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Abstract

We show that two results on covering of edge colored graphs by monochromatic connected

parts can be extended to partitioning. We prove that for any 2-edge-colored non-trivial

r-uniform hypergraph H, the vertex set can be partitioned into at most α(H) − r + 2

monochromatic connected parts, where α(H) is the maximum number of vertices that does

not contain any edge. In particular, any 2-edge-colored graph G can be partitioned into

α(G) monochromatic connected parts, where α(G) denotes the independence number of G.

This extends König’s theorem, a special case of Ryser’s conjecture.

Our second result is about Gallai-colorings, i.e. edge-colorings of graphs without 3-edge-

colored triangles. We show that for any Gallai-coloring of a graph G, the vertex set of G can

be partitioned into monochromatic connected parts, where the number of parts depends only

on α(G). This extends its cover-version proved earlier by Simonyi and two of the authors.

1 Introduction

In this paper we prove two results about partitioning edge-colored graphs (and hypergraphs) into

monochromatic connected parts. Let k be a positive integer. A k-edge-colored (hyper)graph

is a (hyper)graph whose edges are colored with k colors. It was observed in [5] that a well-

known conjecture of Ryser which was stated in the thesis of his student Henderson [11] can be

formulated as follows.
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Conjecture 1. If the edges of a graph are colored with k colors then V (G) can be covered by

the vertices of at most α(G)(k − 1) monochromatic connected components (trees).

Ryser’s conjecture (thus Conjecture 1) is known to be true for k = 2 (when it is equivalent

to König’s theorem). After partial results [9], [13], the case k = 3 was solved by Aharoni [1],

relying on an interesting topological method established in [2]. Recently Király [12] showed,

somewhat surprisingly, that an analogue of Conjecture 1 holds for hypergraphs: for r ≥ 3, in

every k-coloring of the edges of a complete r-uniform hypergraph, the vertex set can be covered

by at most ⌊kr ⌋ monochromatic connected components (and this is best possible). The authors

in [4] will consider extensions of Király’s result for non-complete hypergraphs.

The strengthening of Conjecture 1 from covering to partition was suggested in [3] (and

proved for k = 3, α(G) = 1). In this paper we extend the k = 2 case of Conjecture 1 for

hypergraphs and for partitions instead of covers (Theorem 4).

Our second partition result (Theorem 6) is about Gallai-colorings of graphs where the num-

ber of colors is not restricted but 3-edge-colored triangles are forbidden. This extends the main

result of [8] from cover to partition.

We consider hypergraphs H with edges of size at least two, i.e. we do not allow singleton

edges. Let V (H), E(H) denote the set of vertices and the set of edges of H, respectively. A

hypergraph is r-uniform if all edges have r ≥ 2 vertices (graphs are 2-uniform hypergraphs).

When there is no fear of confusion in context, we just say hypergraphs briefly. A hypergraph H

without any edge is called trivial. The cover graph GH of a hypergraph H is the graph defined

by the pairs of vertices covered by some hyperedge; namely, GH is the graph on V (H) such that

e ∈ E(GH) if and only if e is covered by some hyperedge of H.

The definition of independence number of hypergraphs is not completely standard. The

independence number α(H) is the cardinality of a largest subset S of V (H) that does not contain

any edge of H (i.e., the maximum number of vertices in an induced trivial subhypergraph of H).

Another useful variant important in this paper is the strong independence number α1(H), the

cardinality of a largest subset S of vertices such that any edge of H intersects S in at most one

vertex. In fact, α1(H) = α(GH). For example, if H is the Fano plane, α1(H) = 1, α(H) = 4.

For a complete r-uniform hypergraph H, α1(H) = 1, α(H) = r− 1. For r-uniform hypergraphs

these numbers are linked by the following inequality.

Proposition 1. For any non-trivial r-uniform hypergraph H, we have α1(H) ≤ α(H)− r + 2.

Proof. Suppose that S is strongly independent in H. Take any e ∈ E(H) (it satisfies |S∩e| ≤ 1

by the definition of S) and any v ∈ e \ S. Then the set T = (S ∪ e) \ {v} is independent and

|T | ≥ |S|+ r − 2.

We need the simplest extension of connectivity from graphs to hypergraphs (no topology

involved). A hyperwalk in H is a sequence v1, e1, v2, e2, . . . , vt−1, et−1, vt, where for all 1 ≤ i < t
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we have vi ∈ ei and vi+1 ∈ ei. We say that v ∼ w, if there is a hyperwalk from v to w. The

relation ∼ is an equivalence relation, and the subhypergraphs induced by its classes are called

the connected components of the hypergraph H. A vertex v that is not covered by any edge

forms a trivial component with one vertex v and no edge. The vertex sets of the connected

components of a hypergraph H coincide with the vertex sets of the connected components

of GH .

