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A coloring of the edges of the 𝑟-uniform complete hypergraph is a 𝐺
𝑟
-coloring if there is no rainbow simplex; that is, every set of

𝑟 + 1 vertices contains two edges of the same color. The notion extends 𝐺
2
-colorings which are often called Gallai-colorings and

originates from a seminal paper of Gallai. One well-known property of 𝐺
2
-colorings is that at least one color class has a spanning

tree. J. Lehel and the senior author observed that this property does not hold for 𝐺
𝑟
-colorings and proposed to study 𝑓

𝑟
(𝑛), the size

of the largest monochromatic component which can be found in every𝐺
𝑟
-coloring of𝐾𝑟

𝑛
, the complete 𝑟-uniform hypergraph.The

previous remark says that 𝑓
2
(𝑛) = 𝑛, and in this note, we address the case 𝑟 = 3. We prove that ⌈(𝑛 + 3)/2⌉ ≤ 𝑓

3
(𝑛) ≤ ⌈4𝑛/5⌉, and

this determines 𝑓
3
(𝑛) for 𝑛 < 7. We also prove that 𝑓

3
(7) = 6 by excluding certain 2-factors from the middle layer of the Boolean

lattice on seven elements.

1. Introduction

Studying edge colorings of complete graphs without rainbow
triangles (no triangles colored with distinct colors) originates
from a famous paper of Gallai [1]; we will refer to such color-
ings as Gallai-colorings or𝐺

2
-colorings. A well-known prop-

erty of𝐺
2
-colorings is that the edges of some color class span a

connected subgraph containing all vertices. A natural exten-
sion of the concept is the 𝐺

𝑟
-coloring, of 𝐾𝑟

𝑛
, the complete

𝑟-uniform hypergraph on 𝑛 vertices. In a 𝐺
𝑟
-coloring the

requirement is that no𝐾𝑟
𝑟+1

is coloredwith 𝑟+1distinct colors;
that is, there is no rainbow simplex. For 𝑟 ≥ 3, 𝐺

𝑟
-colorings

of 𝐾3
𝑛
do not necessarily contain spanning connected color

classes, but theymust contain large ones. To define how large,
let 𝑓
𝑟
(𝑛) be the size of the largest monochromatic component

which can be found in every 𝐺
𝑟
-coloring of 𝐾𝑟

𝑛
. In terms of

this function, 𝑓
2
(𝑛) = 𝑛, and in this note we address 𝑓

3
(𝑛).

Theorem 1. ⌈(𝑛 + 3)/2⌉ ≤ 𝑓
3
(𝑛) ≤ ⌈4𝑛/5⌉.

Proof. The upper bound (an unpublished note of the senior
author and J. Lehel) follows from taking first the 𝐺

3
-coloring

of𝐾3
5
with five colors, where the vertex set is {1, 2, 3, 4, 5}, and

the edges 𝑖, 𝑖 + 1, 𝑖 + 2 and 𝑖, 𝑖 + 2, 𝑖 + 3 are colored with 𝑖

(using (mod 5) arithmetic). This coloring can be “blown up”
by replacing each vertex 𝑖 by a set𝐴

𝑖
so that the five sets have

sizes that differ by at most one and defining the following
straightforward extension of the original 5-coloring. Triples
with vertices from three different𝐴

𝑖
are colored according to

the color of the triple of their indices. Triples inside 𝐴
𝑖
and

triples in𝐴
𝑖
∪𝐴
𝑖+1

or in𝐴
𝑖
∪𝐴
𝑖+2

(with at least one vertex in
each) are colored with color 𝑖.

The lower bound follows from the observation that every
4-setmust contain two 3-sets of the same color.Thus the color
of some 3-set 𝑇 is repeated on another triple inside at least

2(
𝑛

2
)

(
𝑛

3
)
=
𝑛 − 3

2
(1)

4-sets containing 𝑇. This means that the monochromatic
component containing𝑇 has at least (𝑛−3)/2+3 vertices.

In fact, for odd 𝑛 > 3, the proof of the lower bound inThe-
orem 1 gives a condition for equality in terms of the bipartite
graphB𝑛

4,3
defined by the inclusions of the 4- and 3-element
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sets of {1, 2, . . . , 𝑛}. A (𝑝, 𝑞)-factor in a bipartite graph [𝐴, 𝐵]
is a subgraph with

𝑑 (V) = {
𝑝 if V ∈ 𝐴,
𝑞 if V ∈ 𝐵,

(2)

where 𝑑(V) is the degree of vertex V.

