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Abstract: The Grundy number of a graph G is the largest k such that
G has a greedy k-coloring, that is, a coloring with k colors obtained by
applying the greedy algorithm according to some ordering of the vertices
of G. In this article, we give new bounds on the Grundy number of the
product of two graphs. � 2011 Wiley Periodicals, Inc. J Graph Theory

Keywords: coloring; product; Grundy

1. INTRODUCTION

Graphs considered in this article are undirected, finite and contain neither loops nor
multiple edges (unless stated otherwise). The definitions and notation used in this article
are standard and may be found in any textbook on graph theory; see [4] for example.
Given two graphs G and H, the direct product G×H, the lexicographic product G[H],
the Cartesian product G�H, and the strong product G�H are the graphs with vertex
set V(G)×V(H) and the following edge sets:

E(G×H)= {(a,x)(b,y)|ab∈E(G) and xy∈E(H)};
E(G[H]) = {(a,x)(b,y)| either ab∈E(G) or a=b and xy∈E(H)};
E(G�H)= {(a,x)(b,y)| either a=b and xy∈E(H) or ab∈E(G) and x=y};
E(G�H)= E(G×H)∪E(G�H).

A k-coloring of a graph G is a surjective mapping � :V(G)→{1, . . . ,k}. It is proper
if for every edge uv∈E(G), �(u) �=�(v). A proper k-coloring may also be seen as
a partition of the vertex set of G into k disjoint non-empty stable sets (i.e. sets of
pairwise non-adjacent vertices) Ci={v|�(v)= i} for 1≤ i≤k. For convenience (and with
a slight abuse of terminology), by proper k-coloring we mean either the mapping �
or the partition {C1, . . . ,Ck}. The elements of {1, . . . ,k} are called colors. A graph is
k-colorable if it admits a k-coloring. The chromatic number �(G) is the least k such
that G is k-colorable.

Many upper bounds on the chromatic number arise from algorithms that produce
colorings. The most basic one is the greedy algorithm. A greedy coloring relative to
a vertex ordering v1<v2< · · ·<vn of V(G) is obtained by coloring the vertices in the
order v1, . . . ,vn, assigning to vi the smallest positive integer not already used on its
lower indexed neighbors. Trivially, a greedy coloring is proper. Denoting by Ci the
stable set of vertices colored i, a greedy coloring has the following property:

For every i<j, every vertex in Cj has a neighbor in Ci (�)

for otherwise the vertex in Cj would have been colored i or less. Conversely, a coloring
satisfying Property (�) is a greedy coloring relative to any vertex ordering in which
the vertices of Ci precede those of Cj whenever i<j. The Grundy number �(G) is the
largest k such that G has a greedy k-coloring.
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Let �(G) denote the maximum degree in a graph G. Let Kn denote the complete
graph on n vertices and Kp,q denote the complete bipartite graph with parts of size p
and q. Let Sn denote the edgeless graph on n vertices.

In [1], Asté et al. investigated the Grundy number of several types of graph products.
They showed that the Grundy number of the lexicographic product of two graphs is
bounded in terms of the Grundy numbers of these graphs.

Theorem 1 (Asté et al. [1]). For any two graphs G and H, �(G[H])≤2�(G)−1

(�(H)−1)+�(G).

Moreover, when the graph G is a tree, they obtained an exact value.

Theorem 2 (Asté et al. [1]). Let T be a tree and H be any graph. Then �(T[H])=
�(T)�(H).

They also showed that, in contrast with the lexicographic product, there is no upper
bound of �(G�H) as a function of �(G) and �(H); for example, �(Kp,p)=2 and
�(Kp,p�Kp,p)≥p+1. Nevertheless, they showed that �(G�H) is bounded by a function
of �(G) and �(H).

Theorem 3 (Asté et al. [1]). For any two graphs G and H, �(G�H)≤�(G)·
2�(H)−1+�(H).

However, they conjectured that this upper bound is far from being tight.

Conjecture 4 (Asté et al. [1]). For any two graphs G and H, �(G�H)≤(�(G)+1)
�(H).

This conjecture generalizes the following conjecture of Balogh et al. [3].

Conjecture 5 (Balogh et al. [3]). For any graph H, �(K2�H)≤2�(H).

Here is another conjecture that would imply the preceding one.

Conjecture 6 (Havet and Zhu). If G is any graph and M is a matching in G, then
�(G)≤2�(G\M).

