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Abstract

R. H. Schelp conjectured that if G is a graph with |V (G)| = R(Pn, Pn) is
such that δ(G) > 3|V (G)|

4 then in every 2-coloring of the edges of G there is a
monochromatic Pn. In other words, the Ramsey number of a path does not
change if the graph to be colored is not complete but has large minimum degree.

Here we prove Ramsey type-results that imply the conjecture in a weak-
ened form, first replacing the path by a matching, showing that the star-
matching-matching Ramsey number R(Sn, nK2, nK2) = 3n− 1 which extends
R(nK2, nK2) = 3n − 1, an old result of Cockayne and Lorimer. Then we ex-
tend this further from matchings to connected matchings and outline how this
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implies Schelp’s conjecture in asymptotic sense through a standard application
of the Regularity Lemma.

It is sad that we are unable to hear Dick Schelp’s reaction to our work
generated by his conjecture.

1 Introduction

The path-path Ramsey number was determined in [7] and its diagonal case (stated
for convenience for even paths) is that R(P2n, P2n) = 3n−1, i.e. in every 2-coloring of
the edges of K3n−1, the complete graph on 3n− 1 vertices, there is a monochromatic
P2n, a path on 2n vertices. An easy example shows that K3n−2 can be 2-colored with
no monochromatic P2n. It is a natural question to ask whether a similar conclusion is
true if K3n−1 is replaced by some subgraph of it. One such result was obtained in [10]
where it was proved that in every 2-coloring of the edges of the complete 3-partite
graph Kn,n,n there is a monochromatic P(1−o(1))2n. The following conjecture of Schelp
[15] states that K3n−1 can be replaced by a graph G of large minimum degree δ(G).

Conjecture 1. Suppose that n is large enough and G is a graph on 3n − 1 vertices
with minimum degree larger than 3|V (G)|

4
. Then in any 2-coloring of the edges of G

there is a monochromatic P2n.

Schelp’s conjecture is stated in its original form as in [15] but it is probably true
for every n ≥ 1. In fact, apart from Theorem 6, all results we prove here are valid
for every n.

Schelp also noticed that the condition on the minimum degree in Conjecture 1 is
close to best possible. Indeed, suppose that 3n − 1 = 4m for some m and consider
a graph whose vertex set is partitioned into four parts A1, A2, A3, A4 with |Ai| = m.
Assume there are no edges from A1 to A2 and from A3 to A4; edges in [A1, A3], [A2, A4]
are red, edges in [A1, A4], [A2, A3] are blue and edges within Ai-s are colored arbitrar-
ily. In this coloring the longest monochromatic path has 2m = 3n−1

2
vertices, much

smaller than 2n, while the minimum degree is 3m − 1 = 3(3n−1)
4

− 1. Thus, and this
makes the conjecture surprising, even a miniscule increase in the minimum degree re-
sults in a dramatic increase in the length of the longest monochromatic path. Schelp
notes in [15] that he proved (and he referred [16]) that there exists a c < 1 for which
Conjecture 1 holds if the minimum degree is raised to c|V (G)|.

We will prove Ramsey type results leading to an asymptotic version of Conjecture
1. As a first step, we have Theorem 2 and its diagonal case, Corollary 3, a weaker
form of Conjecture 1, where paths are replaced by matchings. This is a “traditional”
3-color Ramsey-type result which strengthens significantly (the 2-color case of) a
well-known result of Cockayne and Lorimer [3].
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Let nK2 denote a matching of size n, i.e. n pairwise disjoint edges, and let St be a
star with t edges. The Ramsey number for two matchings (in fact for any number of
matchings) was determined in [3] as R(n1K2, n2K2) = 2n1 + n2 − 1 for n1 ≥ n2. The
next result extends this, as it implies that the Ramsey number for two matchings does
not change if a graph of maximum degree n1−1 is deleted from K2n1+n2−1. It is worth
noting that the Ramsey number for many stars and one matching was determined in
[4].

Theorem 2. Suppose that n1 ≥ n2 ≥ 1 and t ≥ 1. Then

R(St, n1K2, n2K2) =

{
2n1 + n2 − 1 if t ≤ n1,
n1 + n2 − 1 + t if t ≥ n1.

Corollary 3. R(Sn, nK2, nK2) = 3n− 1.

Next we have Theorem 4 which is still weaker than Conjecture 1, but it gives a
monochromatic connected matching of the right size. This is the main result of this
paper.

Theorem 4. Suppose that a graph G has 3n− 1 vertices and δ(G) > 3|V (G)|
4

. Then,
in every 2-coloring of the edges of G there is a monochromatic connected matching of
size n.

