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Abstract

Here we address the problem to partition edge colored hypergraphs by mono-
chromatic paths and cycles generalizing a well-known similar problem for graphs.
We show that r-colored r-uniform complete hypergraphs can be partitioned into
monochromatic Berge-paths of distinct colors. Also, apart from 2k − 5 vertices,
2-colored k-uniform hypergraphs can be partitioned into two monochromatic loose
paths. In general, we prove that in any r coloring of a k-uniform hypergraph there is
a partition of the vertex set into monochromatic loose cycles such that their number
depends only on r and k.

1 Introduction.

The following very simple proposition (a footnote in [8]) is our starting point here.

Proposition 1. In any 2-coloring of the edges of a finite complete graph the vertices can
be partitioned into a red and a blue path. Here the empty graph and the one-vertex graph
is accepted as a path of any color.
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There are several extensions and variations of this proposition. A very nice result of
Rado [16] says that the same holds for countably infinite graphs for any finite number r
of colors: the vertex set can be partitioned into monochromatic finite or one-way infinite
paths of distinct colors. However, this fails for finite graphs, even for r = 3 [11]. The
existence of a bound f(r) for the number of monochromatic paths covering the vertex
set of an r-colored finite complete graph was established in [9]. Erdős, Gyárfás and
Pyber [6] proved the same result for cycles, i.e. that one can partition the vertex set
to monochromatic cycles so that the number of cycles depends only on r. The bound
O(r2 log r) of [6] was improved to O(r log r) in [10]. To demonstrate the difference in the
difficulty of path and cycle partitions, we note that Lehel conjectured that Proposition 1
remains true if paths are replaced with cycles. It took a long time until the conjecture was
resolved, first for large enough complete graphs [13],[1] and finally for all complete graphs
[2]. Pokrovskiy [15] recently showed that 3-colored complete graphs can be partitioned
into three monochromatic paths as conjectured in [9]. In [6] it was conjectured that r-
colored complete graphs can be partitioned into r monochromatic cycles. For r = 3 this
was asymptotically proved in [11] but Pokrovskiy [15] found a counterexample to that
conjecture. However, in the counterexample all but one vertex can be covered by r vertex
disjoint monochromatic cycles. Thus a slightly weaker version of the conjecture still can
be true.

This paper addresses the hypergraph case. In Section 2 we prove extensions of Propo-
sition 1 for paths in hypergraphs. Note there are several known possibilities to generalize
paths in hypergraphs: Berge paths, loose paths and tight paths are the most frequently
studied variations.

A Berge path in a k-uniform hypergraph is a collection of t distinct vertices v1, . . . , vt
and t − 1 distinct edges e2, . . . et such that for i = 2, . . . , t, {vi−1, vi} ⊂ ei. We extend
Proposition 1 for Berge paths by showing that the vertex set of any r-colored r-uniform
complete hypergraph can be partitioned into Berge paths of distinct colors (Theorem 1).

A loose path in a k-uniform hypergraph is a sequence of edges, e1, . . . , et such that for
1 6 i < t, ei ∩ ei+1 = vi and for 1 6 i < j < t, ei ∩ ej = ∅. Similarly, in a loose cycle for
1 6 i 6 t, ei ∩ ei+1 = vi, where et+1 = e1 (and any other pair of edges must be disjoint).
A vertex v ∈ et different from vt−1 is called an end point of the loose path. We conjecture
that in every 2-coloring of the edges of a complete k-uniform hypergraph all but at most
k − 2 vertices can be partitioned into two monochromatic loose paths of distinct color.
We prove this with a weaker error term in Theorem 2 (2k−5 instead of k−2 thus proving
the conjecture only for k = 3). We also extend Rado’s theorem for loose paths of infinite
graphs (Theorem 3). For the general case, when the number of colors and the uniformity
are arbitrary, we show in Theorem 4 that for any r coloring of a k-uniform hypergraph
there is a partition of the vertex set into at most c = c(r, k) monochromatic loose cycles.

We finish by noting that for the most restrictive generalization of paths in hypergraphs,
tight paths, practically nothing is known. A tight k-uniform path is a sequence of t vertices
where every consecutive set of k vertices forms an edge. It seems interesting to decide
whether there is a partition into a red and a blue tight path in every 2-coloring of a
complete 3-uniform hypergraph. Soukup and Szentmiklóssy [17] recently proved this for
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the infinite case, extending Rado’s theorem to tight paths.

2 Partitions by monochromatic paths.

Similarly to the graph case, a set of less than k vertices in an edge-colored k-uniform
hypergraph is accepted as a path of any color.