In [7], Havet et al. proved Conjecture 4 in the case when one of G,H is a tree.

Theorem 7 (Havet et al. [7]). For any graph G and tree T,�(G�T)≤ (�(G)+1)�(T).

Here, we investigate further the relation between the Grundy number of the direct
product, lexicographic product or Cartesian product of two graphs and the invariants
� and � of the two graphs. We first show that �(G�H)≤�(H[K�(G)+1]). Together,
with Theorems 1 and 2, this implies Theorems 3 and 7, respectively. In particular, we
obtain a shorter proof of Theorem 7.

We then show that �(G[K2])=�(G[S2]�K2). As a corollary, we give an example
of a graph that disproves Conjectures 4–6: there is a graph H such that �(H)=3 and
�(K2�H)=7. Together with Theorem 3 this yields max{�(K2�H)|�(H)=3}=7.

Regarding the direct and strong product, we answer a question raised as the last
sentence in [1]. There cannot be any bound on �(G×H) and �(G�H) as a function of
�(G) and �(H) if �(G) and �(H) are both ≥3 (Theorem 15). It is also impossible to
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bound �(G×H) in terms of �(G) and �(H) when G is any graph with at least one edge
and �(H)≥5 (Theorems 17). Similarly, it is impossible to bound �(G�H) in terms
of �(G) and �(H) when �(H)≥5 unless G is the disjoint union of complete graphs
(Theorem 18 and Proposition 19).

2. THE CARTESIAN AND LEXICOGRAPHIC PRODUCTS

A. Common Proof of Theorems 3 and 7

Theorem 8. For any two graphs G and H, �(G�H)≤�(G[K�(H)+1]).

Proof. We shall prove that if G�H has a greedy q-coloring for some integer q,
then so does G[K�(H)+1]. Hence, consider a greedy q-coloring � of G�H.

Let x1,x2, . . . ,xn be an ordering of the vertices of G such that �(x1,y)≤�(x2,y)≤
· · ·≤�(xn,y). Let z0, . . . ,z�(H) be the vertices of K�(H)+1. So every vertex of G[K�(H)+1]
is a pair (xi,zj) for some i∈{1, . . . ,n} and j∈{0,1, . . . ,�(H)}. Let (x,y) be a vertex of
G�H with color q.

For every i in {1, . . . ,n}, we assign color �(xi,y) to vertex (xi,z0) of G[K�(H)+1]. Then
for i=1 to n, we do the following. Let Li be the set of all colors �, with �<�(xi,y),
that have not been assigned to any neighbor of (xi,z0) in G[K�(H)+1]. Since � is a
greedy coloring and color �(xj,y) is assigned to (xj,z0) for each j, Li is a subset of
{�(xi,u)|u∈N(y)}. Therefore, |Li|≤�(H). Hence, we can assign all the colors of Li to
distinct vertices in {(xi,zj)|1≤ j≤�(H)}.

Let us show that the obtained partial q-coloring of G[K�(H)+1] is a greedy coloring.
It is proper since colors already assigned to neighbors of (xi,z0) are not in Li. In Li we
add every color �<�(xi,z0) such that (xi,z0) had no neighbor colored � before Step i.
Hence, after Step i, vertex (xi,z0) has a neighbor of each color less than �(xi,y). Now
every colored vertex (xi,z) has a color � less than �(xi,y). But, by the definition of
the lexicographic product, all neighbors of (xi,z0), except (xi,z) itself, are neighbors of
(xi,z). Hence, (xi,z) has a neighbor of each color less than �. So the coloring is greedy.

�

B. Disproof of Conjecture 4

Asté et al. [1] proved the following:

Lemma 9 (Asté et al. [1]). For any graph G and any integer n, �(G[Sn])=�(G).

Now we prove:

Theorem 10. Let G be a graph. Then �(G[K2])=�(G[S2]�K2).

Proof. Let us show that the left-hand side is at most the right-hand side. Consider
a greedy coloring � of G[K2]. Every vertex v of G corresponds to two adjacent vertices
of G[K2]. Let us denote by �1(v) and �2(v) the two distinct colors assigned by � to
these vertices. In the graph G[S2]�K2, every vertex v corresponds to four vertices av,
bv, a′

v and b
′
v inducing two edges avbv and a′

vb
′
v, and so that if uv is any edge of G, then

G[S2]�K2 has all edges between {au,a′
u} and {av,a′

v} and all edges between {bu,b′
u}
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and {bv,b′
v}. Assign color �1(v) to av and b′

v and color �2(v) to bv and a′
v. Doing this

for every vertex, it is easy to check that we obtain a greedy coloring of G[S2]�K2.
Hence, �(G[K2])≤�(G[S2]�K2).