Let H be an edge-colored hypergraph. For a subset S of V (H), the subhypergraph induced

by S in H, that is the hypergraph on the vertex set S with edge set {e ∈ E(H) | e ⊆ S}, is
denoted by H[S]. A vertex partition P = {V1, . . . , Vl} of V (H) is called a connected partition

if every H[Vi] (1 ≤ i ≤ l) is connected in some color. Similarly, changing partition to cover,

we can define connected cover for every edge-colored hypergraph. (Note that, the subsets of

the monochromatic connected components of a hypergraph not necessary can be used as parts

of a connected partition.) Since partition into vertices is always a connected partition, we can

define cp(H), cc(H) for any edge-colored hypergraph H as the minimum number of classes in

a connected partition or connected cover, respectively. Observe that for trivial hypergraphs

cc(H) = cp(H) = α(H) = |V (H)|.
First we will prove the following statement on coverings.

Theorem 2. For any 2-edge-colored hypergraph H, we have cc(H) ≤ α1(H).

In fact, the benefit of introducing the concept of α1(H) is to provide an upper bound on

cc(H) in terms of α(H). From Proposition 1 one also gets the following important corollary:

Corollary 3. For any 2-edge-colored non-trivial r-uniform hypergraph H, we have cc(H) ≤
α(H)− r + 2.

One of our main results is the strengthening of Corollary 3 for partitions.

Theorem 4. For any 2-edge-colored non-trivial r-uniform hypergraph H, we have cp(H) ≤
α(H)− r + 2.

The previous results are sharp. To see this, consider the union of one complete r-uniform

hypergraph and several isolated vertices. Observe that, the partition version of Theorem 2 does

not hold. For example, for the hypergraph H having two edges of size r intersecting in one

vertex, one red and one blue, we have cc(H) = 2 and cp(H) = r(= α(H)− r + 2).

It is worth noting that for r = 2 Theorem 4 extends the k = 2 case of Conjecture 1. Now

we have the following general property for 2-edge-colored graphs.

Theorem 5. Any 2-edge-colored graph G can be partitioned into α(G) monochromatic connected

parts.

An edge-coloring of a graph is called a Gallai-coloring if there is no rainbow triangle in it,

i.e. every triangle is colored by at most two colors. Gallai-colorings are natural extensions of
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2-colorings and have been recently investigated in many papers (for references see [6]). It is

known that, any Gallai-colored complete graph has a monochromatic spanning tree (see e.g.

[7]). So we have cp(G) = cc(G) = 1 if G is a Gallai-colored complete graph. Now we focus on

Gallai-colored general graphs. Our result is the following:

Theorem 6. Let G be a Gallai-colored graph with α(G) = α. Then, with a suitable function

g(α), we have cp(G) ≤ g(α).

Theorem 6 extends the result proved by Gyárfás, Simonyi and Tóth [8] that in any Gallai

coloring of a graph G, cc(G) is bounded in terms of α(G). We shall also improve on a result in

[8] about dominating sets of multipartite digraphs.

2 Partitions of 2-edge-colored hypergraphs, proof of Theorem 4

We first prove the cover version.

Proof of Theorem 2. Let H be a hypergraph 2-edge-colored with red and blue. For every vertex

v ∈ V (H) let R(v), B(v) denote the monochromatic connected components containing v in the

hypergraphs of the red and blue edges, respectively. (One or both can be a single component

containing v.)

From H we construct a bipartite graph G with bipartition V (G) = (R,B), where R =

{R(v)|v ∈ V (H)}, B = {B(v)|v ∈ V (H)} and with edge set E(G) = {R(v)B(v)|v ∈ V (H)}. By
the construction, note that |E(G)| = |V (H)| and G may contain multiple edges. Also we can

regard an edge in E(G) as a vertex in H.

Notice that for any two independent edges e = R(v)B(v), e′ = R(u)B(u) ∈ E(G), there is

no monochromatic connected component containing v and u, and hence there is no edge in H

containing both v and u. Therefore the maximum number of independent edges in G, ν(G),
satisfies ν(G) ≤ α1(H).