Corollary 2. If the lower bound ofTheorem 1 is sharp for some
odd 𝑛 ≥ 5 then there is a (2, (𝑛 − 3)/2)-factor 𝐹 in B𝑛

4,3
, such

that the union of the triples and quadruples in every component
of 𝐹 has at most (𝑛 + 3)/2 elements.

Theorem 1 implies that 𝑓
3
(4) = 𝑓

3
(5) = 4 and 𝑓

3
(6) = 5

but gives only 𝑓
3
(7) ∈ {5, 6}. Notice that, for 𝑛 = 5, the

upper bound construction of Theorem 1 is a (2, 1)-factor in
B5
4,3

required in Corollary 2, consisting of the shifts of the 3-
vertex component 1234, 123, 134 modulo 5. Is it possible that
for some 𝑛 > 5 there is a (2, (𝑛−3)/2)-factor providing a better
upper bound for 𝑓

3
(𝑛)? The first case to consider is B

3
=

B7
4,3
, the “middle-layer graph” in the boolean lattice on seven

elements. To decide whether 𝑓
3
(7) = 5, we will determine

all possible 2-factors required by Corollary 2. In Lemma 3 we
show that these are 2-factors inB

3
whose components are 6-,

8-, or 10-cycles of the following type which we call aC-factor:

(i) 𝐶
6
= 𝐶
6
(𝑎, 𝑏; 𝑐, 𝑑, 𝑒) the 6-cycle 𝑎𝑏𝑐, 𝑎𝑏𝑐𝑑, 𝑎𝑏𝑑, 𝑎𝑏𝑑𝑒,

𝑎𝑏𝑒, 𝑎𝑏𝑐𝑒, 𝑎𝑏𝑐,
(ii) 𝐶
8
= 𝐶
8
(𝑎; 𝑏𝑐𝑑𝑒) the 8-cycle 𝑎𝑏𝑐, 𝑎𝑏𝑐𝑑, 𝑎𝑐𝑑, 𝑎𝑐𝑑𝑒,

𝑎𝑑𝑒, 𝑎𝑑𝑒𝑏, 𝑎𝑒𝑏, 𝑎𝑒𝑏𝑐, 𝑎𝑏𝑐,
(iii) 𝐶

10
= 𝐶
10
(𝑎𝑏𝑐𝑑𝑒) the 10-cycle 𝑎𝑏𝑐, 𝑎𝑏𝑐𝑑, 𝑏𝑐𝑑, 𝑏𝑐𝑑𝑒,

𝑐𝑑𝑒, 𝑐𝑑𝑒𝑎, 𝑑𝑒𝑎, 𝑑𝑒𝑎𝑏, 𝑒𝑎𝑏, 𝑒𝑎𝑏𝑐, 𝑎𝑏𝑐,

where {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} ⊂ {1, 2, . . . , 7}. It is worth mentioning that
the cycles of a C-factor can be considered as subdivisions of
certain triangles, quadrangles, and pentagons of the Johnson
graph 𝐽(7, 3), where 𝐽(𝑛, 3) (sometimes referred to as the
tetrahedral graph) is the graph whose vertices are the triples
of an 𝑛-element set and edges are between triples intersecting
in two vertices.The speciality of these cycles is that the triples
(and quadruples) are among five elements (𝑎, 𝑏, 𝑐, 𝑑, and
𝑒). The 2-factors of the middle layer graph are investigated
before, primarily because of the middle level (or revolving
door) conjecture; see [2] and its references.

Lemma 3. 𝑓
3
(7) = 5 if and only ifB

3
has aC-factor.

Proof. If B
3
has a C-factor, we have a 𝐺

3
-coloring of 𝐾3

5

obtained by coloring the 3-sets with the same color if and only
if they are in the same cycle in theC-factor.The triples of each
cycle determine a monochromatic component with five ver-
tices; hence 𝑓

3
(7) ≤ 5, and together with the lower bound of

Theorem 1, we get 𝑓
3
(7) = 5.