Let us now show that the right-hand side is at most the left-hand side. By Theorem 8,
we have �(G[S2]�K2)≤�(G[S2][K2]). We claim that �(G[S2][K2])≤�(G[K2]). To see
this, consider any greedy coloring � of G[S2][K2] with q colors. In G[S2][K2], every
vertex v of G corresponds to four vertices av,bv,cv,dv with two edges avbv,cvdv, and
for every edge uv of G, there are all edges between {au,bu,cu,du} and {av,bv,cv,dv}.
Suppose that � assigns at least three different colors in {av,bv,cv,dv} for some v,
say �(av)= i, �(bv)= j, �(cv)=k, where, up to symmetry, i<j and k /∈{i, j}. Note that
bv has no neighbor of color k, because its neighbors are either av or adjacent to cv.
So j<k. At least one color h∈{i, j} is not the color of dv, so cv has no neighbor of
color h, a contradiction. So � uses exactly two colors in {av,bv,cv,dv} for every vertex v
of G. It follows that the restriction of � on the subgraph of G[S2][K2] induced by
{av,bv|v∈V(G)}, which is isomorphic toG[K2], is a greedy coloring with q colors. So the
claim that �(G[S2]�K2)≤�(G[K2]) is established. This completes the proof. �

Remark 11. Theorem 10 can be generalized in a straightforward manner to the
following result: Let G be any graph and p be any integer. Then �(G[Kp])=
�(G[Sp]�Kp).

Theorem 10 implies that Conjectures 4–6 do not hold, as follows.

Corollary 12. There is a graph H such that �(H)=3 and �(K2�H)=7.

Proof. Let G3 be the graph that consists of a cycle of length 6 plus one vertex
g adjacent to a vertex a of the cycle and one vertex h adjacent to another vertex b
of the cycle, where a and b are adjacent. Let H=G3[S2]. Asté et al. [1] showed that
�(G3)=3 and �(G3[K2])=7. Hence, Lemma 9 yields �(H)=3 and Theorem 10 yields
�(K2�H)=7. This proves the corollary.

Alternately, let G′
3 be the graph obtained from G3 by identifying the two vertices

g and h (i.e., replacing them by one vertex adjacent to a and b), and let H′ =G′
3[S2].

Then one can also check that �(H′)=3 and �(K2�H′)=7. �

Clearly, the two graphs H and H′ mentioned in the preceding proof are counterex-
amples to Conjectures 4 and 5. Note also that if v is any vertex of H and av,bv
are the corresponding two vertices in K2�H, then the set M={avbv|v∈V(H)} is a
matching in K2�H, and (K2�H)\M consists of two disjoint copies of H with no edge
between them; so �((K2�H)\M)=3. This shows that K2�H is a counterexample to
Conjecture 6. The same holds for K2�H′.

Corollary 12 shows that Conjecture 4 does not hold if �(H)=3. On the other hand,
we now show that Conjecture 4 holds if �(H)=2.

Proposition 13. Let G and H be two graphs. If �(H)=2, then�(G�H)≤2(�(G)+1).

Proof. If H is not connected, and has components H1, . . . ,Hp (p≥2), then G�H is
the disjoint union of G�H1, . . . ,G�Hp, and it suffices to prove the proposition for each
graph G�Hi. Therefore, we may assume that H is connected. If �(H)=2, then H is a
complete bipartite graph [10]. Let (A,B) be its bipartition. For every vertex v∈V(G),
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define Av={(v,a)|a∈A} and Bv={(v,b)|b∈B}, so Av and Bv are the two sides of the
copy of H indexed by v in G�H. Let � be a greedy coloring of G�H. We claim that:

For any v in V(G), |�(Av)|≤�(G)+1 and |�(Bv)|≤�(G)+1.

