On (δ, χ) -bounded families of graphs

András Gyárfás*

Computer and Automation Research Institute Hungarian Academy of Sciences Budapest, P.O. Box 63 Budapest, Hungary, H-1518 gyarfas@sztaki.hu

Manouchehr Zaker

Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran mzaker@iasbs.ac.ir

May 28, 2010

Abstract

A family \mathcal{F} of graphs is said to be (δ, χ) -bounded if there exists a function f(x) satisfying $f(x) \to \infty$ as $x \to \infty$, such that for any graph G from the family, one has $f(\delta(G)) \le \chi(G)$, where $\delta(G)$ and $\chi(G)$ denotes the minimum degree and chromatic number of G, respectively. Also for any set $\{H_1, H_2, \ldots, H_k\}$ of graphs by $Forb(H_1, H_2, \ldots, H_k)$ we mean the class of graphs that contain no H_i as an induced subgraph for any $i = 1, \ldots, k$. In this paper we first answer affirmatively the question raised by the second author by showing that for any tree T and positive integer ℓ , $Forb(T, K_{\ell,\ell})$ is a (δ, χ) -bounded family. Then we obtain a necessary and sufficient condition for $Forb(H_1, H_2, \ldots, H_k)$ to be a (δ, χ) -bounded family, where $\{H_1, H_2, \ldots, H_k\}$ is any given set of graphs. Next we study (δ, χ) -boundedness of $Forb(\mathcal{C})$ where \mathcal{C} is an infinite collection of graphs. We show that for any positive integer ℓ , $Forb(K_{\ell,\ell}, C_6, C_8, \ldots)$ is (δ, χ) -bounded. Finally we show a similar result when \mathcal{C} is a collection consisting of unicyclic graphs.

1 Introduction

A family \mathcal{F} of graphs is said to be (δ, χ) -bounded if there exists a function f(x) satisfying $f(x) \to \infty$ as $x \to \infty$, such that for any graph G from the family one has $f(\delta(G)) \le \chi(G)$, where $\delta(G)$ and $\chi(G)$ denotes the minimum degree and chromatic number of G, respectively. Equivalently, the family \mathcal{F} is (δ, χ) -bounded if $\delta(G_n) \to \infty$ implies $\chi(G_n) \to \infty$

^{*}Research supported in part by OTKA Grant No. K68322.

 ∞ for any sequence G_1, G_2, \ldots with $G_n \in \mathcal{F}$. Motivated by Problem 4.3 in [6], the second author introduced and studied (δ, χ) -bounded families of graphs (under the name of δ -bounded families) in [10]. The so-called color-bound family of graphs mentioned in the related problem of [6] is a family for which there exists a function f(x) satisfying $f(x) \to \infty$ as $x \to \infty$, such that for any graph G from the family one has $f(col(G)) \leq \chi(G)$, where col(G) is defined as $col(G) = \max\{\delta(H) : H \subseteq G\} + 1$. As shown in [10] if we restrict ourselves to hereditary (i.e. closed under taking induced subgraph) families then two concepts (δ, χ) -bounded and color-bound are equivalent. The first specific results concerning (δ, χ) -bounded families appeared in [10] where the following theorem was proved (in a somewhat different but equivalent form).

Theorem 1 ([10]) For any set C of graphs, Forb(C) is (δ, χ) -bounded if and only if there exists a constant c = c(C) such that for any bipartite graph $H \in Forb(C)$ one has $\delta(H) \leq c$.

Theorem 1 shows that to decide whether $Forb(\mathcal{C})$ is (δ, χ) -bounded we may restrict ourselves to bipartite graphs. We shall make use of this result in proving the following theorems.

Similar to the concept of (δ, χ) -bounded families is the concept of χ -bounded families. A family \mathcal{F} of graphs is called χ -bounded if for any sequence $G_i \in \mathcal{F}$ such that $\chi(G_i) \to \infty$, it follows that $\omega(G_i) \to \infty$. The first author conjectured [2] (independently by Sumner [9]) the following

Conjecture 1 For any fixed tree T, Forb(T) is χ -bounded.

2 Finite (δ, χ) -bounded families

The first result in this section shows that for any tree T and positive integer ℓ , $Forb(T, K_{\ell,\ell})$ is (δ, χ) -bounded which answers affirmatively a problem of [10].

Theorem 2 For every fixed tree T and fixed integer ℓ , and any sequence $G_i \in Forb(T, K_{\ell,\ell})$, $\delta(G_i) \to \infty$ implies $\chi(G_i) \to \infty$.

We shall prove Theorem 2 in the following quantified form.

Theorem 3 For every tree T and for positive integers ℓ , k there exist a function $f(T, \ell, k)$ with the following property. If G is a graph with $\delta(G) \geq f(T, \ell, k)$ and $\chi(G) \leq k$ then G contains either T or $K_{\ell,\ell}$ as an induced subgraph.

In Theorem 3 we may assume that the tree T is a complete p-ary tree of hight r, T_p^r , because these trees contain any tree. Using Theorem 1 we note that to prove Theorem 3 it is enough to show the following lemma.