Conversely, suppose that 𝑓
3
(7) = 5, and consider the 𝐺

3
-

coloring of𝐾3
7
with allmonochromatic components having at

most five vertices. Let 𝐵 ⊂ B
3
be the bipartite graph defined

by selecting two 3-sets of the same color from each 4-element
subset of {1, 2, . . . , 7}. The graph 𝐵 must be 2-regular, other-
wise some 3-set, say in color red, would be selected into at
least three 4-sets, resulting in a red component of at least six

vertices. Thus 𝐵 is a 2-factor in B
3
, and its components are

cycles. But B
3
contains no 𝐶

4
since two 4-sets can share at

most one 3-set. Also, B
3
cannot have a 𝐶

𝑛
component with

𝑛 ≥ 12; otherwise the corresponding coloring of 𝐾3
5
has

a monochromatic component with more than five vertices,
since there are only five 4-sets on five elements.Thus the com-
ponents of 𝐵 are elements of {𝐶

6
, 𝐶
8
, 𝐶
10
}. However, these

cycles have to form subdivisions of {𝐶
3
, 𝐶
4
, 𝐶
5
} in the John-

son graph 𝐽(5, 3), such that the union of triples on the edges
of a cycle forms different 4-sets. This means that the edges
of 𝐶 ∈ {𝐶

3
, 𝐶
4
, 𝐶
5
} which are to be subdivided must be in

different main cliques of 𝐽(5, 3), where amain clique𝐾
4
is the

complete subgraph of 𝐽(5, 3) determined by the triples of
{1, 2, 3, 4, 5} − {𝑖} for some 𝑖 ∈ {1, 2, 3, 4, 5}. The edge set of
𝐽(5, 3) is partitioned into five main cliques, and we can label
the edges in each main clique by 𝑖, such that 𝐶 consists of
edges with different labels. If two edges 𝑖, 𝑗 meet, then the
corresponding 3-set is {1, 2, 3, 4, 5}−{𝑖, 𝑗}. For a𝐶

3
with edges

labeled 3, 4, and 5, the corresponding 3-sets are 123, 124, and
125. One can similarly check for 𝐶

4
and 𝐶

5
that the only pos-

sibilities are the cycles in the definition of theC-factor.

In Sections 2 and 3 we prove the following.

Theorem 4. B
3
has noC-factor.

Lemma 3 andTheorems 1 and 4 give the following.

Corollary 5. 𝑓
3
(7) = 6.

Theorem 4 might be true in a stronger form.

Question 1. Is there a 2-factor inB
3
in which all cycles have

length of at most 10?

It is worthmentioning that, in the family of 2-factors con-
structed in [2], all components are cycles with length divisible
by 14; thus it does not answer Question 1.

The proof of Theorem 4 is based on properties of graphs
shown in Figure 2.They are the graphs on seven vertices hav-
ing 11, 10, or 9 edges with the property that every set of three
vertices contains at least one edge (complements of triangle-
free graphs that are close to the extremal Turán graphs). We
need to analyze star-partitions𝑥𝑆

3
+𝑦𝑆
4
+𝑧𝑆
5
of𝐾3
7
, where the

star 𝑆
𝑖
is the hypergraph having 𝑖 triples containing two fixed

vertices, called the base. Note that𝐾3
7
is an interesting object

to decompose. For example, 𝐾3
7
can be partitioned into 5

“tight cycles” (consecutive triples in a cyclic permutation of
𝑉(𝐾
3

7
)) but cannot be partitioned into 5 Fano planes. In fact,

𝐾
3

7
does not contain three edge disjoint Fano planes (Cayley

[3]). However, 𝐾3
7
can be partitioned into 6 linear hyper-

graphs (but not into 5) [4].
Decompositions of complete hypergraphs into stars

(hyperclaws) have been investigated [5, 6], and this is strongly
related to our subject. In particular, the following decompo-
sition problem is related to the case 𝑛 = 9. Let𝐻 be a star 𝑆

4

with vertex set 𝑥
1
, . . . , 𝑥

6
andwith base𝑥

1
𝑥
2
. Define the mate

of 𝐻 as the 4-uniform hypergraph with the six 4-element
subsets {𝑥

1
, 𝑥
2
, 𝑥
𝑖
, 𝑥
𝑗
}where 𝑖, 𝑗, 𝑖 ̸= 𝑗 runs over the unordered

pairs of 3, 4, 5, 6.
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Figure 1: Diagram of the stars 𝑆
𝑖
with base 𝑓𝑔 (red) and the corresponding hypergraphs𝐻

𝑖
(blue).