Assume for a contradiction, and up to symmetry, that |�(Av)|≥�(G)+2. Let � be the
largest color of �(Av) and let x= (v,a) be a vertex colored �. The neighborhood of x in
G�H is Bv∪{(w,a)|w∈NG(v)}. But the colors of �(Av) do not appear on Bv because it
is complete to Av, and |{(w,a)|w∈NG(v)}|=dG(v)≤�(G). Hence, at most �(G) colors
of �(Av) may appear on the neighborhood of x, and so at least one color of �(Av)\{�}
does not. This contradicts the fact that � is a greedy coloring and proves the claim.

Let y= (v,b) be a vertex such that �(y) is maximum. Without loss of generality,
we may assume that b∈B. At most 2�(G)+1 colors appear in the neighborhood of y:
at most �(G)+1 on Av according to the claim, and at most one more for each of its
neighbors not in Bv, whose number is dG(y)≤�(G). Hence, �(y)≤2�(G)+2. �

Remark 14. Proposition 13 can easily be generalized to complete multipartite graphs
in a straightforward manner to obtain the following result: if H is a complete multipartite
graph, then �(G�H)≤ (�(G)+1)�(H).

3. THE DIRECT AND STRONG PRODUCTS

Here we show that �(G×H) and �(G�H) cannot be bounded by a function of �(G) and
�(H) if �(G),�(H)≥3 (Theorem 15). It is also a natural question to bound �(G×H)
or �(G�H) in terms of �(G) and �(H). For �(G)=1, a non-trivial construction of [2]
shows that 3	�(H) /2
−1≤�(K2×H). Somewhat surprisingly, we show in Theorem
17 that there is no upper bound on �(K2×H) in terms of �(H) if �(H)≥5. Moreover,
we show in Theorem 18 that there is no upper bound on �(P3�H) in terms of �(H)
if �(H)≥5. In fact, Theorem 18 implies that there is no upper bound on �(G�H)
as a function �(G) and �(H) for �(H)≥5 unless G is the disjoint union of complete
graphs. In Proposition 19, we show that there is an upper bound in such a case.

Let us first recall some definitions. The binomial tree is the graph Tk defined recur-
sively as follows. For k=1, T1 is the one-vertex graph. For k≥2, Tk is obtained from
Tk−1 by adding, for each vertex v of Tk−1, one vertex v′ with an edge vv′. It is easy to
see that, for k≥2, Tk has two adjacent vertices r,s of degree k−1 and the other vertices
have degree at most k−2, and the two components of Tk\rs are both isomorphic to
Tk−1. We view Tk as rooted at vertex r. We have �(Tk)=k. More precisely, Tk has
a greedy coloring � where each vertex v /∈{r,s} has color equal to its degree, and s,r
have color k−1 and k, respectively. Note that for each vertex v and color i<�(v), v
has a unique neighbor of color i.

The radius of a graph G is the smallest integer t for which there exists a vertex a of
G such that every vertex of G is at distance at most t from a. Note that the radius of
Tk is k−1. It is easy to see that every tree with radius at most 2 has Grundy number at
most 3. This is also a corollary of the following result from [5, 6]: the Grundy number
of a tree is equal to the Grundy number of its largest binomial subtree, and of the fact
that the radius of a subtree of a tree T is not larger than the radius of T .
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Theorem 15. For every k≥3, there is a graph G such that �(G)=3 and �(G×G)≥k
and �(G�G)≥k.

Proof. Let G be the graph obtained from Tk by subdividing every edge once.
Partition the vertex set of G into two stable sets A and B such that A contains the original
vertices of Tk and B contains the subdivision vertices. Consider any greedy coloring
of G. Every vertex in B has degree 2 and consequently receives a color from the set
{1,2,3}. Moreover, a vertex in B receives color 3 if and only if its two neighbors have
received colors 1 and 2, respectively. It follows that no vertex of A can receive color
4 or more. This implies that �(G)≤3. Since G contains a four-vertex path, �(G)≥3.
Thus �(G)=3. To complete the proof of the theorem, let us show that G×G and G�G
have a common induced subgraph Hk isomorphic to Tk. This implies �(G×G)≥k and
�(G�G)≥k.

