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Our paper proves speCial cases of the following conjecture: for any fixed tree T there exists a 
natural number f = f(T) so that every triangle-free graph of chromatic number f(T) contains T 
as an induced subgraph. The main result concerns the case when T has radius two. 

1. Introduction 

Our paper gives a reexposition and some partial results on the following 
conjecture of A. Gyarfas: 

There exists an integer-valued function f defined on the finite trees with the 
property that every triangle-free graph with chromatic number f(T) contains T as 
an induced subgraph. 

The crucial point in the conjecture that it concerns induced subtrees-trees as 
partial graphs can be found easily in graphs of large chr?matic number (cf. Section 
2). 

The conjecture was posed in [1] for Kn -free graphs but it seems to us that the 
special case n = 3 contains all the difficulties. We restrict ourselves to triangle-free 
graphs throughout this paper. 

Our main result is Theorem 5 which proves the conjecture for trees of radius 
two and replaces the ad hoc proofs known by us for various special trees. The 
only other case when we can prove the conjecture 9ccurs if T is a "mop" 
(Theorem 4). A "mop" is a path with a star at the end. 

Let G = (V, E) and G' = (V', E') be two graphs. G' is a partial graph of G if 
V' ~ V and E' ~ E. G' is an induced subgraph of G if V' ~ V and for x, y E V' 
(x, y) E E' if and only if (x, y) E E. If G' is an induced sub graph of G then G' is 
determined by V'-sometimes we say that G' is induced by V'. The subgraph of 
G induced by X~ V( G) is denoted by Gx. 
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2. A walk around the conjecture 

Partial versus induced subtrees 

The conjecture becomes true with (f(T) =I V(T)i) if we want T to appear only as 
a partial graph instead of induced subgraph. This can be seen from the corollary 
of Theorem 1 below, which certainly belongs to the graph theoretic folklore. We 
do not know how well-known is Theorem 1 itself. 

Theorem 1. Let G be a k-chromatic graph whose vertices are labeled with 

1, 2, ... , k according to a good k-coloring. If Tis a labeled tree on k vertices, then 

G contains a partial tree isomorphic to T. (Isomorphy is understood between labeled 
graphs.) 

Corollary. A k-chromatic graph contains every tree on k vertices as a partial graph. 

Proof of Theorem 1. We use induction on k. The case k = 1 is clear. We prove 
that the theorem follows from k- 1 to k. Let P be a vertex of T with degree one 
and with label l(P). P is connected with the vertex Q of T which is labeled with 
l( Q). Let A be the set of vertices of G in color-class l( Q) so that every vertex in 
A is connected with at least one vertex of color-class l(P). A is not empty 
because G is k-chromatic. If we remove from V( G) the vertices of color-class 
l(P) and the vertices of color-class Z( Q) which are not in A, we have a 
(k -I)-chromatic graph with a good (k -1)-coloring. The inductive hypothesis 
guarantees a partial tree T' (label-) isomorphic to T- P. The edge (x, y) E E( G) 
where x =An V(T') and y is from color-class l(P), completes T' to a partial tree 
(label-) isomorphic to T. D 

Graphs without complete bipartite subgraphs 

While trying to prove the conjecture, Rodl and Hajnal got (independently) the 
following result: 

Theorem. For every tree T and k ~ 1 there exists a g = g(T, k) with the property: if 

a graph G contains no k- k complete bipartite sub graph as a partial graph and 
x( G)~ g, then G contains T as an induced sub graph. 

As for k = 2 the complete k-k bipartite graph is the quadrangle, the above 
result shows the conjecture to be true if "triangle-free" is replaced by 
"quadrangle-free". Combining these two properties, it is easy to prove the 
following: 

Theorem 2. A k-chromatic graph without triangles and rectangles contains every 
tree on k vertices as an induced subgraph. 
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Remark. It is interesting to compare Theorem 2 with the corollary of Theorem 1. 

