a

set𝐴
1
⊂ 𝐴 such that |𝐴

1
| > (6/10−3𝜀)𝑛. Let 𝑖 be the smallest

index for which 𝑎
𝑖
∈ 𝐴
1
and 𝑗 is the largest index for which

𝑏
𝑗
∈ 𝐵
1
.

Observe that edges from 𝑎
𝑖
to 𝐵
1
must be red apart from

an initial segment 𝐵
2

⊂ 𝐵
1
such that |𝐵

2
| < (2/10 + 4𝜀)𝑛

because otherwise we have a noncrossing double star in blue
of the required size. Similarly, edges from 𝑏

𝑗
to 𝐴
1
must be

red apart from an end segment of 𝐴
2
⊂ 𝐴
1
such that |𝐴

2
| <

(2/10 + 4𝜀)𝑛. Thus we have a red double star 𝑇
1
on the red

edge 𝑎
𝑖
𝑏
𝑗
containing vertices of 𝐴

1
− 𝐴
2
∪ 𝐵
1
− 𝐵
2
. Thus 𝑇

1

has at least (4/10 − 7𝜀)𝑛 vertices in both 𝐴 and 𝐵 (and also
at most (4/10 + 8𝜀)𝑛; otherwise we have the required large
noncrossing red subtree). Note also that we may assume that
|𝐴
2
|, |𝐵
2
| > (2/10 − 11𝜀)𝑛; otherwise if |𝐴

2
| ≤ (2/10 − 11𝜀)𝑛,

then

(
󵄨󵄨󵄨󵄨𝐴1 − 𝐴

2

󵄨󵄨󵄨󵄨) + (
󵄨󵄨󵄨󵄨𝐵1 − 𝐵

2

󵄨󵄨󵄨󵄨) > ((
6

10
− 3𝜀) − (

2

10
− 11𝜀)) 𝑛

+ (
4

10
− 7𝜀) 𝑛 = (

8

10
+ 𝜀) 𝑛.

(9)

We note next that there are less than (2/10 + 4𝜀)𝑛 blue
edges from 𝑎

𝑖
to 𝐵; otherwise the blue star 𝐴

1
∪ {𝑏
𝑛
} can be

extended to a noncrossing double star on (6/10 − 3𝜀 + 2/10 +

4𝜀)𝑛 vertices.Thusmore than (1−(2/10+4𝜀))𝑛 = (8/10−4𝜀)𝑛

red edges go from 𝑎
𝑖
to 𝐵.

Set 𝑆 = {𝑏
𝑘

: 𝑗 < 𝑘 ≤ 𝑛}, 𝑅 = {𝑏
𝑘

: 1 ≤ 𝑘 < 𝑗} and
observe that there are less than (15𝜀)𝑛 red edges from 𝑎

𝑖
to

𝑅 − (𝐵
1
− 𝐵
2
); otherwise we can extend 𝑇

1
to a noncrossing

red double star with (8/10−14𝜀+15𝜀)𝑛 = (8/10+𝜀)𝑛 vertices.
The two previous statements and |𝐵

1
|−|𝐵
2
| ≤ (4/10+8𝜀)𝑛

imply that at least ((8/10−4𝜀)−15𝜀− (4/10+8𝜀))𝑛 = (4/10−

27𝜀)𝑛 red edges go from 𝑎
𝑖
to 𝑆. The same argument shows

that at least (4/10 − 27𝜀)𝑛 red edges go from 𝑏
𝑗
to the set 𝑆

1
=

{𝑎
𝑘
: 1 ≤ 𝑘 < 𝑎

𝑖
}. In particular, |𝑆|, |𝑆

1
| ≥ (4/10 − 27𝜀)𝑛.

Since 𝑎
𝑖
sends at most (15𝜀)𝑛 red edges to 𝐵

2
, it sends at

least (|𝐵
2
| − 15𝜀)𝑛 ≥ (2/10 − 26𝜀)𝑛 blue edges to set 𝐵

3
⊂ 𝐵
2
.

Suppose that the first vertex of 𝐵
3
(𝑏
𝑡
∈ 𝐵
3
with smallest 𝑡)

sends 𝑥 blue edges to 𝑆
1
. Then we have a blue noncrossing

tree with at least

𝑥 +
󵄨󵄨󵄨󵄨𝐵3

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐴1

󵄨󵄨󵄨󵄨 ≥ 𝑥 + (
2

10
− 26𝜀) 𝑛 + (

6

10
− 3𝜀) 𝑛

= 𝑥 + (
8

10
− 29𝜀) 𝑛.

(10)

Vertices; thus we may assume 𝑥 ≤ (30𝜀)𝑛. We conclude that
some vertex of 𝐵

3
sends at least (|𝑆

1
| − 30𝜀)𝑛 ≥ (4/10 − 57𝜀)𝑛

red edges to 𝑈 ⊂ 𝑆
1
.

Now, we define a noncrossing blue tree 𝑇
2
as follows. Let

𝑏
𝑙
be the first element of 𝐵

1
− 𝐵
2
. Take the blue star from 𝑎

1

to {𝑏
𝑝

∈ 𝐵 : 𝑝 ≤ 𝑙}; it has at least |𝐵
2
| ≥ (2/10 − 11𝜀)𝑛

edges. Continue with the sequence of blue edges from 𝑏
𝑙
to𝑈

ending with the blue edge 𝑏
𝑙
𝑎
𝑘
, 𝑎
𝑘
∈ 𝑈. This sequence must

contain at least |𝑈| − (15𝜀)𝑛 ≥ (4/10 − 72𝜀)𝑛 vertices because
at most 15𝜀𝑛 red edges go from 𝑏

𝑙
to 𝑈; otherwise 𝑇

1
would

be extended. Finally, we add blue edges from 𝑎
𝑘
to a subset of

{𝑏
𝑙
, 𝑏
𝑙+1

, . . . , 𝑏
𝑛
}. To estimate how many, observe that there is

a red star 𝑇
3
with center 𝑎

𝑖
with at least (4/10 − 7𝜀)𝑛 leaves in

𝐵
1
−𝐵
2
and at least (4/10−27𝜀)𝑛 leaves in 𝑆, thus altogether at

least (8/10 − 34𝜀)𝑛 leaves. If there is a red edge from 𝑎
𝑘
to the

𝑚th vertex of 𝑇
3
(from left), then we have a noncrossing red

tree with at least |𝑈|+(8/10−34𝜀)𝑛−𝑚 ≤ (8/10+𝜀)𝑛 vertices.
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This gives that (4/10−57𝜀)𝑛+(8/10−34𝜀)𝑛−𝑚 ≤ (8/10+𝜀)𝑛

andwe conclude (4/10−92𝜀)𝑛 ≤ 𝑚. Altogether,𝑇
2
has at least

(
2

10
− 11𝜀) 𝑛 + (

4

10
− 72𝜀) 𝑛 + (

4

10
− 92𝜀) 𝑛

= (1 − 175𝜀) 𝑛 = (
8

10
+ 𝜀) 𝑛

(11)

vertices when 𝜀 = 1/880.
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