Let the root r of Tk become the root of G. Since G is viewed as a rooted tree, every
vertex in B has one parent and one child. Consider the greedy coloring � of Tk with
k colors as defined above, such that the root r has color k and the second vertex s
of degree k−1 has color k−1. For i∈{1, . . . ,k}, let Ai be the set of vertices in A that
receive color (k+1)−i. So A1={r} and A2={s}. For each i∈{2, . . . ,k}, let Bi be the
set of vertices in B whose child is in Ai. We say that a vertex v in Ai∪Bi has label i and
denote by �v the label of v. Let q be the parent of s (i.e., q is the common neighbor of r
and s). Let d(x,y) denote the distance between any two vertices x and y inG. We prove by
induction on i∈{2, . . . ,k} thatG×G andG�G have an induced subgraphHi such that:

(1) Hi is isomorphic to Ti and contains vertex (r,q).
(2) Every vertex of Hi is of the form (a,b) or (b,a), with a∈A and b∈B; moreover,

�a<�b≤ i, vertices a, b lie in distinct components of G\rq, and d(a,r)=d(b,q).

For i=2, the induced subgraph H2 with vertices (r,q) and (q,r) and an edge between
them is the desired copy of T2. Now let i≥3. By the induction hypothesis, there exists
a common induced subgraph Hi−1 of G×G and G�G that satisfies (1) and (2). Let z
be any vertex of Hi−1, and let a∈A and b∈B be such that z is equal to (a,b) or (b,a).
Let u be the unique child of b in G. By the definition of the labels, we have �u=�b.
By property (2), we have �a≤ i−1, so (in Tk, and since � is a greedy coloring) a has
a neighbor of color (k+1)− i, and (in G) a has a neighbor v∈B with label i. Clearly,
u and v lie in distinct components of G\rq since a and b do. Now, either (v,u) or
(u,v) is a neighbor of (a,b) in G×G and we call this neighbor the leaf of z, and z
is called the support of its leaf. Note that any leaf-support edge is also an edge in
G�G as E(G×G)⊆E(G�G). Since v has label i, the leaf of z is not a vertex in Hi−1.
Since �u=�b≤ i−1 and �v= i, we have �u<�v≤ i. Since u is a child of b and v is a
child of a, we have d(u,r)=d(v,q). (More precisely: if a lies in the component Gr of
G\rq that contains r and b lies in the other component Gq, then d(u,r)=d(b,q)+2 and
d(v,q)=d(a,r)+2; if on the contrary a lies in Gq and b lies in Gr, then d(u,r)=d(b,q)
and d(v,q)=d(a,r).)

Let Vi−1 be the vertex set of Hi−1 and let Wi−1 be the set of leaves of vertices
in Vi−1. Let Hi be the subgraph of G�G induced by the vertices in Vi−1∪Wi−1. As
observed above, Hi satisfies property (2). In order to show that Hi is isomorphic to Ti,
we need only to prove that (i) each vertex in Wi−1 has a unique neighbor in Vi−1 and
(ii) Wi−1 induces a stable set. Note that this also implies that Hi is an induced subgraph
in G×G as E(G×G)⊆E(G�G).

Journal of Graph Theory DOI 10.1002/jgt
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To show that Claim (i) is true, suppose on the contrary that the leaf (v,u)∈Wi−1 of
some vertex (a,b)∈Vi−1 is adjacent to a vertex (x,y)∈Vi−1 different from (a,b). Up
to symmetry we may assume that a,u∈A and b,v∈B and that a lies in Gr and b in
Gq (the argument in the other cases is similar). We must have x=a, for otherwise x is
either v or the child of v and �x= i, which contradicts property (2) in Hi−1. Since x∈A,
then y∈B by property (2). Now, y �=b, and y is a child of u. Now d(y,q)=d(b,q)+2,
whereas d(x,r)=d(a,r), so d(x,r) �=d(y,q), a contradiction.

To show that Claim (ii) is true, suppose on the contrary that (a,b) and (b′,a′) are
two adjacent vertices in Wi−1. We can consider a,a′ ∈A and b,b′ ∈B as they could not
be adjacent otherwise. Let (sa,sb) and (sb′ ,sa′ ) be the supports of (a,b) and (b′,a′),
respectively. Note that sa,sa′ ∈B and sb,sb′ ∈A, which implies that �sb<�sa and �sb′ <�sa′ .
By the definition of the labels, we have �sa =�a and �sa′ =�a′ . Moreover, each of b and
b′ has label i and consequently has a child of label i and �a<�b= i. Thus, for (a,b) to be
adjacent to (b′,a′), a must be the neighbor of b′ with label smaller than i, which is sb′ .
In particular, �a=�sb′ , and, by a symmetric argument, �a′ =�sb . Putting this all together,
we obtain that if (a,b) is adjacent to (b′,a′), then �a=�sb′<�sa′ =�a′ =�sb<�sa =�a
which is a contradiction. �

To prove Theorems 17 and 18, we study the graph Hk defined as follows. We start
from the binomial tree Tk whose vertex set is partitioned into three sets X1,X2,X3. The
root of Tk is in X1. For every v∈X1∪X3, the children of v are in X2. For every v∈X2,
the children of v are placed according to the position of the parent w of v: if w∈X1,
then the children of v are in X3; if w∈X3, then the children of v are in X1. Now Hk is
obtained by adding to Tk all edges between X1 and X3.