Theorem 1. Suppose that the edges of the complete r-uniform hypergraph Kr
n are colored

with r colors. Then V (Kr
n) can be partitioned into monochromatic Berge paths of distinct

colors.

Proof. Apply induction on n. Suppose that Kr
n \ {v} is partitioned as required. If there

is any color that does not appear in the partition as the color of a Berge path (or just
a path for simplicity), we can extend the partition by adding v as a path in the missing
color. Thus we may assume that P1, P2, . . . , Pr are nonempty Berge paths, Pi has color i.
Let vi be the end point of Pi and set Ai = ∪rj=1vj ∪ {v}. If the edge fi = Ai \ {vi} has
color c 6= i then the partition can be extended by adding v, fc to Pc and removing all end
points and end edges except at Pc, Pi.

Therefore we may assume that fi is colored with color i for every 1 6 i 6 r. Consider
g = ∪rj=1vj and assume that g is colored by color l. Now Pl can be extended by two
vertices, vp, v where p 6= l and with the edges g, fl of color l. �

Conjecture 1. In every 2-coloring of the edges of Kk
n there are two disjoint mono-

chromatic loose paths of distinct colors such that they cover all but at most k− 2 vertices.
This estimate is sharp for sufficiently large n.

The following construction shows that if true, Conjecture 1 is best possible for n large
enough. Let Q be a vertex set of (k − 1)m + 1 vertices and color all k-element subsets of
Q red. Let S be a vertex set of 2(k−1) elements such that S∩Q = ∅. Color all uncolored
k-element subsets of Q ∪ S blue.

First we show that for m > 4(k − 1) the largest monochromatic loose path (or just
a path for simplicity) leaves at least 2k − 3 vertices uncovered. For the red path this is
obvious since |S| = 2(k − 1) > 2k − 3. To ensure this for the blue path, notice that the
longest blue path has 2|S| edges thus covers 2|S|(k − 1)− |S|+ 1 vertices of Q. Thus we
need

|Q| − (2|S|(k − 1)− |S|+ 1) > 2k − 3

which is valid by the assumption m > 4(k − 1).
We claim that any pair of vertex disjoint red-blue loose paths in the 2-colored complete

k-uniform hypergraph on vertex set V = S ∪ Q leaves at least k − 2 vertices uncovered.
If one path in the path-pair is not proper, i.e. has at most k − 1 vertices, then we have
one loose path which by the previous paragraph leaves at least 2k − 3 vertices uncovered
and in the other color at most k− 1 vertices are covered (since it is not proper). Thus at
least k − 2 vertices remain uncovered. On the other hand, if both paths are proper then
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they cover together (k− 1)p+ 2 vertices for some p. However, we have (k− 1)(m+ 2) + 1
vertices, thus at least k − 2 vertices remain uncovered. �

Conjecture 1 follows for k = 3 from the next result that gives a slightly weaker error
term for k > 4.

Theorem 2. In every 2-coloring of the edges of Kk
n there are two disjoint monochromatic

loose paths of distinct colors such that they cover all but at most 2k − 5 vertices.

Proof. Take vertex disjoint red and a blue loose paths R = e1, . . . , et, B = f1, . . . , fs such
that they cover as many vertices as possible. Let U be the set of vertices uncovered by the
vertices of the paths R,B. Suppose indirectly that |U | > 2k − 4. We may suppose that
R,B are both nonempty otherwise any vertex of U can be added with the appropriate
color. Let vR, vB be end points of the red and blue path, respectively. Observe that for
an arbitrary set S ⊂ U, |S| = k − 1, e1 = S ∪ {vR} is a blue edge and e2 = S ∪ {vB} is a
red edge, otherwise we get a contradiction to the maximality of the cover. If k = 2 then
set f = {vB, vR} and observe that either R can be replaced by R∪f ∪e2 (if f is red) or B
can be replaced by B ∪ f ∪ e1 (if f is blue) and in both cases the other path is truncated
by removing its last vertex and last edge. This contradicts the choice of R,B again.

Finally, if k > 3, there exists T ⊂ U, |T | = k − 3, T ∩ S = ∅. We can select end points
wR, wB from R,B so that wR 6= vR, wB 6= vB. Now set f = {wR, wB, p} ∪ T where p ∈ S.
Again, we get a contradiction by replacing R with R ∪ f ∪ e2 (if f is red) or replacing B
with B ∪ f ∪ e1 (if f is blue) and truncating the other path. �

It is worth noting that Rado’s result can be easily extended to loose paths of infinite
hypergraphs, even for arbitrary number of colors. (However, for finite graphs we can prove
only partitions into some number of monochromatic paths that depends on r, k only, see
Section 3.)