Question 2. Is it possible to partition 𝐾3
9
into stars 𝑆

4
so that

their mates partition 𝐾
4

9
? (Star partition without the mate

condition is possible [5].)

In fact, Question 2 is a very special case of the C-factor
problem arising from the questionwhether𝑓

3
(9) > 6. HereC

should be the list of components of a (2, 3)-factor ofB9
4,3

that
contain triples and quadruples of six elements (out of nine).
Such components arise by subdividing the edges of several 3-
regular subgraphs of 𝐽(6, 3). Question 2 came about by con-
sidering the component of a (2, 3)-factor from the subdivision
of a 𝐾

4
∈ 𝐽(6, 3). However, other components come from

the subdivision of the following graphs: 𝐾
2
× 𝐾
3
, the graph

obtained from 𝐾
2
× 𝐾
3
by subdividing two edges not in a

triangle and connecting the subdivision points with an edge,
the cube, and the Petersen graph—we checked with a com-
puter that this list is exhaustive. For example, the cube in
𝐽(6, 3) represented by

123, 124, 245, 235, 136, 146, 456, 356 (3)

and the Petersen graph in 𝐽(6, 3) represented by

123, 124, 235, 136, 145, 345, 156, 246, 256, 346 (4)

generate components with 8 and 10 triples (and 12 and 15
quadruples) inB9

4,3
. Thus there are five possible components

of a (2, 3)-factor in C, and this probably makes it difficult to
decide whether 𝑓

3
(9) > 6.

2. Special 2-Factors in B
3

and
Star Decompositions of 𝐾3

7

We useC
6
,C
8
, andC

10
to denote the set of possible cycles of

aC-factor with different parameter choices from {1, 2, . . . , 7}

(e.g., |C
10
| = 4!(

7

5
)).ThenC = C

6
∪C
8
∪C
10
, and aC-factor is

a 2-factor ofB
3
such that each cycle in it belongs toC.

The type of a C-factor is the vector (𝑥, 𝑦, 𝑧) where 𝑥, 𝑦,
and 𝑧 denote the number of cycles ofC fromC

6
,C
8
, andC

10
,

respectively. One can easily determine the possible types of a
C-factor by determining the nonnegative integer solutions of
35 = 3𝑥+4𝑦+5𝑧.There are 14 types, and we will eliminate all
of them.

First we reformulate the existence of a C-factor as a
decomposition problem of𝐾3

7
. We define 𝑆

𝑖
, the 𝑖-star, as a 3-

uniform hypergraph having 𝑖 edges containing a fixed pair of

vertices, called the base of the star. A star partition of 𝐾3
𝑛
is a

partition of all edges into stars; in particular 𝐾3
𝑛
= ∑
𝑘

𝑖=1
𝑥
𝑖
𝑆
𝑖

means that 𝐾3
𝑛
is partitioned into 𝑥

𝑖
copies of 𝑆

𝑖
, for 𝑖 =

1, 2, . . . , 𝑘. Notice that the complements of the four-element
sets in the cycles of a C-factor provide a starpartition of 𝐾3

7
.

On the other hand, the three-element sets in the cycles of a
C-factor also give a partition of 𝐾3

7
into copies of the hyper-

graphs𝐻
3
,𝐻
4
, and𝐻

5
which we call the complementary par-

tition (𝐻
3
is isomorphic to 𝑆

3
,𝐻
4
has four triples containing

a fixed vertex and consecutive pairs on a 4-cycle of pairs, and
𝐻
5
has five consecutive triples on a 5-cycle of pairs; these

are illustrated in Figure 1). These considerations lead to the
following.

Proposition 6. B
3
has aC-factor of type (𝑥, 𝑦, 𝑧) if and only

if 𝐾3
7
has a star partition 𝑥𝑆

3
+ 𝑦𝑆
4
+ 𝑧𝑆
5
together with the

complementary partition 𝑥𝐻
3
+ 𝑦𝐻
4
+ 𝑧𝐻
5
.