It is worth mentioning the following lemma that is used in the proof of Theorem 4.
A well-known remark of Erdős and Rado says that in a 2-colored complete graph there
is a monochromatic spanning tree. For a survey of results grown from this remark, see
[8]. Lemma 5 extends the remark from complete graphs (where δ(G) = |V (G)| − 1)
to graphs of large minimum degree.

Lemma 5. Suppose that the edges of a graph G with δ(G) ≥ 3|V (G)|
4

are 2-colored.
Then there is a monochromatic component with order larger than δ(G). This estimate
is sharp.

In Section 4 we outline how Theorem 4 and the Regularity Lemma imply Theorem
6, the asymptotic form of Conjecture 1. This technique is established by ÃLuczak in
[13] and used successfully in many recent results, see e.g. [2], [6], [9], [10],[11].

Theorem 6. For every η > 0 there is an n0 = n0(η) such that the following is true.
Suppose that G is a graph on n ≥ n0 vertices with δ(G) > (3

4
+ η)n. Then in every

2-coloring of the edges of G there is a monochromatic path with at least (2
3
− η)n

vertices.

We note that Benevides, ÃLuczak, Scott, Skokan and White recently [1] proved
Conjecture 1.
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2 Proof of Theorem 2

To see that the claimed Ramsey number cannot be less than claimed in Theorem 2,
consider a partition of n1 + n2 + max{t, n1} − 2 vertices into three sets, A,B, C of
size n1 − 1, n2 − 1, max{t, n1}, respectively. Color all edges incident to some vertex
of B blue. From the remaining uncolored edges color red those that are incident to
A. If t > n1 then all edges within C remain uncolored (or might be viewed as the
‘star-color’). If t ≤ n1 then |C| = n1 and in this case color all edges red within C. (In
fact this is the 2-coloring of K2n1+n2−1 that does not have monochromatic matching
of size ni in color i.) Clearly, there is no St in the star-color, there is no red n1K2

and no blue n2K2.
To prove the other direction, Consider a graph G with f(n1, n2, t) vertices, where

f(n1, n2, t) =

{
2n1 + n2 − 1 if t ≤ n1

n1 + n2 − 1 + t if t ≥ n1

and consider an arbitrary red-blue coloring of the edges of G. We show that either
there is a vertex nonadjacent to at least t vertices or a red matching of size n1 or a
blue matching of size n2. Notice that the case t < n1 obviously follows from the case
t = n1 so we may assume that |V (G)| = n1 + n2 − 1 + t and t ≥ n1 ≥ n2. We use
induction on n1, for n1 = 1 (thus n2 = 1), the statement is obvious for every t.

In the inductive step we reduce the triple (t, n1, n2) to (t, n1 − 1, n2) if n1 > n2

and to (t, n1−1, n1−1) if n1 = n2. In both cases we assume that every vertex of G is
nonadjacent to at most t− 1 vertices. Depending on which case we have, either there
is a red matching of size n1 − 1 or a blue matching of size n2 or a blue matching of
size n1−1. If there is a blue matching of size n2 there is nothing to prove. Otherwise,
by switching colors if necessary, we may assume that there is a red matching of size
n1 − 1 and our goal is to find a blue matching of size n2.

Using the Gallai-Edmonds structure theorem (in fact the Tutte-Berge formula
suffices) for the subgraph GR ⊂ G with the red edges, we can find X ⊂ V = V (G) =
V (GR) such that V \X has d + |X| odd connected components in GR, where d is the
deficiency of GR. Using that d = |V (GR)| − 2ν(GR) = n1 + n2 − 1 + t− 2(n1 − 1) =
n2−n1+t+1, the number of odd components of V \X in GR is t−n1+n2+1+|X|. We
consider the union of all even connected components of V \X as one special component
and label the components as C0, C1, . . . Cm so that |C0| is the largest component and
either m = t−n1 +n2 + |X| (if all components are odd) , or m = t−n1 +n2 +1+ |X|
(if there are nonempty even components). Note that m ≥ 1.

