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The right order of magnitude for the maximal number of vertices in an r-uniform 
r-critical hypergraph His achieved by obtaining an upper bound of O(r(H)'- 1 

). 

An r-uniform hypergraph H is a set V(H) with a collection, E(H), of r
element subsets of V(H). Sets V(H) and E(H) are called the vertices and 
edges of H; I V(H) I is called the order of H. 

Throughout this paper we restrict ourselves to hypergraphs where V(H) 
and E(H) are finite, a subset of V(H) appears in E(H) at most once (H has 
no multiple edges) and every vertex of H is contained in some edge of H (H 
has no isolated vertices). The hypergraph induced by a subset of E(H) is 
called a partial hypergraph of H. 

A set T s;; V(H) is a transversal of the hyper graph H if T n e :f=. 0 for 
every e E E(H). The transversal-number r(H) of the hypergraph His defined 
as min{l Tl: Tis a transversal of H}. 

Our paper is a contribution to the theory of r-critical hypergraphs started 
with the paper [3] of P. Erdos and T. Gallai in 1961. A hypergraph His r
critical if the removal of any edge reduces the transversal-number of H, i.e., 
for every e E E(H), r(H- e) = r(H) - 1 (H- e is the partial hypergraph of 
H induced by E(H) - e). , 

We define Vmax(r, t) as max I V(H)I, where H runs over the r-uniform !

critical hypergraphs of transversal number t. The problem of determining 
vmaJr, t) appeared in [3] and the case r = 2 was solved there. For r = 3 a 
result of Szemeredi and Petruska [8] implies the right order of magnitude of 
vmax(3, t). As far as we know, no results have been published on r): 4 and 
t): 3. 

The main result of this paper is Theorem 2: 

t+t'- 1 = 1+ t'- 1 +0(t'- 2
). (

t+r-2) ( 1 ) 
r- 2 . (r- 2)! 
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On the other hand, an easy construction (Remark 1) yields 
vmax(r, t) ~ (tr-I /(r- 1 )!) + O(tr- 2

), therefore Theorem 2 gives the right 
order of magnitude of vmax(r, t) for fixed r. Its consequence for r = 2, 
Corollary 2, is a theorem of Erdos and Gallai [3, p. 196], while for r = 3 it 
improves the upper bound of 8t2 + 2t given in [8 ]. Theorem 1 is a 
generalization of a result on r-critical graphs proved independently by 
Suninyi [6] and Lovasz' [5, Ex. 22, p. 57]. It has a corollary used in the 
pr.oof of Theorem 2. 

Let H be an r-uniform hypergraph. A set S c V(H) is called strongly 
stable if I en S I ( 1 for every e E E(H). The degree of a vertex x is defined 
as the number of edges containing x and it is denoted by d(x ). We shall 
denote by F(X) the "(r - 1 )-neighbours" of a set X c V(H), defined as 
F(X) = {e- {x}: x E e E E(H), x EX}. It is worth noting that the elements 
of the set r(X) are (r- I)-element subsets of V(H). Clearly, d(x) = IF(x)l, 
where we write F(x) instead of F({x}). 

THEOREM 1. If S is a strongly stable set in a r-critical hypergraph H, 
then d(x) ( IF(S)I-ISI + 1 for every xES. 

Proof Suppose that the statement is not true and let S be a strongly 
stable set of minimal cardinality for which 

d(x) > IF(S)I-ISI + 1 (1) 

holds for some x E S. 

Step 1. If Y c S- {x} and 

IF(Y) -r(x)l <I Yl, (2) 

then F(Y) nr(x) * 0. (Otherwise, I Yl > IF(Y)I ~ IF(Y)I- d(y) + 1 would 
hold for every y E Y, hence Y would satisfy (1) which contradicts the 
minimality of S.) 

Step 2. Let Y c S- {x} be a minimal set satisfying (2). Such a Y exists 
because (2) holds for S- {x}: from (1) we have 

IS- {x}l =lSI- 1 > IF(S)I- d(x) = IF(S) -r(x)l 

= IF(S- {x}) -r(x)l, 

on the other hand, Y =!=- 0 is trivial. Now, because of F(Y) nr(x) =!=- 0, there 
exists a y E Y and an edge e E E(H), y E e, such that e - { y} E r(x ). Let 
f= (e- {y})U {x}. 

Step 3. As Y is minimal, the Konig-Hall theorem (see, e.g., [ 1, p. 134]) 
guarantees the existence of a bijection b: Y- { y} ----; F( Y- { y}) - F(x) such 
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that b(z) E F(z) for every z E Y- { y }. Define b(y) = e- { y }. (Of course, 
F( y) c r( x) U F( Y- { y} ), because Y is minimal.) For every z E Y, fix 
another vertex z' E b(z ). 

Step 4. Since H is r-critical, the partial hypergraph H- f has a (t- 1 )
element transversal T which intersects every edge with the exception off 
Thus yET, x E T and T meets every element of F(x) different from/- {x}. 

Step 5. Set T' = (T- Y) U Uzerny {z' }. Since IT' I~ t- 1, in order to 
obtain a contradiction, it is enough to show that T' is a transversal of H. 