2.1. Decomposing 𝐾
3

7
along Turán Graphs. We associate a

weighted graph 𝐺, the base graph, with a star partition 𝑥𝑆
3
+

𝑦𝑆
4
+ 𝑧𝑆
5
on𝐾3
7
as follows. The vertex set of 𝐺 is {1, 2, . . . , 7},

and the (𝑥 + 𝑦 + 𝑧) edges are determined by the pairs of the
bases of the stars in the partition.The graph obtained this way
has nomultiple edges because different starsmust have differ-
ent bases, since two stars have at least six edges.The weight of
an edge 𝑒 is 𝑖 if 𝑒 is the base of an 𝑆

𝑖
.

If𝐺 is the base graph of a star partition 𝑥𝑆
3
+𝑦𝑆
4
+𝑧𝑆
5
on

𝐾
3

7
, then every triple of {1, 2, . . . , 7} contains at least one edge

of𝐺. By Turán’s theorem (complementary form),𝑥+𝑦+𝑧 ≥ 9,
and for 𝑥+𝑦+𝑧 = 9, 𝑥+𝑦+𝑧 = 10, the graphs𝐺 = 𝑇

9
or𝐺 =

𝑇
10
are unique: the vertex disjoint union of𝐾

3
and𝐾

4
, with an

edge in between in the case of 𝑇
10
.

When 𝑥+𝑦+𝑧 = 11, easy inspection reveals five possibili-
ties for the base graph. Let𝑇1

11
be the disjoint union of𝐾

5
and

𝐾
2
. Then 𝑇2

11
, 𝑇3
11
, and 𝑇4

11
are disjoint unions of 𝐾

3
and 𝐾

4

plus two edges between them, with a common vertex in 𝐾
4
,

a common vertex in𝐾
3
, and no common vertex, respectively

(see Figure 2). Finally, 𝑇5
11

is the disjoint union of two 𝐾
3
-s

plus one edge between them plus four edges from the seventh
vertex to the vertices of degree two (complement of𝐾

3,3
with

a subdivided edge).
These considerations eliminate the vectors of types

(0,0,7), (2,1,5), (1,3,4), and (0,5,3) and reduce the problem to
the following cases.
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T9 T10 T1
11

T2
11 T3

11 T4
11

T5
11

Figure 2: Diagram of the possible base graphs 𝑇
9
, 𝑇
10
, 𝑇1
11
,. . ., 𝑇5

11
.

Lemma 7. Suppose that B
3
has a C-factor of type (𝑥, 𝑦, 𝑧).

Then one has on𝐾3
7
a star partition with base graph𝐺 together

with a complementary partitionwith the following parameters.

(i) 𝐺 = 𝑇
9
and (𝑥, 𝑦, 𝑧) ∈ {(1, 8, 0), (5, 0, 4), (4, 2, 3),

(3, 4, 2), (2, 6, 1)}.
(ii) 𝐺 = 𝑇

10
and (𝑥, 𝑦, 𝑧) ∈ {(5, 5, 0), (7, 1, 2), (6, 3, 1)}.

(iii) 𝐺 ∈ {𝑇
𝑖

11
: 𝑖 ∈ {1, 2, 3, 4, 5}} and (𝑥, 𝑦, 𝑧) ∈ {(9, 2, 0),

(10, 0, 1)}.

The following lemma will eliminate six types of vectors.

Lemma 8. Suppose that B
3
has a C-factor of type (𝑥, 𝑦, 𝑧)

with 𝑧 > 0. Then the base graph has a 5-cycle.

Proof. Suppose thatB
3
has a 𝐶

10
cycle, 𝐶 = 𝐶

10
(12345), the

10-cycle 123, 1234, 234, 2345, 345, 3451, 451, 4512, 512, 5123,
and 123, which generates an 𝑆

5
with base edge 67. Consider the

remaining five 3-sets formed from the vertices 12345 which
are not in 𝐶: 124, 134, 135, 235, and 245. Observe that 124 is
only contained in the 4-sets 1234, 1245, 1246, and 1247. Since
1234, 1245 are in 𝐶, then 124 must be in the same cycle as
1246 and 1247. Hence we have a cycle on the vertices 12467.
Similarly, we have four other cycles on 13467, 13567, 23567, and
24567. The base edges of the five stars generated by these five
cycles are, respectively, 35, 25, 24, 14, 13, which form a 5-cycle
in the base graph.