Let H be the graph with vertex set V (G)\X and with edge set as those edges of G
that connect different Ci-s. Obviously all edges of H are blue. We are going to prove
that H has a (blue) matching of size n2. Notice that X together with one vertex from
each odd component must be in V (G), thus |X|+t−n1+n2+1+ |X| ≤ n1+n2−1+t
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implying that |X| ≤ n1−1. Therefore |V (H)| = |V (G)|−|X| ≥ n1+n2−1+t−|X| ≥
n1 + n2 − 1 + t − (n1 − 1) ≥ 2n2. If H has minimum degree at least n2 then (using
that |V (H)| ≥ 2n2) a well-known lemma in [5] implies that H has a matching of size
n2 and the proof is finished. Thus we may assume that there is a component Ci and
y ∈ Ci such that dH(y) < n2. Then,

n2 > dH(y) ≥ (n1 + n2 − 1 + t)− |X| − |Ci| − (t− 1) = n1 + n2 − |X| − |Ci|
and we get that |Ci| > n1−|X| and since |X| ≤ n1−1, we can write |Ci| = n1−|X|+k
with some integer k ≥ 1. In fact, Ci = C0 because we cannot have any other
component Cj as large as Ci otherwise

|V | ≥ |X|+ |Ci|+ |Cj|+ t− n1 + n2 + |X| − 1 >

> |X|+ n1 − |X|+ n1 − |X|+ t− n1 + n2 + |X| − 1 =

= n1 + n2 + t− 1 = |V |,
a contradiction.

Set D = V (H) \ C0 and notice that D is nonempty because m ≥ 1. One can
easily estimate the degree dH(y) for y ∈ C0 in the bipartite subgraph [C0, D] ⊂ H as
follows.

dH(y) ≥ (n1+n2−1+t)−|X|−|C0|−(t−1) = n1+n2−|X|−(n1−|X|+k) = n2−k. (1)

On the other hand, for any y ∈ Ci with i > 0,

dH(y) ≥ |C0|+ t− n1 + n2 + |X| − 1− (t− 1) = |C0| − n1 + n2 + |X| =
= n1 − |X|+ k − n1 + n2 + |X| = n2 + k (2)

because, apart from at most t− 1 non-adjacency, y is adjacent to vertices of C0 and
to at least one vertex of at least m− 1 ≤ t− n1 + n2 + |X| − 1 components.

We show, with the folkloristic argument of the lemma in [5] cited above (in fact it
is credited there to Dirac) that conditions (1), (2) ensure a matching of size n2 in H.

Let M be a maximum matching in the bipartite subgraph [C0, D] ⊂ H, assume
M has s ≤ n2 − 1 edges. Let M∗ be a matching of H such that it covers all vertices
of C0 ∩M and among those it is largest possible. Set Y = V (M) ∪D.

Suppose first that M covers all vertices of C0. If M∗ has less than n2 edges then
(since Y = V (H) in this case and |V (H)| ≥ 2n2) at least two vertices, v, w of H are
uncovered by M∗. Now the choice of M∗ implies that all edges of H from v, w must
go to vertices of M∗ but condition (2) implies that there exists e ∈ M∗ such that u, v
are adjacent to two ends of e. Replacing e by these two edges, we get a matching of
size one larger than the size of M∗, a contradiction.
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If M does not cover C0, select z ∈ C0 \M . By condition (1) z is adjacent (in H)
to a set B of n2 − k vertices in D ∩M . Let A be the set of vertices mapped by M
from B to C0. From the choice of M , no edges of H goes from D \ M to A or to
C0 \M .

Suppose that D \M = ∅. Then |D| = |M | = s ≤ n2 − 1 implies that V \X has
at most n2 odd components (vertices of D and C0) in GR. However, as we have seen
above, V \X has t− n1 + n2 + 1 + |X| > n2 odd components in GR, contradiction.

Using (2)for every v ∈ D\M , the degree of v in D is at least n2+k−(s−(n2−k)) =
2n2 − s. This implies that |Y | > s + 2n2 − s = 2n2 which allows us to use the same
argument as in the previous paragraph, to show that M∗ has size at least n2. We
conclude that G has a blue matching of size n2. 2

3 Large connected matchings, proof of Theorem 4

Proof of Lemma 5. To see that the estimate of the lemma is sharp, consider Kn

from which the edges of a balanced complete bipartite graph [A,B] are removed,
where |A| = |B| = m (0 ≤ m ≤ n

2
). Set C = V (Kn) \ (A ∪ B), color all edges

incident to A red, all edges incident to B blue and all edges within C arbitrarily.
Now δ(G) = n − m − 1 and the largest monochromatic component in both colors
have n − m vertices. The theorem is also sharp in the sense that δ(G) cannot be
lowered. Indeed, suppose that n is divisible by four, consider four disjoint sets Si

with |Si| = n/4. Let the pairs within Si and in [S1, S2], [S3, S4] be red edges and
the pairs in [S1, S4], [S2, S3] be blue edges. This defines a 2-colored graph G with n
vertices, δ(G) = 3n

4
− 1 and all monochromatic components have only n/2 vertices.