Proof. We prove a stronger statement: if G is a triangle- and quadrangle-free 
graph and every vertex of G has degree at least k -1, then G contains every tree 
of k vertices as an induced subgraph. We prove by induction. The case k = 2 is 
obvious. The inductive step runs as follows. 

If G is a graph without triangles and rectangles and d(x) ~ k for every x E V( G) 
and T is a tree on k + 1 vertices then G contains an induced T' which we get from 
T by removing the edge AB and the vertex A where A is of degree 1. The set of 
vertices connnected with B in G are divided into two parts: 

xl = {x: X E V(T'), (B, x) E E( G)}, X 2 ={x :x¢ V(T'), (B, x)EE(G)} 

. No vertex of X 2 is connected to any vertex of X 1 as G is triangle-freee. No 
two vertices of X 2 are connected to the same vertex of V ( T') - X 1 - { B} since G is 
quadrangle-free. I V(T')- xl -{B}i = k -IXll-1 < IX21 because k -1 < 
IX1 1 + IX21 = d(B) ~ k, therefore there exists a y E X 2 which is not connected to 
V(T')-{B}. The subgraph of G induced by V(T')U{y} is isomorphic toT. D 

Triangle-free graphs of diameter two 

It would be very desirable to prove the special case of the conjecture when G 
contains no triangles but the addition of any new edges destroys this property. It 
is easy to see that these graphs are the triangle-free graphs of diameter two. 
R(k, 3) denotes the classical Ramsey-number, i.e. the smallest m for which every 
graph of m vertices contains a triangle or its complement contains Kk. Tk,l is a 
tree where k paths of three vertices start from a common center. (The notation 
Tk,l is introduced in Section 3, that is the reason behind the notation.) 

Theorem 3. If G is a triangle-free graph of diameter two, x( G)~ R(k, 3) + 1 and 
P E V( G), then G contains Tk,l as an induced sub graph, so that Pis the center of 

Tk,l· 

Proof. We decompose V(G)-{P} into two disjoint sets: 

A ={x: x E V(G) -{P}, (x, P) E E(G)}, 

B ={x: x E V(G)-{P}, (x, P) ¢ E(G)}. 

For every a E A we define Ba = {b: bE B, (a, b) E E( G)}. Let s be the smallest 
number for which we have an A's; A, IA'I = s for which UaeA' Ba = B- s exists 
and s~IAI because UaeABa =B (G has diameter two). If A'={al, ... ' as}, then 
the definition of s guarantees b1 , .•• , bs where bi E Bai and bi ¢ Baj for 1 ~ i, j ~ s, 
i =/- j. The sets Ba

1
, Ba

2
, ••• , Bas U {P}, A induce empty subgraphs in G which 

means s+1~x(G)~R(k,3)+1 i.e. s~R(k,3). The subgraph of G induced by 
{b1 , b2 , ••. , bs} is triangle-free so it contains k vertices, say bb b2 , ..• , bk which 
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induce an empty subgraph of G. The set {P, a1 , az, ... , ak, b1 , b2 , •.• , bk} induces 
Tk,l in G. D 

3. Mops and trees of radius two' 

Mops 

An (m, n)-mop is defined by identifying one extreme vertex of a path of m 
vertices with the center of a star of n + 1 vertices. The other extreme vertex of the 
path is called the top of the mop. We assume m ~ 2, n ~ 1. A (2, n )-mop is a star 
of n + 2 vertices and an .(m, 1)-mop is a path of m + 1 vertices. 

Theorem 4. f(T) ~ m + n if Tis an (m, n)-mop. 

Proof. We prove a stronger statement: if G 1s triangle-free, x( G)~ m + n, 
PEV(G), d(x)~m+n-1 for xEV(G)-{P}, d(P)~1 then G contains an in
duced (m, n)-mop with its top in P. The proof goes by induction on m. The case 
m = 2 is obvious because d(P) ~ 1, d( Q) ~ n + 1 where Q is a vertex connected 
with P. 