By König’s theorem, the edges of G have a transversal of ν(G) vertices, i.e., there is a subset

T ⊆ V (G) such that |T | = ν(G) and T intersects all edges of G in at least one vertex. Then the

monochromatic components of H corresponding to the vertices of T form a desired covering of

V (H).

Remark. Conjecture 1 for k = 2 (its proof is implicitely in [5, 7]) implies Theorem 2 directly as

follows. The cover graph GH of H can be covered by α(GH) = α1(H) monochromatic connected

components and so cc(H) ≤ α1(H) also holds.

Next, we turn to the proof of the partition version.

Proof of Theorem 4. Let H be a non-trivial r-uniform hypergraph with independence number

α(H). The proof goes by induction on α(H). In the base case, when α(H) = r − 1, i.e.
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H is a 2-edge-colored complete r-uniform hypergraph, it follows from Corollary 3 that one

monochromatic component covers the vertices.

Suppose α(H) > r − 1. By Corollary 3, V (H) can be covered by the vertices of p red

components, R1, . . . , Rp, and q blue components, B1, . . . , Bq, so that

p+ q ≤ α(H)− r + 2. (1)

We may assume that p, q are both positive, since if one of them is zero, we already have the

desired partition in the other color. Set R = (
∪

1≤i≤pRi) \ (
∪

1≤i≤q Bi) and B = (
∪

1≤i≤q Bi) \
(
∪

1≤i≤pRi). If R or B is empty, we have again the required partition. Thus we may assume

that both R and B are non-empty, so α(H[R]) ≥ 1, and α(H[B]) ≥ 1. Observe that

α(H[R]) + α(H[B]) ≤ α(H) (2)

since no edge of H can meet both R and B. Therefore α(H[B]) ≤ α(H) − 1 and α(H[R]) ≤
α(H)− 1. If H[R] is non-trivial, then cp(H[R]) ≤ α(H[R])− r+2 by the inductive hypothesis,

but if H[R] is trivial then cp(H[R]) = |R| = α(H[R]). Similarly, if H[B] is non-trivial, then

cp(H[B]) ≤ α(H[B])− r + 2, if H[B] is trivial then cp(H[B]) = α(H[B]).

Case 1. H[R] is non-trivial (and H[B] is either non-trivial or trivial).

Thus R (the vertex set of H[R]) has a connected partition PR into at most α(H[R])− r+2

parts. The set B (the vertex set of H[B]) has a connected partition PB into at most α(H[B])

parts. Hence PR ∪ {B1, . . . , Bq} and PB ∪ {R1, . . . , Rp} are two connected partitions on V (H).

Using (1),(2) we have

(|PR|+ q) + (|PB|+ p) ≤ (α(H[R])− r + 2) + α(H[B]) + p+ q ≤ 2(α(H)− r + 2),

therefore one of the previous connected partitions has at most α(H)− r + 2 parts, as desired.

The case when H[B] is non-trivial goes similarly.

Case 2. H[R] and H[B] are both trivial.

Assume p ≥ q, and select a vertex v from R, without loss of generality v ∈ Rp. Observe

that no blue edge contains v, because H[R] is trivial. Hence every edge containing v is in Rp,

implying that α(H \ Rp) ≤ α(H) − 1. If p > 1 then H \ Rp is non-trivial, thus by induction

H \Rp has a connected partition with at most (α(H)− 1)− r + 2 parts, adding Rp we obtain

the required partition for H. We conclude p = q = 1.

Let S be a maximal (non-extendable) independent set of H in the form R ∪ B ∪ M . By

definition of S (and as H is non-trivial) there exists a hyperedge intersecting M ∪R or M ∪B in

exactly r−1 vertices (since no edge can intersect both R and B), assume the former. Therefore

r ≤ |M |+ |R|+ 1, this yields

α(H)−r+2 ≥ |S|−r+2 = |R|+|B|+|M |−r+2 ≥ |R|+|B|+|M |−(|M |+|R|+1)+2 = |B|+1,

thus the red component, R1 and vertices of B gives a partition of H into at most α(H)− r+ 2

connected parts.
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3 Partitions of Gallai-colored graphs, proof of Theorem 6