To prove that there is a monochromatic component of the claimed size, assume
that |V (G)| = n, δ(G) ≥ 3n

4
and let v ∈ V (G). Let R, B denote the vertex sets of

the red and blue monochromatic components containing v. Observe that there are
no edges in the bipartite graphs [B \R, R \B], [R ∩B, V (G) \ (R ∪B)].

Clearly, from the minimum degree condition, |V (G) \ (R ∪ B|) < n
4
. If B \ R or

R \B is empty then R or B is larger than 3n
4

. Otherwise, both B \R and R \B are
smaller than n

4
. We conclude that for the largest monochromatic, say red, component

C of G,

|C| > n

2
(3)

holds.
We show that in fact, |C| > δ(G). Set D = V (G)\C. Since C is a red component,

all edges of [C,D] are blue. Moreover, because of (3) and the minimum degree
condition, the set of blue neighbors of any two vertices v, w ∈ D must intersect in
C. This implies that F = D ∪ A is connected in blue, where A = {x ∈ C : ∃v ∈
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D, xv blue}. By the choice of C, |A ∪D| ≤ |C|, therefore

|D| ≤ |C \ A| < n− δ(G)

because any vertex of D is nonadjacent to all vertices of C \A. Thus |D| < n− δ(G)
implying |C| > δ(G) as desired. 2

Now we are ready to prove Theorem 4, the extension of Corollary 3.

Proof of Theorem 4. Set V = V (G) and let C1 be a largest monochromatic, say

red, component. From Lemma 5, |C1| > 3|V (G)|
4

. If U = V \ V (C1) 6= ∅ then U is
covered by a blue component C2 because from the minimum degree condition the set
of blue neighbors of any two vertices in U intersect in C1. If U = ∅, then define C2 as
a largest blue component in G. Set p = |V (C1) \ V (C2)|, q = |V (C2) \ V (C1)|, from
the choice of C1 p ≥ q. Set A = V (C1) ∩ V (C2). Observe that there are no edges of
G in the bipartite graph [V (C1) \ V (C2), V (C2) \ V (C1)]. Thus, if V (C2) \ V (C1) 6= ∅
then p < 3n−1

4
< n.

We apply Theorem 2 to the subgraph spanned by A in G with parameters t =⌈
3n−1

4

⌉
, n1 = n − q, n2 = n − p. To do this, we need to check that n2 = n − p ≥ 1.

This is obvious if q > 0 since then p < n as noted in the previous paragraph. On the
other hand, if q = 0, i.e. V (C1) = V , we need another argument, in fact similar to
the one used in the proof of Theorem 2. Observe that the largest red matching in
C1 is automatically connected, thus we may assume it has m < n edges. Applying
the Tutte-Berge formula for the red graph, we can find a set X ⊂ V whose removal
leaves at least c = 3n− 1− 2m + |X| odd components. Let H be the blue subgraph
of G whose vertex set is V \ X and whose edge set is the set of blue edges of G
that go between the red components of V \ X. Notice that |X| ≤ n − 1 otherwise
G has at least c + |X| = 3n− 1− 2m + 2|X| > 3n− 1 vertices, contradiction. Thus
|V (H)| ≥ 2n. We show that H is a connected graph. Indeed, otherwise V (H) can be
partitioned into two nonempty sets P,Q so that there are no edges in the bipartite
subgraph [P,Q] of H, w.l.o.g. |P | ≥ n. If P intersects each of the c red components
in V \X then any v ∈ V (H)\P is nonadjacent in G to at least c−1 ≥ n vertices, one
vertex in all components not containing v. On the other hand, if P does not intersect
a red component then a vertex v from that component is nonadjacent in G to all
vertices of P . In both cases we find a vertex v nonadjacent to at least n vertices and
that contradicts the assumption δ(G) > 3(3n−1)

4
. We conclude that H is connected

(in blue), i.e. we may assume |V (C2)| ≥ 2n implying p = |V | − |V (C2)| ≤ n − 1,
therefore n2 = n− p ≥ 1 as required.

We claim that with our above choices of the parameters t, n1, n2 we have |A| =
3n − 1 − p − q ≥ R(St, n1K2, n2K2). Indeed, for t ≤ n1 we have to check that
3n− 1− p− q ≥ 2(n− q) + n− p− 1 which reduces to q ≥ 0. For t > n1 we have to
check 3n− 1− p− q ≥ n− p + n− q − 1 + t which reduces to n ≥ t, obviously true
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for our choice of t. Thus by Theorem 2 we have either a vertex with t edges missing
from it or a red matching of size n − p or a blue matching of size n − q. The first
possibility contradicts the minimum degree assumption on G. Thus we have one of
the other two possibilities when we claim that the matchings are extendible to the
required size.