The inductive step is made from m - 1 to m. X c V( G)-{ P} denotes the set of 
vertices which are not connected with P. {x1 , x2 , ... , xt} ~X is defined so that xi is 
connected with at most m + n- 3 vertices of X- {x1 , x2 , ..• , xJ for 1 ~ i ~ t and t 
is the largest number satisfying this property. B =X- A. x( Gx) ~ m + n -1 since 
any good p-coloring of V( Gx) can be extended to a good (p+ 1)-coloring of 
V(G). We can easily define an m + n -1-coloring of V(Gx) so that A is colored 
with at most m + n- 2 colors. There exists a Q E V( G) for which (P, Q) E E( G) 
and Q is connected with some vertex of B, otherwise the (m.+ n -1)-coloring 
defined above can be extended to a good (m + n -1)-coloring of G which is 

, impossible. The graph G' induced by B U{Q} in :G is triangle-free, x(G')~ 
m+n-1, d(x)~m+n-2 for xEV(G')-{0} and d(Q)~l. The inductive 
hypothesis assures an induced (m -1, n)-mop T' with its top in Q. P completes T' 
to an (m, n)-mop T which is an induced subgraph of G and its top is in P. D 

Trees of radius two 

A graph is called of radius two if there is a vertex-the center of the 
graph~from which every other vertex can be reached'by a path of length at most 
two. (The length of a path is the number of its vertices minus one.) Tk,z is a special 
tree of radius two, the center of which is connected with k vertices and all these k 
vertices are connected with l additional vertices. Tk,z has kl + k + 1 vertices. If 
k = 1, then Tk,k is the k-nary tree with two levels. We write Tk instead of Tk,k· The 
vertices of distance one and two from the center of a tree of radius two are called 
"level-one" and "level-two" vertices respectively. The level-two vertices form 
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"level-two groups"-one level-two group consists of the set of vertices connected 
with the same level-one vertex of the tree. 

Theorem 5. f( T) exists for trees of radius two. 

Proof. Step 1. It is enough to prove the theorem for T = Tk because every tree of 
radius two is a partial graph of some Tk. 

The proof is presented as steps numbered with 1, 2, ... , 15 for better under
standing. We give here the very brief outline of the proof. f1(k), f2 (k), ... denote 
functions of k. 

A Ramsey-type lemma (Lemma 1) allows us to loose the condition that Tk is 
wanted as an induced subgraph (steps 2 and 3). The heart of the proof is a 
decomposition (step 4) of G into disjoint parts Ab A 2 , ... , At where Ai is a large 
(f1(k)- f1(k)) complete bipartite graph plus vertices which are connected with a 
large number (at least f2 (k)) of vertices of that bipartite graph. The part X of G which 
escapes from the decomposition is f3 (k)-chromatic or contains Tk (step 5). The 
components Ab . .. , At are f4 (k)-chromatic (step 6). Since t certainly depends on 
the number of vertices of G, the structure of the edges between different Ai 's 
must be analyzed. The set of these edges is denoted by '6. There are two possible 
cases: 

Case A. '6 can be colored with red and blue so that the chromatic number of 
the graphs containing red and blue edges respectively is bounded by f5 (k) and 
f6 (k), (steps 7, 9, 10, 11, 12, 13) which implies a bound for the chromatic number 
of G (steps 14, 15). 

Case B. The structure of '6 allows us (by repetitive application of Lemma 2 in 
Step 8) to find Tk in U ~ = 1 Ai. 

Step 2. Tk is called quasi-induced subgraph of a triangle-free graph G if Tk is a 
partial graph of G and every edge of G which connec,ts level-one and level-two 
vertices of Tk is an edge of Tk. In other words we can say that the only edges in G 
which make Tk a "non-induced" subgraph, connect level-two vertices of Tk. 