Lemma 1 For every p, r, l there exists $g(p, r, \ell)$ such that the following is true. Every bipartite graph H with $\delta(H) \geq g(p, r, \ell)$ contains either T_p^r or $K_{\ell,\ell}$ as an induced subgraph.

Proof. To prove the lemma, we prove slightly more. Call a subtree $T \subseteq H$ a distance tree rooted at $v \in V(H)$ if T is rooted at v and for every $w \in V(T)$ the distance of v and w in T is the same as the distance of v and w in H. In other words, in a distance tree T, level i of T, L_i , is a subset of the vertices at distance i from v in H. Notice that - a distance tree of H is an induced subtree of H if and only if $xy \in E(H)$ such that $x \in L_i, y \in L_{i+1}$ implies $xy \in E(T)$ (observe that in this statement it is important that H is a bipartite graph otherwise $xy \in E(H)$ would be possible with $x, y \in L_i$).

We claim that with a suitable $g(p, r, \ell)$ lower bound for $\delta(H)$ every vertex of a bipartite graph H is the root of an induced distance tree T_p^r in H.

The claim is proved by induction on r. For r=1, $g(p,1,\ell)=p$ is a suitable function for every ℓ,p . Assuming that $g(p,r,\ell)$ is defined for some $r\geq 1$ and for all p,ℓ , define $P=p^{r+1}(\ell-1)$ and

$$u = g(p, r+1, \ell) = \max\{g(p, r, \ell), 1 + 2^{Pp^r}(\max\{p-1, \ell-1\})\}$$
 (1)

Suppose that $\delta(H) \geq u, v \in V(H)$. By induction, using that $u \geq g(P, r, \ell)$ by (1), we can find an induced distance tree $T = T_P^r$ rooted at v. In fact we shall only extend a subtree T^* of T, defined as follows. Keep p from the P subtrees under the root and repeat this at each vertex of the levels $1, 2, \dots r-2$. Finally, at level r-1, keep all of the P children at each vertex. (Here one can refine the proof to get better bounds.) Let L denote the set of vertices of T^* at level r, $L = \bigcup_{i=1}^{p^r} A_i$ where the vertices of A_i have the same parent in T^* , $|A_i| = P$. Let $X \subseteq V(H) \setminus V(T^*)$ denote the set of vertices adjacent to some vertex of L. (In fact, since T is a distance tree and H is bipartite, $X \subseteq V(H) \setminus V(T^*)$.) Put the vertices of X into equivalence classes, $x \equiv y$ if and only if x, y are adjacent to the same subset of L. There are less than $q=2^{Pp^r}$ equivalence classes. Delete from X all vertices of those equivalence classes that are adjacent to at least ℓ vertices of L. Since H has no $K_{\ell,\ell}$ subgraph, at most $q(\ell-1)$ vertices are deleted. Delete also from X all vertices of those equivalence classes that have at most p-1 vertices. During these deletions less than $q(\max\{p-1,\ell-1\}) < u-1$ vertices were deleted, the set of remaining vertices is Y. It follows from (1) that every vertex of L is adjacent to at least one vertex $y \in Y$ - in fact to at least p vertices of Y in the equivalence class of y.

Now we plan selecting vertex $x_i \in A_i$ so that each of them has a set B_i of p neighbors in Y, the B_i -s are pairwise disjoint and no x_i is adjacent to any vertex in B_j if $j \neq i$. Thus $\bigcup_{i=1}^{p^r} B_i$ extends T^* to the required induced distance tree T_p^{r+1} .

Start with an arbitrary vertex $x_1 \in A_1$. There are at least p neighbors of x_1 in an equivalence class of Y, define B_1 as p of them. At most $\ell-1$ vertices of L define this class, thus we can select $x_2 \in A_2$ from a different from those. Now take any neighbor of x_2 and repeat the procedure by selecting $x_3 \in A_3$ different from the at most $2(\ell-1)$ vertices that may define the previous classes. Since $|A_{p^r}| = P > (p^r-1)(\ell-1)$, all these steps can be taken. \square

Using Theorem 2 we can characterize (δ, χ) -bounded families of the form $Forb(H_1, \ldots, H_k)$ where $\{H_1, \ldots, H_k\}$ is any finite set of graphs. In the following result by a star tree we mean any tree isomorphic to $K_{1,t}$ for some $t \geq 1$.

Corollary 1 Given a finite set of graphs $\{H_1, H_2, \ldots, H_k\}$. Then $Forb(H_1, H_2, \ldots, H_k)$ is (δ, χ) -bounded if and only if one of the following holds:

- (i) For some i, H_i is a star tree.
- (ii) For some i, H_i is a forest and for some $j \neq i$, H_i is complete bipartite graph.

Proof. Set for simplicity $\mathcal{F} = Forb(H_1, H_2, \dots, H_k)$. First assume that \mathcal{F} is (δ, χ) -bounded. From the well-known fact that for any d and g there are bipartite graphs of minimum degree d and girth g, we obtain that some H_i should be forest. If H_i is star tree then (i) holds. Assume on contrary that none of H_i 's is neither star tree nor complete bipartite graph. Then $K_{n,n}$ belongs to \mathcal{F} for some n. But this violates the assumption that \mathcal{F} is (δ, χ) -bounded.