Indeed, assume that M is a red matching of size n− p in G[A]. Every edge from
V (C1) \ A to A is red. The red degree of any v ∈ V (C1) \ A towards A is at least

P = 3(3n−1)
4

− p and we claim that P ≥ 2(n− p) + p. Indeed, the inequality reduces

to 3(3n−1)
4

≥ 2n which is obvious. Thus all the p vertices in V (C1) \A are adjacent to
at least p vertices of A \ V (M) and that clearly allows to extend M by p red edges
to a red matching of size n.

Similarly, a blue matching M of size n − q can be extended (in case of q = 0 no

extension is needed of course) by checking the inequality Q = 3(3n−1)
4

−q ≥ 2(n−q)+q
that in fact reduces to the same inequality as in the previous case and finishes the
proof. 2

4 Building paths from connected matchings

Here we sketch how to get Theorem 6 from Theorem 4 and the Regularity Lemma
[17]. The material of this section is fairly standard by now, so we omit some of the
details. Combining the Degree form and the 2-color version of the Regularity Lemma
we get the following version. (For these and other variants of the Regularity Lemma
see [12].)

Lemma 7. [Regularity Lemma – 2-colored Degree form] For every ε > 0 and every
integer m0 there is an M0 = M0(ε,m0) such that for n ≥ M0 the following holds.
For all graphs G = G1 ∪ G2 with V (G1) = V (G2) = V , |V | = n, and real number
ρ ∈ [0, 1], there is a partition of the vertex-set V into l + 1 sets (so-called clusters)
V0, V1, ..., Vl, and there are subgraphs G′ = G′

1 ∪ G′
2, G′

1 ⊂ G1, G′
2 ⊂ G2 with the

following properties:

• m0 ≤ l ≤ M0,

• |V0| ≤ ε|V |,
• all clusters Vi, i ≥ 1, are of the same size L,

• degG′(v) > degG(v)− (ρ + ε)|V | for all v ∈ V ,

• G′|Vi
= ∅ (Vi are independent in G′),
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• all pairs G′|Vi×Vj
, 1 ≤ i < j ≤ l, are ε-regular, each with a density 0 or exceeding

ρ.

• all pairs G′
s|Vi×Vj

, 1 ≤ i < j ≤ l, 1 ≤ s ≤ 2, are ε-regular.

Let G be a graph on n ≥ n0 vertices with δ(G) > (3
4

+ η)n and consider a 2-
coloring G = G1 ∪G2 of G. We apply Lemma 7 for G, with ε ¿ ρ ¿ η ¿ 1. We get
a partition of V = ∪0≤i≤lVi. We define the following reduced graph GR: The vertices
of GR are p1, . . . , pl, and we have an edge between vertices pi and pj if the pair (Vi, Vj)
is ε-regular in G′ with density exceeding ρ. Since in G′, δ(G′) > (3

4
+η−(ρ+ε))|V |, an

easy calculation shows that in GR we have δ(GR) ≥
(

3
4

+ η − 2ρ
)
l > 3

4
l (see e.g. [14]

for a similar computation). Define an edge-coloring GR = GR
1 ∪ GR

2 in the following
way. The edge pipj is colored with the color that contains more edges from G′|Vi×Vj

,
thus clearly the density of this color is still at least ρ/2 in G′|Vi×Vj

.
We remove at most two vertices from GR to make sure that the number of vertices

has the form 3k − 1. Then, applying Theorem 4 to the 2-colored GR we get a
connected monochromatic matching saturating at least 2l

3
vertices of GR. To lift this

monochromatic connected matching to a monochromatic path in the original graph
can be done by applying the following standard lemma (special case of Lemma 4.2 in
[9]) with c = 2/3 and with our choices of ε, ρ and reduced graph GR.

Lemma 8. Assume that for some positive constant c there is a monochromatic con-
nected matching M (say in GR

1 ) saturating at least c|V (GR)| vertices of GR. Then
in the original G we find a monochromatic path in G1 covering at least c(1 − 3ε)n
vertices.

Acknowledgement. The careful work of a referee and advices of Oliver Riordan is
appreciated.
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[17] E. Szemerédi, Regular partitions of graphs, Colloques Internationaux C.N.R.S.
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