Theorem 16. For k≥1, �(Hk)≤5. Furthermore, for k≥9, �(Hk)=5.

Proof. We first observe that �(Hk)≤6 for every k. Indeed, in Hk every stable set
is contained either in A1=X1∪X2 or in A2=X2∪X3. If Hk admits a greedy coloring
with at least seven colors, then at least four color classes are included in one of the
two sets A1 and A2, say in Aj. This means that the subgraph H∗ induced by Aj in Hk
has Grundy number at least four. However, each component of H∗ is a tree of radius
at most 2, which implies that H∗ has Grundy number at most 3.

In order to complete the first part of the theorem, let us give a more detailed analysis
to show that �(Hk)≤5. The following two properties of Tk are useful:

(1) Any vertex v∈X2 has either exactly one neighbor in X1 or exactly one neighbor
in X3 (because if the parent of v is in one of X1,X3, then all its children are in
the other of these two sets).

(2) For i=1,3, no path on five vertices in Xi∪X2 has its two endvertices in Xi
(because every component of Xi∪X2 consists of either the root of Tk and its
children, or some vertex of X2, its children and its grandchildren).

Suppose that there exists a greedy 6-coloring � on Hk.

Case 1. �(v)∈{5,6} for v∈X2. Vertex v has neighbors of colors 1, 2, 3, 4. By
property (1), v is adjacent to at most one vertex of X1 or X3. So there is i∈{1,3}
such that v has neighbors w1,w2,w3∈Xi with �(w1)<�(w2)<�(w3)≤4. Then w3 has a
neighbor w4 with �(w4)=�(w2), and w4 has a neighbor w5 with �(w5)=�(w1). Since
{w2,w4} and {w1,w5} are stable sets, we have w4∈X2 and w5∈Xi. But then the path
w1-v-w3-w4-w5 contradicts property (2).
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Case 2. �(v)=6 for some v∈X1∪X3. Let i be the index in {1,3} such that v∈Xi.
Vertex v has a neighbor w with �(w)=5. Then w∈X4−i, otherwise Case 1 applies.
Vertices v and w have neighbors uv and uw of color 4, possibly uv=uw, but we cannot
have one in X1 and the other in X3. Hence, one vertex u∈{uv,uw} is in X2. Let t be
its neighbor in {v,w} and j the index such that t∈Xj. Vertex u has three neighbors
a, b, c such that {�(a),�(b),�(c)}={1,2,3}. By property (1), either two elements of
{a,b,c}, say a, b, are in Xj, or {a,b,c}⊂X4−j. If a,b∈Xj, we may assume �(a)<�(b),
and we pick a neighbor d of t with �(d)=�(b) and a neighbor e of d with �(e)=�(a).
Since {a,e} and {b,d} are stable sets in Hk, we have d∈X2,e∈Xj. But then the path
e–d–t–u–a contradicts property (2). If {a,b,c}⊂X4−j, we may assume that �(a)=1,
�(b)=2 and �(c)=3. There is a neighbor d of c with �(d)=2 and a neighbor e of d
with �(e)=1. Since {a,e} and {b,d} are stable sets in Hk, we have d∈X2,e∈X4−j. But
then the path e–d–c–u–a contradicts property (2). Thus we have shown that �(Hk)≤5,
which completes the first part of the theorem.