The following "Ramsey-type" lemma shows that a quasi-induced Tck-l)2k+k in a 
triangle-free graph G contains Tk which is an induced subgraph of G. 

Lemma 1. Hi denotes the complete i-partite graph, where every vertex-class con

tains i vertices. In every two-coloring of the edges of ~(k-l)2k+k there is either a 

triangle in the first color or Hk in the second color. 

Proof. Let us consider a two-coloring of the edges of H = Hck-lfk+k and suppose 
that there is no monochromatic triangle in the first color. We construct sets 
Ab A 2 , ... , Aj so that I Ail= k for 1 ~ i ~j, A/s are subsets of different vertex
classes of H and Ai 's are spanning a complete j-partite graph which is mono
chromatic in the second color. Let j be maximal with respect to the above 
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property. If j ~ k, we have nothing to prove. Let us suppose that j < k. g(P) 
denotes for PE Ul= 1 Ai the number of vertex-classes in H which contain at least 
k vertices connected with P in ·color one. If g(P) ~ k, then these vertices span a 
monochromatic Hk in the second color and the lemma is proved. (H contains no 
monochromatic triangles in the 'first color.) If g(P) ~ k -1 for every P E U{= 1 Ai, 
then we have at most jk(k -1) ~ (k -l)2 k vertex-classes of H in which at least k 
vertices are connected with some vertex of UL 1 Ai in color one-as H is 
(k -lfk + k-partite and j < k, we can choose a vertex-class Cq different from 
these classes and different from the vertex-classes containing A 1 , A 2 , ... , Aj. Cq 
contains at most jk(k -1) ~ (k -1fk vertices connected with U{= 1 Ai in color 
one, but Cq contains (k -1)2 k + k vertices, therefore we can choose k vertices 
from Cq which are connected to all vertices of U{= 1 Ai in color two. The k 
vertices chosen from Cq can be added as A 1+ 1 to Ab A 2 , •.• , A 1 which is a 
contradiction. 0 

Step 3. In the light of steps 1 and 2 it is enough to prove the following 
statement: the chromatic number of G is bounded by a function of k if G is a 
triangle-free graph which does not contain a quasi-induced Tk. We assume G to 
be such a graph throughout the following steps of the proof. 

Step 4, The heart of the proof is a decomposition of V( G): 

t 

V(G)= U AiUX 
i=O 

where the sets Ai and X is defined as follows. A 0 = 0. If A 0 , A 1 , ... , As are 
already defined, we consider two cases. If there is no k 8

- k 8 complete bipartite 
sub graph in the graph induced by V( G)- Uf=o Ai, then t = s and X= 
V(G)-Uf=oAi. Otherwise Bs+l is defined as a vertex-set of a k 8 -k 8 complete 
bipartite subgraph in the graph induced by V( G)- Uf=o Ai in G. Cs+l denotes the 
set of vertices in V( G)- Uf=o Ai which are connected to Bs+l with at least k 5 

edges. As+l = Bs+l U Cs+l· 
The graph induced by U~=o Ai in G is denoted by G1 . In the following step we 

shall prove that x( Gx) is bounded by a function of k. Since V( G)= 
V(Gx) U V(G1), it remains to show the same for G 1 . We can assume t~ 1 and we 
can omit A 0 which was introduced only to ease the definition of the sets Ai. 

Step 5. x( Gx) ~ g( k) for some function of k. The truth of this statement follows 
immediately from the result of Rodl and Hajnal mentioned in Section 2 since Gx 
contains neither a k 8-k 8 complete bipartite graph as a partial graph nor T = Tk as 
an induced subgraph. In order to avoid reference to an unpublished result, we 
give a proof of the above statement. It is enough to prove the following 



Induced subtrees in graphs of large chromatic number 241 

proposition: 