We need some notions introduced in [8]. If D is a digraph and U ⊆ V (D) is a subset of its

vertex set then N+(U) = {v ∈ V (D)|∃u ∈ U (u, v) ∈ E(D)} is the outneighborhood of U . A

multipartite digraph is a digraph D whose vertices are partitioned into classes A1, . . . , At of

independent vertices. Let S ⊆ [t]. A set U = ∪i∈SAi is called a dominating set of size |S| if for
any vertex v ∈ ∪i/∈SAi there is a w ∈ U such that (w, v) ∈ E(D). The smallest |S| for which a

multipartite digraph D has a dominating set U = ∪i∈SAi is denoted by k(D). Let β(D) be the

cardinality of the largest independent set of D whose vertices are from different partite classes

of D. (We sometimes refer to them as transversal independent sets.) An important special case

is when |Ai| = 1 for each i ∈ [t]. Then it follows that β(D) = α(D) and k(D) = γ(D), the usual

domination number of D, the smallest number of vertices in D whose closed outneighborhoods

cover V (D). In [8], the followings are shown:

Theorem 7 ([8]). Suppose that D is a multipartite digraph such that D has no cyclic triangle.

If β(D) = 1 then k(D) = 1 and if β(D) = 2 then k(D) ≤ 4.

Theorem 8 ([8]). For every integer β there exists an integer h = h(β) such that the following

holds. If D is a multipartite digraph without cyclic triangles and β(D) = β, then k(D) ≤ h.

To keep the paper self-contained we give a proof for this statement with a slightly better

bound than the one presented in [8].

Proof of Theorem 8. Set h(1) = 1, h(2) = 4 and h(β) = β + (β + 1)h(β − 1) for β ≥ 3. The

proof goes by induction on β. By Theorem 7, we may assume that β ≥ 3 and the theorem is

proved for β − 1. Let D be a multipartite digraph with no cyclic triangle and β(D) = β. For

each x ∈ V (D), let Z(x) be the partite class containing x. Let k1, . . . , kβ be β vertices of D,

each from a different partite class, such that |N+({k1, . . . , kβ}) ∪ (
∪

1≤i≤β Z
(ki))| is maximal.

Let K1 = {Z(ki) | 1 ≤ i ≤ β}. For each partite class Z ̸∈ K1, let Z0 = Z ∩ N+(
∪

1≤i≤β Z
(ki)).

For every i with 1 ≤ i ≤ β, let Zi be the set of vertices in Z \ Z0 that are not sending an edge

to ki, but sending an edge to kj for all j < i. Finally, let Zβ+1 denote the remaining part of

Z, the set of those vertices of Z that does not belong to N+(
∪

1≤i≤β Z
(ki)) and send an edge to

all vertices k1, . . . , kβ . (We will refer to the set Zi as the i-th part of Z.) The subgraph Di of

D induced by the i-th parts of the partite classes of D \ (
∪

1≤i≤β Z
(ki)) is also a multipartite

digraph with no cyclic triangle. For every i with 1 ≤ i ≤ β, since adding ki to any transversal

independent set of Di we get a larger transversal independent set, it satisfies β(Di) ≤ β − 1.

Suppose that β(Dβ+1) ≥ β. Let {l1, . . . , lβ} be a transversal independent set of Dβ+1.

Claim. For every x ∈
(
N+({k1, . . . , kβ}) ∪ (

∪
1≤i≤β Z

(ki))
)
\ (

∪
1≤i≤β Z

(li)), we have x ∈
N+({l1, . . . , lβ}).
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Proof. Suppose that x ∈ N+({k1, . . . , kβ})\
∪

1≤i≤β Z
(li). Then there exists an integer 1 ≤ i0 ≤ β

such that (ki0 , x) ∈ E(D). Recall that (li, ki0) ∈ E(D) for every 1 ≤ i ≤ β. Since {x, l1, . . . , lβ}
is not independent and D has no cyclic triangle, x ∈ N+({l1, . . . , lβ}), as desired. Thus we

may assume that x ∈
∪

1≤i≤β Z
(ki). Recall that (x, li) ̸∈ E(D) for every 1 ≤ i ≤ β. Since

{x, l1, . . . , lβ} is not independent, x ∈ N+({l1, . . . , lβ}).

Thus we have N+({k1, . . . , kβ}) ∪ (
∪

1≤i≤β Z
(ki)) ⊆ N+({l1, . . . , lβ}) ∪ (

∪
1≤i≤β Z

(li)). Since

l1 ∈
(
N+({l1, . . . , lβ}) ∪ (

∪
1≤i≤β Z

(li))
)
\
(
N+({k1, . . . , kβ}) ∪ (

∪
1≤i≤β Z

(ki))
)
, it follows∣∣∣∣∣∣N+({k1, . . . , kβ}) ∪

 ∪
1≤i≤β

Z(ki)

∣∣∣∣∣∣ <
∣∣∣∣∣∣N+({l1, . . . , lβ}) ∪

 ∪
1≤i≤β

Z(li)

∣∣∣∣∣∣ ,
which contradicts the choice of k1, . . . , kβ . Thus β(Dβ+1) ≤ β − 1.