Since𝑇
9
,𝑇
10
, and𝑇2

11
do not contain 5-cycles, we have the

following.

Lemma 9. Suppose that B
3
has a C-factor of type (𝑥, 𝑦, 𝑧).

Then one has on𝐾3
7
a star partition with base graph𝐺 together

with a complementary partitionwith the following parameters.

(i) 𝐺 = 𝑇
9
and (𝑥, 𝑦, 𝑧) = (1, 8, 0).

(ii) 𝐺 = 𝑇
10
and (𝑥, 𝑦, 𝑧) = (5, 5, 0).

(iii) 𝐺 ∈ {𝑇
𝑖

11
: 𝑖 ∈ {1, 2, 3, 4, 5}} and (𝑥, 𝑦, 𝑧) ∈ {(9, 2, 0),

(10, 0, 1)}.

3. Eliminating the Remaining Types

3.1. (10,0,1). Following the proof of Lemma 8, we can label
the 10-cycle as 𝐶

10
(12345), and we have 6-cycles on 12467,

13467, 13567, 23567, and 24567. In a 6-cycle, two vertices
are repeated in every element. Since the five 6-cycles above
contain, respectively, the 3-sets 124, 134, 135, 235, and 245, the
two repeated vertices must be from these 3-sets. In particular,
the 3-sets 167, 267, 367, 467, and 567 are not contained in any
of these 6-cycles. There are ten 4-sets containing these five 3-
sets. But each of the five 6-cycles contains one of these 4-sets.
Hence there are five remaining 4-sets which contain five 3-
sets, and the only possibility is that these ten elements form a
10-cycle. Then there are two 10-cycles, a contradiction.
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3.2. (1,8,0). Label 𝐺 = 𝑇
9
so that {1, 2, 3, 4} spans a 𝐾

4
and

{5, 6, 7} spans a𝐾
3
.

One of the edges of the 𝐾
3
must generate the triple 567;

say 𝑒 = 56. 𝑒must also generate the triples 156, 256, 356, and
456. But 𝑒 can generate at most 4 triples, a contradiction.

3.3. (5,5,0). Label 𝐺 = 𝑇
10

so that {1, 2, 3, 4} spans a 𝐾
4
,

{5, 6, 7} spans a𝐾
3
, and the tenth edge is (4, 5).

(i) The edge 𝑒 = 67 of 𝐺 must be the base of a copy 𝑃
1

of 𝑆
4
since the triples 𝑖, 6, 7 for 𝑖 ∈ [4] must be based

on 𝑒. Let (w.l.o.g) 1, 2, 3, 4 be the cyclic ordering of the
4-cycle in the copy of 𝐻

4
complementary to 𝑃

1
(the

triples in 𝐶
8
(5; 1234)).

(ii) Consider the four base edges of 𝐺 on the 4-cycle 𝑈 =

1, 2, 3, 4, 1. We claim that all of them have weight 4.
Suppose this is not the case, and𝑓 = 𝑖𝑗 is covered by a
star 𝑃
2
in 𝑆
3
where 𝑖, 𝑗 are consecutive on 𝑈. Observe

that the triples 𝑖, 𝑗, 6 and 𝑖, 𝑗, 7must be in𝑃
2
.Therefore

the triple𝑀 = {1, 2, . . . , 7}\{𝑖, 𝑗, 6, 7} is covered by the
copy of 𝐻

3
complementary to 𝑃

2
. However, 𝑀 =

{5, 𝑖 + 2, 𝑗 + 2} with (mod 4), addition thus it is also
covered by the copy of 𝐻

4
complementary to 𝑃

1
, a

contradiction.
(iii) At this point, we know that the five base edges are of

weight 4, and the rest of the edges have weight 3. In
particular, 13 and 57 have weight 3, and both uniquely
determine their stars in 𝑆

3
, namely, 135, 136, 137 and

571, 572, 573. But then the triple 246 is doubly covered
by their complementary copies of 𝐻

3
-s, a contradic-

tion, finishing the proof.

3.4. (9,2,0). The base graph 𝑇1
11

cannot occur since the base
edge 𝐾

2
must generate 5 triples.