Proposition. Gx. contains no Ta,b as a partial graph if 

Proof. If T = Ta,b is a partial graph of Gx, then we apply Lemma 2. (Lemma 2 
appears in Step 8. No other forward-references occur during the proof.) Lemma 2 
assures a level-one vertex P1 of T which is connected to a 1 = .f(ifk level-two 
groups of T with b1 = b/k edges. We have no Tabbl as a partial tree of Ta,b so that 
all level-two vertices of Taj,b] are connected with P 1 . If we iterate this argument 
with ai+l = .f(ifk, bi+l = b/ k c times in all, we find that ac = 1, be= c which shows a 
c-c complete bipartite sub graph of T -we have a contradiction, since c = k 8 and 
Gx contains no k 8 -k 8 complete bipartite subgraph. D 

Remark. Using the corollary of Theorem 1, we have the bound I V(Ta,b)l = 

ab +a+ 1 for x( Gx). It is a poor bound, we can improve it, but we are not able to 
give a polynomial bound. We note that such an improvement would imply a 
polynomial bound for x( G). 

Step 6. The chromatic number of the graph induced by Ai in G is at most 2k 8 

since the neighborhoods of the vertices of Bi define a covering of Ai with at most 
2k 8 empty subgraphs. This observation allows us to decompose Ai into disjoint 
sets Ai,1 , Ai,2 , ..• , Ai,p; so that Ai,i induces an empty sub graph of G for 1 ~ j ~ g, 
g ~2k8 for 1 ~ i ~ t and for every Ai,i we can find a Pi,iEAi such that Pi,i is 
connected with every vertex of Ai,j· 

Step 7. Proposition. For every 1 ~ i ~ t and P E Ai 

l{j:(P, O)EE(G) for some 0EAi}i<k7
• 

The proof is based on the following lemma. 

Step 8. Lemma 2. n, m are natural numbers and H is a graph with a partial 
graph T = Tkn2,km· The sub graph of H induced by T contains either a quasi-induced 
Tk or a level-one vertex of T which is connected to at least m vertices of at least n 
level- two groups of T. 

Proof. We denote the level-one vertices of T by x1 , x2 , .•. , xkn2 and the level-two 
groups by S1o S2 , •.. , Skn2. g(xJ denotes the number of level-two groups con
nected to xi with at least m edges. We have to prove the following: if g(xJ < n for 
every 1 ~ i ~ kn 2 then T contains Tk as a quasi-induced subgraph. 

First we define a subsequence {xi} of {xJ and a subsequence {S;} of {SJ with kn 
elements as follows: xi= x1o Si = S1 . If xi, ... ,< and Si, ... , S~ are already 
defined and r < kn then we define s~+l = si, where si is a level-two group which is 
connected to every vertex of {xi, ... , x~} with at most m -1 edges and i is the 
smallest possible index with this property. We can choose such an Si because 
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g(x1), g(x2 ), ... , g(xJ < n and r < kn. x~+l is the level-one vertex belonging to 
s~+l· The sequences {xa, {sa (i = 1, 2, ... ' kn) have the property that X~ is 
connected to at -most m- 1 vertices of Sj if i < j. 

Now we define a subsequence of {xa and {sa both with k elements. These are 
denoted by { x';} and { S';} ( i = 1, 2, · ... , k) and they are defined as follows: x ~ = x~n' 
s~ = s~n· If X~, X~, ..• 'x': and S~, s~, ... ' s~ are already defined and r < k, then 
s;~ 1 = S~ where Sf is a level-two group which is connected with at most m -1 
edges to every element of {x~, x~, ... , x';} and i is the largest possible index with 
this property. We can choose such an S~, because g(xD, g(x~), ... , g(x';) < n and 
r < k. x;~ 1 is the level-one vertex belonging to s;~ 1 . The sequences {x'f}, {S';} 
( i = 1, 2, ... , k) have the property that x'I is connected to at most m - 1 vertices of 
Sj if i =f j. If we omit from Sj the vertices which are connected with x'; for i =f j, 
then at least km- (k -1)(m -1) ~ k vertices remain in them which together with 
x~, ... , x~ and the center of T define a quasi-induced Tk. D 