By induction on β, Di (1 ≤ i ≤ β + 1) can be dominated by at most h(β − 1) partite

classes. Let K2 be the appropriate (β+1)h(β− 1) partite classes such that
∪

Z∈K2
Z dominates∪

1≤i≤β+1 V (Di). Hence we constructed a dominating set
∪

Z∈K1∪K2
Z of D containing at most

β + (β + 1)h(β − 1) partite classes.

This completes the proof of Theorem 8.

To prepare the proof of Theorem 6 we need the following lemma about trees.

Lemma 9. Let t ≥ 1 be an integer. Let T be a tree of order at least t. Then there exist two set

R ⊆ C ⊆ V (T ) such that |R| = t, |C| ≤ 2t, T [C] is connected, and either T \R is connected or

V (T ) = R.

Proof. If |V (T )| = t, then the lemma holds by choosing R = C = V (T ). Thus we may assume

that |V (T )| ≥ t+1. For each edge xy ∈ E(T ), let T x
xy denote the component of T \xy containing

x. Note that |{x}∪ (
∪

y∈N(x) V (T y
xy))| = |V (T )| ≥ t+1 for every x ∈ V (T ). We choose a vertex

x0 ∈ V (T ) and a subset A0 ⊆ N(x0) such that

(i) |{x0} ∪ (
∪

y∈A0
V (T y

x0y))| ≥ t+ 1, and

(ii) subject to (i), |{x0} ∪ (
∪

y∈A0
V (T y

x0y))| is minimized.

By the definition of x0 and A0, we have A0 ̸= ∅. Set a = |{x0} ∪ (
∪

y∈A0
V (T y

x0y))|.

Claim. a ≤ 2t.

Proof. Suppose that a ≥ 2t+1. If |A0| = 1, sayA0 = {y0}, then |{y0}∪(
∪

y∈N(y0)\{x0} V (T y
y0y))| =

a− 1(≥ t+1), which contradicts the definition of x0 and A0. Thus |A0| ≥ 2. Then there exists

a vertex y1 ∈ A0 such that |V (T y1
x0y1)| ≤ (a− 1)/2. Hence

|{x0} ∪
( ∪

y∈A0\{y1}

V (T y
x0y)

)
| = a− |V (T y1

x0y1)| ≥ a− a− 1

2
=

a+ 1

2
≥ 2t+ 2

2
= t+ 1,
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which contradicts the definition of A0.

Write
∪

y∈A0
V (T y

x0y) = {x1, . . . , xa−1}, we may assume that the elements of this set are

ordered in a non-increasing order by the distance from x0. Let C = {x0}∪ (
∪

y∈A0
V (T y

x0y)) and

R = {xi | 1 ≤ i ≤ t}. Then |R| = t, |C| ≤ 2t and both T [C] and T \R are connected.

Now we are ready to prove Theorem 6. Let g(1) = 1 and g(α) = max{h(α)(α2 + α −
1), 2h(α)g(α− 1) + h(α) + 1} for α ≥ 2.

Proof of Theorem 6. We show that cp(G) ≤ g(α(G)) with the function g defined above. We

may assume that |V (G)| ≥ g(α). We proceed by induction on α. If α = 1, then G is complete,

and hence there is a connected monochromatic spanning subgraph of G, as desired. Thus we

may assume that α ≥ 2. Let T0 be a maximum connected spanning monochromatic subtree

of G in the coloring c. We may assume that every edge of T0 has color 1. It was proved

in [7] that the largest monochromatic subtree in every Gallai-coloring of a graph G has at

least |V (G)|(α2 + α − 1)−1 vertices. Using this, since |V (G)| ≥ g(α) ≥ h(α)(α2 + α − 1),

|V (T0)| ≥ h(α) follows. By Lemma 9, there exist two sets R and C with R ⊆ C ⊆ V (T0)

such that |R| = h(α), |C| ≤ 2h(α), T0[C] is connected, and either T0 \ R is connected or

V (T0) = R. Write C = {u1, . . . , um}. Note that h(α) ≤ m ≤ 2h(α). We may assume that

R = {u1, . . . , uh(α)}. For every i with 1 ≤ i ≤ m, let Ui be the set of vertices in V (G) \ V (T0)

that are not adjacent to ui, but adjacent to uj for all j < i. For every i with 1 ≤ i ≤ m, we have

α(G[Ui]) ≤ α−1 because adding ui to any independent set of G[Ui] we get a larger independent

set. By the inductive assumption, for every i with 1 ≤ i ≤ m, there exists a partition Pi of Ui

such that |Pi| ≤ g(α−1) and, for every U ∈ Pi, G[U ] has a connected spanning monochromatic

subgraph concerning c.