Theorem 3. Suppose that the edges of a countably infinite complete k-uniform hypergraph
are colored with r of colors. Then the vertex set can be partitioned into monochromatic
finite or one-way infinite loose paths of distinct colors.

Proof. Let V be the vertex set of a countably infinite complete k-uniform hypergraph
with an r-coloring. Call a subset I of colors nice, if there is a set of finite vertex disjoint
loose paths {Pi : i ∈ I} in these colors such that each Pi has an endpoint vi and the follow-
ing property is true: there is an infinite subset H of vertices such that H∩(∪i∈IV (Pi)) = ∅
and the edge for any subset S ⊂ H, |S| = k − 1, and for any i ∈ I, vi ∪ S is colored with
color i. Nice subsets exists since by Ramsey’s theorem for any vertex v there is an infinite
set H of vertices such that v /∈ H and for any S ⊂ H, |S| = k − 1, v ∪ S has the same
color i. Now color i is a nice set with Pi = {v}. Let I be a maximal nice set.

We claim that with an arbitrary ordering w1, . . . , wn, . . . of the vertices of V \ ∪i∈IPi,
every vertex wj can be added as extension of ∪i∈IPi and keeping I nice. Suppose wj is
the next vertex to be added.

If wj ∈ H then by Ramsey’s theorem, there is an infinite subset H1 ⊂ H such that
wj /∈ H1 and all edges {wj ∪ S : S ⊂ H1, |S| = k − 1} have the same color, say color l.
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By the maximality of I, l ∈ I, therefore we can extend Pl with a new edge e such that
e contains the endpoint vl of Pl, vertex wj and an arbitrary set S of k − 2 vertices from
H (not containing wj). Let wj be the new endpoint of the extended path. Replace H by
H1 \ e and observe that I is still nice and one of the paths is extended with new endpoint
wj.

The case wj /∈ H is similar, H1 and l can be defined in the same way. The only
difference is that we extend first Pl with an edge e = vl ∪ S where S ⊂ H1, |S| = k − 1
and then with a second edge f = wj ∪ T such that T ⊂ H1 and |S ∩ T | = 1. Replace H
by H1 \ (S ∪T ) and I is still nice and one of the paths is extended with new endpoint wj.

Therefore we have a system of |I| 6 r vertex disjoint finite or one-way infinite mono-
chromatic loose paths covering V . �

3 Partitions by monochromatic loose cycles.

Theorem 4. For all integers r > 1, k > 3 there exists a constant c = c(r, k) such that in
every r-coloring of the edges of the complete k-uniform hypergraph Kk

n the vertex set can
be partitioned into at most c(r, k) vertex disjoint monochromatic loose cycles.

Proof. The proof follows the method of [6] and uses the linearity of Ramsey numbers of
hypergraphs with bounded degree, see [5] and also [12], [14], [3], [4]. Since this bound is
quite weak the resulting bound c(r, k) is quite weak. It would be desirable to improve on
this bound.

A special k-uniform hypergraph, the crown is defined as follows. Consider a k-uniform
loose cycle C with edges ei, i = 1, 2, . . . , t, the base of the crown. There are t further
vertices, the rim of the crown: for each i let vi be a new vertex (not in C) and add
all new edges in the form {vi, x1, x2, . . . , xk−1} for all x1 ∈ ei, where x1, x2, . . . , xk−1 are
consecutive vertices on C. Thus at each vi we add k edges. Finally we add all missing
consecutive k-sets on C to the crown.

Thus a crown has t(k − 1) + t = tk vertices, t(k − 1) + tk edges and its maximum
degree is 2k − 1. Therefore, by the result cited above, the r-color Ramsey number of a
crown is linear thus there is a suitable function f(r, k) such that in every r-coloring of the
edges of Kk

n there is a monochromatic crown with at least n/f(r, k) vertices. We observe
the following important property of crowns.

Lemma 1. Suppose that H is a hypergraph obtained from a crown by removing an ar-
bitrary subset of the vertices of its rim together with all edges incident to the removed
vertices. Then the vertices of H can be partitioned into a loose cycle and at most k − 2
vertices.