Step 9. Proof of the proposition given in step 7. We suppose that some P 1 E Ai 
is connected with at least k 7 different Ai. We renumber these sets Ai with indices 
1, 2, ... , k7

• Now we can define a partial tree Tk?,ks in G by taking the centre of 
Tk?,ks at Pb choosing the level-one vertices Qb Q 2 , •.. , Qk1 so that Qi E Ai and 
choosing the level-two group belonging to Qi from the complete bipartite graph 
Bi for 1 ~ j ~ k 7 . (The definition of Ai makes this possible.) 

Applying Lemma 2 for Tk7,ks, we have a P 2 E{Q1 , Q 2 , ... , Qk1} which is 
connected with at least .Jk 7 /k = k 3 level-two groups of Tk?,ks. (P2 is connected to 
at least k 5 /k = k 4 vertices of these groups, but we do not use that now.) The 
definition of P2 allows us to define a partial tree Tk3,ks of G with centre in P2 so 
that every level-one vertex is in the same Bi as its level-two group. Applying 
Lemma 2 again, we find P3 which is connected to at least k 8 I k = k 7 vertices of 
.Jk3 /k= k level-two groups of Tk3,ks· The definition of P3 makes possible to define 
the following partial graph G' of G (we make again a renumbering of the sets Ai 
in order to have simpler indices): Bj and B'I form a k 7 - k 7 complete bipartite graph 
for i = 1, 2, ... , k and P3 is connected to every vertex of U~= 1 B~. We construct a 
quasi-induced Tk in G' as follows: 

Rk E B~ and sk c B~ so that ISk I= k. We suppose that Rb sb Rk-1, 
Sk_1, ... , Rn Sr are constructed for r > 1. We define Rr_1 and Sr_1: Rr_1 is a 
vertex of B~-1 which is not connected to Uf=r si and sr-1 c B;'_1, ISr-11 = k so that 
Sr_1 is not connected to U f=r Ri. The definition of Rr_1 makes sense since every 
vertex of Bi· can be connected with less than k 5 vertices of Bi if i <j according to 
the definition of Bi so the number of vertices in B;'_ 1 which are connected to 
Uf=rSi is less than k(k-r+1)k 5 <IB;'-11= k7

• The same reasoning shows that the 
number of vertices in B;'_ 1 connected with U f= r Ri is less than ( k - r + 1) k 5 ::s; 

IB:'-11- k = k 7 - k so sr-1 can be defined sensibly. 
The center P3 , the level-one vertices Rll R2 , . .• , Rk and the level-two groups 

S1 , S2 , ... , Sk determine a quasi-induced Tk in G. This is a contradiction. 0 
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Step 10. We define m = m(i, j) for every Ai,j (1 ~ i ~ t, 1 ~j ~ g-the definition 
of Ai,i is given in step 6) as follows: m is the maximal integer for which there exist 

xb x2, ... ' Xm E Ai,j Dh c Ail' Di2 c Ah, ... ' Dim c Aim so that i < il < i2 < im, IDitl = 

1Di21 = · · · = IDiJ = k and xn is connected with every vertex of Din for n = 

1, 2, ... , m. If no m exists witli the required property, we set m(i, j) = 0 (for 
example m(t, j) = 0 for j = 1, 2, ... , Pt)· 

Proposition. m = m(i, j) < k 15 for every i, j, 1 ~ i ~ t, 1 ~ j ~g. 