Let U0 = V (G) \
(
V (T0) ∪

(∪
1≤i≤m Ui

))
. Recall that T0[C] is a connected monochromatic

tree and c is a Gallai-coloring of G. For every v ∈ U0, since v is adjacent to every vertex of

C, all of E(v, C) are colored with the same color, say cv. Note that cv ̸= 1 for every v ∈ U0

by the definition of T0. Let l be the number of colors used on edges of E(U0, C). We may

assume that 2, . . . , l + 1 are the colors used on these edges. For each i with 2 ≤ i ≤ l + 1,

Ai = {v ∈ U0 | cv = i}. Note that {A2, . . . , Al+1} is a partition of U0. Since c is a Gallai

coloring of G, each edge between Ai and Aj is colored with either color i or j for i, j with

2 ≤ i, j ≤ l + 1 and i ̸= j.

We construct the multipartite digraph D on U0 as follows:

(i) A2, . . . , Al+1 are the partition classes of D.

(ii) For i, j with 2 ≤ i, j ≤ l + 1 and i ̸= j, v ∈ Ai and v′ ∈ Aj , let (v, v
′) ∈ E(D) if and only

if vv′ ∈ E(G) and c(vv′) = i.

8



Note that β(D) ≤ α and D has no cyclic triangle. By Theorem 8, there exist at most h(α)

partite classes dominating V (D), say B1, . . . , Bp. Let Bp+1 = · · · = Bh(α) = ∅. For every i

with 1 ≤ i ≤ h(α), let B′
i be the set of vertices in U0 \

(∪
1≤i≤h(α)Bi

)
that are dominated

by Bi, but not dominated by Bj for all j < i, and let B′′
i = {ui} ∪ Bi ∪ B′

i. For each i with

1 ≤ i ≤ h(α), note that G[B′′
i ] has a connected monochromatic spanning subgraph. Therefore

P = {V (T0) \R,B′′
1 , . . . , B

′′
h(α)} ∪

(∪
1≤i≤m Pi

)
is a partition of V (G) satisfying that G[U ] has

a connected spanning monochromatic subgraph concerning c for every U ∈ P. Furthermore,

|P| ≤ (h(α) + 1) +
∑

1≤i≤m

|Pi| ≤ (h(α) + 1) +
∑

1≤i≤m

g(α− 1) =

= (h(α) + 1) +mg(α− 1) ≤ (h(α) + 1) + 2h(α)g(α− 1).

This completes the proof of Theorem 6.

4 Conclusion, open problems

The quantities cc(G), cp(G) can be far apart, even for 2-edge-colored graphs. For example,

let G be a star with 2t edges and color t edges in both colors. Then cc(G) = 2, cp(G) =

t + 1. Nevertheless, the extension of Conjecture 1 to partitions of complete graphs have been

formulated in [3]. Probably this remains true for Ryser’s conjecture in general.

Conjecture 2. If the edges of G are colored with k colors then cp(G) ≤ α(G)(k − 1).

As mentioned before, Conjecture 2 is proved for α(G) = 1, k = 3 in [3]. Note that cc(G) ≤
α(G)k is obvious for any k-edge-colored graph G. For k-edge-colored complete graphs K, Haxell

and Kohayakawa [10] proved cp(K) ≤ k, this is just one off from Conjecture 2. It would be

interesting to attack the case k = 3 in Conjecture 2 since its cover version, Conjecture 1 is

available ([1]).

As mentioned in the introduction, Király [12] solved completely the cover problem for com-

plete r-uniform complete hypergraphs (r ≥ 3). (The number of colors k can be arbitrary.) It

seems that the analogue for partition is not easy. A first test case might be the following.

Problem 3. Suppose that a complete 3-uniform hypergraph H is 6-edge-colored. Is it true that

cp(H) ≤ 2? (cc(H) ≤ 2.)

In general, the cover problem of hypergraphs for general α or α1 seems difficult, even to find

the right conjecture is a challenge. We shall address this question in [4].
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