Case 1. Base graph is 𝑇5
11
, the union of edge 12, the triangles

1,3,4 and 2,5,6, and the star 37, 47, 57, 67.
The base edges 𝑒 = 34 and 𝑓 = 56 must generate the

triples 234, 345, 346 and 156, 356, 456, respectively.They can-
not both generate 𝑆

3
-s because then the triple 127 would be

doubly covered by their complementary𝐻
3
-s.

One of 𝑒,𝑓, say 𝑒 = 34 generates an 𝑆
4
. Suppose first that𝑓

generates an 𝑆
3
. Then 13 and 14 both generate 𝑆

4
-s; otherwise

247 or 237 would be doubly covered by their complementary
𝐻
3
-s. But this is a contradiction, having at least three 𝑆

4
-s in

the star partition. Thus 𝑓 also generates an 𝑆
4
. Consequently,

25 and 26 both generate 𝑆
3
-s and their complementary 𝐻

3
-s

contain the triples 167 and 157, respectively. However, at least
one of these triples is also covered by the complementary𝐻

4

of the 𝑆
4
generated by 𝑒, a contradiction.

Case 2. Base graph is𝑇4
11
, labeled so that {1, 2, 3, 4} spans a𝐾

4

and {5, 6, 7} spans a𝐾
3
, with two additional edges (4,5) (1,7).

The base edge 𝑒 = 23 must generate the triples 235, 236,
and 237. Suppose that 𝑒 generates an 𝑆

3
; then the complemen-

tary𝐻
3
contains the triples 145, 146, and 147.This implies that

the base edges 56, 57, and 67 must all generate 𝑆
4
-s. Other-

wise, suppose that 56 generates an 𝑆
3
. Since 56 must generate

the triples 256 and 356, the triple 147 is in the complementary
𝐻
3
, and it is doubly covered by the complementary 𝐻

3
of 𝑒.

Similarly, if 57 and 67 generate 𝑆
3
-s, then the triples 146 and

145 would be doubly covered. Thus 𝑒must generate an 𝑆
4
.

Consider the complementary 𝐻
4
generated by 𝑒, w.l.o.g.

let it be𝐶
8
(1; 4567).Then it contains at least two of the triples

145, 146, and 147, a contradiction.

Case 3. Base graph is𝑇3
11
, labeled so that {1, 2, 3, 4} spans a𝐾

4

and {5, 6, 7} spans a 𝐾
3
, with two additional edges (1,5) and

(4,5).
The base edge 𝑒 = 67 must generate the triples 167, 267,

367, and 467 and must thus generate an 𝑆
4
. Consider the base

edges 23, 56, and 57. 23must generate the triples 235, 236, and
237; 56 must generate 526, 536; 57 must generate 527 and 537.
If 23 generates an 𝑆

3
, then 56, 57must both generate 𝑆

4
-s, oth-

erwise the triples 147, 146 would be doubly covered. But then
there would be three 𝑆

4
-s. Hence 23 generates an 𝑆

4
, and all

the remaining edges generate 𝑆
3
-s.

Consider the base edges 12, 13, 14, 24, and 34. Since each of
these generates two triples with 6 and 7, their complementary
𝐻
3
-s contain the triples 345, 245, 235, 135, and 125, respec-

tively. However, the complementary 𝐻
4
of 67, which w.l.o.g.

can be written as either 𝐶
8
(5; 1234) or 𝐶

8
(5; 1243)must con-

tain at least three of these triples, a contradiction.

Case 4. Base graph is 𝑇2
11
, labeled such that {1, 2, 3, 4} spans

a𝐾
4
and {5, 6, 7} spans a𝐾

3
, with two additional edges (4,5),

(4,7).
The base edge 56 must generate the triples 156, 256, 356,

and the base edge 23 must generate 235, 236, and 237. If both
of them generate 𝑆

3
-s, then the complementary 𝐻

3
-s would

doubly cover 147. Hence at least one of 56 or 23 must generate
an 𝑆
4
. Similarly, if 67, 13 both generate 𝑆

3
-s, then 245 would

be doubly covered by their complementary𝐻
3
-s, and if 57, 12

both generate 𝑆
3
-s, then 346 would be doubly covered. Then

we have at least three 𝑆
4
-s, a contradiction.
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