Proof. Suppose that H contains p vertices from the rim. By removing at most k − 2
vertices of H from the rim, we may reduce H so that |V (H)| is divisible by k − 1. Now
it is easy to see that the reduced hypergraph H has a spanning loose cycle. Indeed, let
w1, . . . , wq be the vertices of H on the rim in cyclic order. (In case H has no vertices
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left on the rim, then we are done immediately.) Start with the edge f1 of H containing
w1 and the first k − 1 vertices of the edge of C associated to w1. The next edge will be
k consecutive vertices on C starting with the last vertex of f1 on C. Then continue by
forming a loose path P containing edges f1, . . . along C by adding k-element sets of C
in consecutive position, the next one always intersecting the previous one in exactly one
vertex, until it first intersects an edge e of C associated to w2. At this point we continue
P with the edge f2 that contains w2, the last vertex of P ∩ e on C and k − 2 further
consecutive points on C. We continue in this fashion. Because the number of vertices of
H on the rim divisible by k− 1, P closes into a loose cycle spanning the reduced H. This
loose cycle and the at most k − 2 removed vertices give the required partition. �

Now consider an r-coloring of the edges of the complete k-uniform hypergraph K =
Kk

n. Select a monochromatic crown T with |T | > n/f(r, k). Set R = V (K) \ V (T ) and
find consecutively monochromatic vertex disjoint loose cycles in R, at each step selecting
a largest possible one. There is always one which is at least n/f(r, k) proportion of the
remaining uncovered part, because a loose cycle has maximum degree two. (Better bounds
exist, however, for easier computation we just use f(r, k) at each step.) After s steps we
are left with an uncovered subset X. We shall fix s so that the following lemma can be
applied.

Lemma 2. Suppose X, Y are subsets of vertices in an r-colored complete k > 3-uniform
hypergraph H such that |X| 6 |Y |

2r(k−2)2 and 2(k − 3) 6 |Y |. Then there are at most

cr2 log(r) pairwise disjoint monochromatic loose cycles whose vertices cover X.

Proof. We define an r-edge-colored complete graph G on the vertex set X as follows:

u, v ∈ X are adjacent by an edge of color i if at least
( |Y |k−2)

r
edges of H are colored with

color i. Applying the main result of [6] the vertex set of G can be covered by at most
cr2 log(r) vertex disjoint monochromatic cycles. We try to make loose cycles from these
graph cycles by extending each edge of these cycles with k−2 vertices to form a hyperedge
of the same color. To achieve this we have to make the extension so that the (k− 2)-sets
of Y used are pairwise disjoint. The definition of the edge colors allows us to perform this
extension greedily. Indeed, assume that we have the required extension for some number
of edges and e is the next edge to be extended. Since the cycle partition of G has at most
|X| edges, if the (k − 2)-subsets of Y used so far cover U ⊂ Y , then |U | < |X|(k − 2).

However, at least
( |Y |k−2)

r
edges of H are colored with the color of e. Overestimating the

number of (k − 2)-subsets of Y intersecting U by |U |
( |Y |
k−3

)
, we get

|U |
(
|Y |
k − 3

)
< |X|(k − 2)

(
|Y |
k − 3

)
.

We claim that

|X|(k − 2)

(
|Y |
k − 3

)
6

( |Y |
k−2

)
r

,
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i.e. we have an extension that is disjoint from U , as desired. Indeed, otherwise we get

|Y |
2r(k − 2)

6
|Y | − k + 3

r(k − 2)
< |X|(k − 2),

contradicting the assumptions of the lemma. �
In order to apply Lemma 2 we wish to choose s such that for the remaining set X of

vertices we get

|X| 6 1

2r(k − 2)2
n

kf(r, k)
.

Then indeed the conditions of Lemma 2 are satisfied if we choose Y to be the rim of the
monochromatic crown T found in the first step since then |Y | > n

kf(r,k)
.

Since after s steps at most

(n− |V (T )|)
(

1− 1

f(r, k)

)s

vertices are left uncovered, we have to choose s to satisfy

(n− |V (T )|)
(

1− 1

f(r, k)

)s

6
1

2r(k − 2)2
n

kf(r, k)
.

This inequality is certainly true if(
1− 1

f(r, k)

)s

6
1

2rk3f(r, k)
,

which in turn is true using 1− x 6 e−x if

e−
s

f(r,k) 6
1

2rk3f(r, k)
.

This shows that we can choose s = df(r, k) log(2rk3f(r, k)e.
Thus the total number of vertex disjoint monochromatic loose cycles we used to par-

tition the vertex set of Kk
n is at most

df(r, k) log(2rk3f(r, k)e+ cr2 log(r) + k − 1 = c(r, k),

finishing the proof. �
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