Proof. If m = m(i, j);?; k15 for some i, j, then 

m' 

{Pi,j} u {xl, x2, ... 'Xm} u u Din 
n=l 

induces a subgraph of G which contains Tk1s,k as a partial graph. (Pi,i is the vertex 
of Ai which is connected to every vertex of Ai,i-cf. step 6.) Lemma 2 gives us a 
vertex xn (for some 1 ~ n ~ m) which is connected to at least k/ k = 1 vertex of 
-J k 15 I k = k 7 different sets Ai-we have a contradiction with the _proposition of 
step 7. D 

Step 11. We color the edges of G connecting different Ai 's with two colors. Let 
(x, y) be an edge of G so that x E Ai, y E Ai, and i' -=f i. We may assume i < i' and 
x E Ai,i for some 1 ~ j ~g. We consider the set {xb x 2 , .•• , xm} c Ai,i defined in 
step 10. If m(i, j) = 0, then the empty set is chosen. 

The edge (x, y) is colored with 

red if x¢{x1 , x2 , ... , xm} and y¢ Ai
1 
U AbU··· U Aim'' 

blue otherwise. 

Proposition. (a) l{y : y E Ai', i < i', (x, y) is red}!< (k _l_ 1) k 7 for every fixed i and 

xEAh 
(b) l{i':xEAi, yEA1,, i<i', (x, y) is blue}l<2k30 for every fixed i. 

Proof. (a) Let us suppose that xEAi,j· If (x,y) is red, then x¢{x1,x2 , ... ,xm}, 
y¢ Ail U A 12 U · · · U A 1m and the choice of m = m(i, j) implies that at most k -1 
edges go from x to A 1,. On the other hand, x is copnected with less than k 7 

different A/s by the proposition of step 7. 
(b) Let x be a vertex of Ai,j· If x E Ai,i -{x1, •.. , xm} then blue edges from x to 

Ai' for i < i' are ppssible only if i' E {ib ... , im}. This means that the blue edges 
from Ai,i reach less than mk 7 ~ k 22 A/s for i < i' if i, j are fixed. (Propositions in 
step 7 and step 10 were used.) Since A 1 = Uf~ 1 A 1,j, g ~2k8 (cf. Step 6) therefore 
the blue edges from A 1 reach less than k 22 

• 2k 8 = 2k30 A/s for i < i' if i is 
fixed. D 
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Step 12. Proposition. The graph G2 with vertices U:= 1 Ai and with the red edges 
(defined in step 11) is at most (k-1)k 7 -chromatic. 

Proof. Let xb x 2 , ... be the following ordering of the vertices of G2 : first we take 
the vertices of A 1 in any order, 'then the vertices of A 2 in any order, ... , finally 
the vertices of At in any order. Ai induces an empty subgraph of G2 for all 
1 ~ i ~ t, therefore part (a) of the proposition in step 11 shows that the "forward 
degree" of the vertices of G2 in the ordering given above is less than (k -1)k 7 

which implies x( G2) ~ (k -1)k 7 easily. 0 

Step 13. Proposition. The graph G3 with vertices U:= 1 Ai and with the blue 
edges (defined in step 11) is at most 2k 30-chromatic. 

Proof. We define the graph Gj as follows: V( Gj) = { w1 , w2 , ... , wt} and ( wh w;-) 
is an edge of Oj if and only if there is an edge between Ai and Ai' in 0 3 • Part (b) 
of the proposition in step 11 shows that the "forward degree" of the vertices of 
Oj in the ordering w1 , w2 , ..• , wt are less than 2k30 so x( Gj) ~ 2k30 which 
implies x( 0 3 ) ~ 2k30 since Ai induces an empty subgraph of 0 3 • 0 

Step 14. P_roposition. The graph 0 4 with vertices Uf= 1 Ai and with the edges of 
0 1 which are neither blue nor red, is at most 2k 8 -chromatic. 

Proof. G4 consists of t connected components all of which are at most 2k 8
-

chromatic (step 6). 0 

Step 15. The proof of Theorem 5 is now complete since 

x( 01) = x( 02 U 03 U 04) ~ x( 02)x( 03)x( 04) 

~ ( k - 1) k 7 
• 2 k 30 

• 2 k 8 ~ 4 k 46 

therefore the chromatic number of 0 1 is bounded by a polynom of k as claimed 
in step 4. 
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