Now, we show that �(Hk)=5 when k≥9. We know that �(Tk)=k, so Tk contains a
path a1−a2−·· ·−a9 whose vertices are colored k,k−1, . . . ,k−8, respectively, where
a1 is the root of Tk, and a path a2−b3−b4−b5 whose vertices are colored k−1,k−3,
k−4,k−5, and a path a6−b7−b8 whose vertices are colored k−5,k−7,k−8. Note
that vertices a1,a5,a9,b5 are in X1, vertices a2,a4,a6,a8,b4,b8 are in X2 and vertices
a3,a7,b3,b7 are in X3. Now we can make a greedy coloring of Hk with five colors,
where vertices a2,a5,b5,b8,a9 receive color 1, vertices a3,b4,b7,a8 receive color 2,
vertices b3,a6 receive color 3, and vertices a1 and a7 receive colors 4 and 5. �

Theorem 17. If G is a graph with at least one edge and k≥1, then �(G×Hk)≥k.

Proof. It is enough to prove the theorem when G=K2, V(G)={v1,v2}. We claim
that �(G×Hk)≥k. To see this, let Yi={v1}×Xi for i=1,3 and Y2={v2}×X2. Then it
is easy to check that Y1∪Y2∪Y3 induces a copy of Tk in K2×Hk, where Yi plays the
role of Xi in the partition of Hk. �

Theorem 18. If G is a connected non-complete graph and k≥1, then �(G�Hk)≥k.

Proof. It is enough to prove the theorem when G=P3=v1−v2−v3 as G contains
an induced subgraph isomorphic to P3. We claim that �(G�Hk)≥k. To see this, let
Yi={vi}×Xi for i∈{1,2,3}. It is easy to check that Y1∪Y2∪Y3 induces a copy of Tk
in P3�Hk, where Yi plays the role of Xi in the partition of Hk. �

If G is a the disjoint union of complete graphs, then there is an upper bound on
�(G�H) as a function of �(G) and �(H). It is enough to consider the case G=Km+1.
Observe that Km+1�H=H[Km+1]. Hence, by Theorem 1 we get the following.

Proposition 19. If �(H)=k≥2 and m≥1 then �(Km+1�H)≤m2k−1+k.

4. COMMENTS AND OPEN QUESTIONS

Section 3 shows that any upper bound on the Grundy number of G×H as a function of
�(G),�(H) is possible only if �(H)≤4. Perhaps a good test case is to decide whether
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�(K2×H) is bounded for �(H)≤4. (On the other hand, if the maximum degree of both
graphs may intervene, then we know the easy inequality �(G×H)≤�(G×H)+1≤
�(G)�(H)+1, but this is probably not a very interesting bound.)

A referee asked whether, in replacement for the now failed Conjecture 4, the
following inequality could be conjectured to hold for any two graphs G and H

�(G�H)≤max{(�(G)+1)�(H), (�(H)+1)�(G)} (∗∗)
We can prove this inequality, as follows. First, suppose that �(G)=1. Then

G has no edge, so the left-hand side of (∗∗) is �(H) and the right-hand side
is max{�(H),�(H)+1}=�(H)+1, so (∗∗) holds for every H. Now suppose
that �(G)≥2 and similarly �(H)≥2. On the right-hand side of (∗∗), we have
max{(�(G)+1)�(H), (�(H)+1)�(G)}≥ 1

2 {(�(G)+1)�(H)+(�(H)+1)�(G)}≥�(G)+
1+�(H)+1. On the left-hand side, we have�(G�H)≤�(G�H)+1=�(G)+�(H)+1,
so it is strictly smaller than the right-hand side. Actually this proof shows that (∗∗)
tends to give a weak upper bound on �(G�H) in general; indeed in all cases it is
weaker than �(G�H)+1.

Concerning the lexicographic product, it was proved in [1] that if �(H)=k, then for
any graph G, we have �(G[H])=�(G[Kk]). Moreover, as mentioned in Remark 11, we
have �(G[Kk])=�(G[Sk]�Kk). So �(G[H])=�(G[Sk]�Kk). Thus the Grundy number
of the lexicographic product of any two graphs G and H can be seen as a particular
case of the Grundy number of the Cartesian product of two graphs. Therefore, we feel
that the most interesting questions in this domain are about the Cartesian product. In
particular, although Conjecture 4 is now known to be false because of Corollary 12,
one may still wonder whether there exists a constant � such that any two graphs G and
H satisfy �(G�H)≤� (�(G)+1)�(H). Note that the graph H given in the proof of
Corollary 12 satisfies �(K2�H)= 7

6 (�(K2)+1)�(H), and so does the second graph H′.
We could not find a graph with a ratio larger than 7

6 . Is it true that �(K2�H)≤2c�(H)
for some constant c≥7 /6?
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