Obviously, T' meets every edge disjoint from YU {x}. Also, T' nj-::~= 0, 
because y E e nJ, therefore T' meets each set hE F(x). For the remaining 
edges it is enough to mention that b is a bijection between Y- { y} and 
F(Y)- r(x), therefore r(Y)- F(x) = UzeY-(y) {b(z) }. Consequently, if a set 
h = b(z) is disjoint from T, then z E T and z' E T', that is, h n T' i= 0. I 

Since 1 ~ d(x) for any vertex x of a hyper graph, we have 

CoROLLARY 1. IS I ~ IF(S) I for every strongly stable set S of a r-critical 
hypergraph. 

Remark 1. That vmax(r, t)) e~~--;- 2 ) + t + r- 2 is shown by the 
hypergraph, where V(H) =xu Y, X n y = 0, lXI = t + r- 2, I Yl = e~~--;- 2 ) 
and E(H) is constructed by adding distinct vertices of Y to the (r- 1 )
element subsets of X. 

THEOREM 2. Vmax(r, t) ~ ('~~2 2 ) t + tr-I. 

Proof Let H be an r-uniform r-critical hypergraph with r(H) = t. We 
proceed in five steps. 

Step 1. Let T be the t-uniform hypergraph whose edges are the t-element 
transversals of H. If T' is a partial hypergraph of T and e E E(H), we define 
m(e, T')=min{IXI: Xce, Xnfi=0 whenever /EE(T')}, that is, m(e, T') 
is the cardinality of the smallest subset of e that meets every t-element 
transversal from T'. Since every transversal of H meets every edge of H, 
m( e, T') ~ r. The r-critical property of H implies that m( e, T) = r for every 
e E E(H). Clearly, if /E E(T'), then m(e, T'- f)) m(e, T')- 1 for every 
e E E(H), so we can remove edges from T successively until we reach a P 
with the following properties: 

(i) r- 1 ~ m(e, P) ~ r for every e E E(H), 

(ii) for every /E E(P) there exists an e E E(H) with m(e, P- f)= 
r-2. ' 

Step 2. If lXI ~ r- 2 and X c e for some e E E(H), then (i) guarantees 
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· an f = f(X) E E(TJ) such that jn X= 0. Let / 0 E E(TJ) be fixed. For each 
e E E(H) we choose an (r- 1 )-element subset {xp ... , xr-I} c e satisfying 

xiEenfo 

x 2 Eenj({xd) 

•X 3 E e n f ( {X p X 2 } ) 

xr-I E e nj( {x~' x 2 , ••• , xr_ 2 }). 

Let HI be the (r - 1 )-uniform hypergraph induced by the different subsets 
{xi, x 2 , ••• , xr-I} as e runs over E(H). 

Step 3. Now IE(H1) I< tr-I, since there are at most t choices for xi and 
for fixed xi, ... , xi, 1 < i < r- 2, there are at most t choices for xi+ I· 

Step 4. We shall now prove that I V(HI) I < e~~2 2 ) t. For every 
fE E(TJ) property (ii) guarantees an (r- 2)-element subset X= X(f) of 
some e E E(H) such that jnX(f') = 0 if and only if f=f'. It has been 
proved by Bollobas (cf. [2; 5, Ex. 32, p. si]) that the number of these pairs/, 
X(f) is at most (111 1t~r 1 ) implying IE(TJ)I < e~~2 2 ). Since V(HI) c V(TJ), 
we have 

Step 5. Clearly, S = V(H)- V(HI) is a strongly stable set of H (every 
e E E(H) contains an edge of H 1) and F(S) c E(HI). Using Corollary 1 we 
see I V(H)I = I V(H1)I + lSI < I V(HI)I + IF(S)I < I V(HI)I + IE(HI)I < 
(f~~2 2 ) t + tr-l and our proof is complete. I 

A hypergraph H is called vertex-critical if any of its vertices is contained 
in some r(H)-element transversal of H. The following proposition is obvious: 

PROPOSITION. A hypergraph H is vertex1critical if and only if every r
critical partial hypergraph H' of H with r(H') = r(H) satisfies 
I V(H')I =I V(H)I. 

The proposition implies that vmax(r, t) gives the maximal number of 
vertices for the more general class of vertex-critical r-uniform hypergraphs 
with r(H) = t. Therefore, Theorem 2 holds for vertex-critical hypergraphs. 
For r=2 and r=3 we obtain 

CoROLLARY 2 (Erdos-Gallai [3, p. 196]). Every vertex-critical graph G 
satisfies I V( G) I < 2r( G). 
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CoROLLARY 3. Every vertex-critical 3-uniform hypergraph H satisfies 
I V(H)I < 2r(H) 2 + r(H). 

Remark 2. We finally show how the determination of vmax(r, t) fits into 
a general class of problems introduced by Erdos. 

An important case of the so-called arrow symbol pr_oblems posed in [ 4] 
can be formulated as follows: 

Find the maximal m = m(r, t, k, u) for which there exists an r-uniform 
hypergraph H with m vertices satisfying: 

(i) t- u < r(H) < t, 
(ii) every k-element vertex set is contained in some t-element 

transversal of H. 

So far only the case r = 2 has been extensively investigated (cf. [7] for 
results and further references); for larger r no results have been published 
except [8] concerning the case r = 3. 

It is clear, however, that for every r > 2 and 1 < k < t, m(r, t, k, 0) is equal 
to the maximal order of r-uniform hypergraphs with transversal number t 
and critical m the stronger sense expressed by (ii). For k = 1, Theorem 2 
gives 

1. 
2. 
3. 

4. 

5. 

6. 

7. 

8. 

( 
t + r- 2) r-l 

m(r, t, 1, 0) = vmax(r, t) < r _ 
2 

t + t · 
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