Packing trees into n-chromatic graphs

András Gyárfás

Alfréd Rényi Institute of Mathematics March 20, 2014

Let T_i denote a tree with *i* edges. The author's tree packing conjecture [3] states that K_n has an edge disjoint decomposition into any given sequence $T_1, T_2, \ldots T_{n-1}$ of trees. Gerbner, Keszegh and Palmer extended the conjecture by replacing K_n with an arbitrary *n*-chromatic graph (Conjecture 2 in [1]). Here we show that the extended conjecture follows from the original one. We need the following, perhaps folklore result (Theorem 1 in [4]) and for convenience we include its simple proof.

Lemma 1. Let G be a k-chromatic graph with a proper k-coloring with k distinct colors. Suppose T is a tree on k vertices and each vertex of T is labeled with a different color from the same set of k colors. Then G contains a subtree that is label-isomorphic to T (labeled exactly the same way as T).

Proof. The proof is by induction, the base step is trivial for k = 1. Let S_t denote the vertices of color t in a proper k-coloring of a k-chromatic graph G with a k-element color set C. Select a leaf vertex P in a tree T labeled with the k colors of C, suppose its label is i and assume P is adjacent in T with vertex Q labeled with j. Let A denote the set of vertices in S_j adjacent to at least one vertex of S_i . Observe that A is nonempty, otherwise G would be (k - 1)-chromatic. The subgraph $G^* \subset G$ obtained by removing S_i and $S_j - A$ from V(G) is (k - 1)-chromatic, since the removed vertices form an independent set. Also, G^* is colored with the color set C - i. By induction, G^* contains a label-isomorphic copy of the tree T - P, its vertex with color j is in A, thus adjacent to a vertex in S_i , extending T - P to a label-isomorphic copy of T. \Box

Theorem 2. Suppose that K_n has an edge disjoint decomposition into a given sequence $T_1, T_2, \ldots, T_{n-1}$ of trees and G is an n-chromatic graph. Then G contains edge disjoint copies of $T_1, T_2, \ldots, T_{n-1}$.

Proof. Let S_1, S_2, \ldots, S_n be a partition of V(G) into independent sets where G is an *n*-chromatic graph and color all vertices of S_i with color *i*. By assumption the complete graph on vertex set $V = \{1, 2, \ldots, n\}$ can be decomposed into $T_1, T_2, \ldots, T_{n-1}$. Let G_i be the subgraph of G induced by

$$\cup_{j\in V(T_i)}S_j.$$

The graph G_i is obviously (i + 1)-chromatic since it has i + 1 color classes and a proper coloring of G_i with at most i colors could be obviously extended to a proper coloring of G with at most n - 1 colors, leading to a contradiction. Applying Lemma 1 to G_i , we find a copy F_i of T_i labeled exactly the same way as T_i is labeled in K_n . Repeating this for $i = 1, 2, \ldots, n - 1$, we obtain edge disjoint copies of $F_1, F_2, \ldots, F_{n-1}$ in G, in fact they are not only edge disjoint but the union of their edge sets takes exactly one edge from each bipartite graph $\{[S_i, S_j] : 1 \le i < j \le n\}$. \Box

Theorem 2 allows to transfer known tree-packing results from K_n to *n*-chromatic graphs. In particular, since any sequence of trees containing only paths and stars are known to be packable to K_n ([3, 5]), we get the following, conjectured in [2].

Corollary 3. Any sequence $T_1, T_2, \ldots, T_{n-1}$ of stars and paths is packable into any nchromatic graph.

References

- D. Gerbner, B. Keszegh, C. Palmer, Generalizations of the tree packing conjecture, Discussiones Mathematicae, Graph Theory 32 (2012) 569–582.
- [2] D. Gerbner, B. Keszegh, C. Palmer, Red-blue alternating paths, *Third Emléktábla Workshop*, p.25, http://www.renyi.hu/ emlektab/index/booklet.html
- [3] A. Gyárfás, J. Lehel, Packing trees of different order into K_n, Combinatorics, Proc. Fifth Hungarian Coll. Keszthely, 1976, Vol II. North Holland. Colloq. Math. Soc. J. Bolyai 18, 463–469.
- [4] A. Gyárfás, E. Szemerédi, Zs. Tuza, Induced subtrees in graphs of large chromatic number, *Discrete Mathematics* **30** (1980) 235–244.
- [5] S. Zaks, C. L. Liu, Decomposition of graphs into trees, Proceedings of 8-th Southeastern Conference on Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, La. Utilitas Math., Congressus Numerantium XIX (1977), 643-654.