To prove the converse, first note that by a well known fact (see [10]) if H_i is a star tree then $Forb(H_i)$ is (δ, χ) -bounded. Now since $\mathcal{F} \subseteq Forb(H_i)$ then \mathcal{F} too is (δ, χ) -bounded. Now let (ii) hold. We may assume that H_{i_0} is forest and H_{j_0} is an induced subgraph of $K_{\ell,\ell}$ for some ℓ . It is enough to show that $Forb(H_{i_0}, K_{\ell,\ell})$ is (δ, χ) -bounded. If H_{i_0} is a tree then the assertion follows by Theorem [2]. Let T_1, \ldots, T_k be the connected components of H_{i_0} where $k \geq 2$. We add a new vertex ℓ and connect ℓ to each ℓ by an edge. The resulting graph is a tree denoted by ℓ . We have $forb(H_{i_0}, K_{\ell,\ell}) \subseteq Forb(T, K_{\ell,\ell})$ since H_{i_0} is induced subgraph of ℓ . The proof now completes by applying Theorem [2] for $forb(T, K_{\ell,\ell})$.

3 Infinite (δ, χ) -bounded families

In the sequel we consider $Forb(H_1, H_2, ...)$ where $\{H_1, H_2, ...\}$ is any infinite collection of graphs. When at least one of the H_i -s is tree then the related characterization problem is easy. The following corollary is immediate.

Corollary 2 Let T be any non star tree. Then $Forb(T, H_1, ...)$ is (δ, χ) -bounded if and only if at least one of H_i -s is complete bipartite graph.

When no graph is acyclic in our infinite collection H_1, H_2, \ldots we face with non-trivial problems. The first result in this regard is a result from [8]. They showed that if G is any even-cycle-free graph then $col(G) \leq 2\chi(G) + 1$. This shows that $Forb(C_4, C_6, C_8, \ldots)$ is (δ, χ) -bounded. Another result concerning even-cycles was obtained in [10] where the following theorem has been proved. Note that d(G) stands for the average degree of G.

Theorem 4 ([10]) Let F be any set of even integers, G a graph with $F \subseteq F(G)$ and $A = E \setminus F$ where E is the set of even integers greater than two. Assume that $A = \{g_1, g_2, \ldots\}$. Set $\lambda = 2d(d+1)$ where $d = \gcd(g_1 - 2, g_2 - 2, \ldots)$. If $d \ge 4$ then

$$\chi(G) \ge \frac{d(G)}{\lambda} + 1.$$

In the sequel using a result from [4] we show that for any positive integer ℓ , $Forb(K_{\ell,\ell}, C_6, C_8, C_{10}, \ldots)$ is (δ, χ) -bounded. For this purpose we need to introduce bipartite chordal graphs. A bipartite graph H is said to be bipartite chordal if any cycle of length at least 6 in H has at least one chord. Let H be a bipartite graph with bipartition (X, Y). A vertex v of H is simple if for any $u, u' \in N(v)$ either $N(u) \subseteq N(u')$ or $N(u') \subseteq N(u)$. Suppose that $\mathcal{L}: v_1, v_2, \ldots, v_n$ is a vertex ordering of H. For each $i \geq 1$ denote $H[v_i, v_{i+1}, \ldots, v_n]$ by H_i . An ordering \mathcal{L} is said to be a simple elimination ordering of H if v_i is a simple vertex in H_i for each i. The following theorem first appeared in [4] (see also [5]).

Theorem 5 ([4]) Let H be a bipartite graph with bipartition (X,Y). Then H is chordal bipartite if and only if it has a simple elimination ordering. Furthermore, suppose that H is chordal bipartite. Then there is a simple ordering $y_1, \ldots, y_m, x_1, \ldots, x_n$ where $X = \{x_1, \ldots, x_n\}$ and $Y = \{y_1, \ldots, y_m\}$, such that if x_i and x_k with i < k are both neighbors of some y_j , then $N_{H'}(x_i) \subseteq N_{H'}(x_k)$ where H' is the subgraph of H induced by $\{y_j, \ldots, y_m, x_1, \ldots, x_n\}$.

Theorem 6 Forb $(K_{\ell,\ell}, C_6, C_8, C_{10}, \ldots)$ is (δ, χ) -bounded.

Proof. By Theorem 1 it is enough to show that the minimum degree of any bipartite graph $H \in Forb(K_{\ell,\ell}, C_6, C_8, C_{10}, ...)$ is at most $\ell - 1$.

Let H be a bipartite $(K_{\ell,\ell}, C_6, C_8, C_{10}, \ldots)$ -free graph with $\delta(H) \geq \ell$. Let $y_1, \ldots, y_m, x_1, \ldots, x_n$ be the simple ordering guaranteed by Theorem 5. The vertex y_1 has at least k neighbors say z_1, \ldots, z_k such that $N(z_1) \subseteq N(z_2) \subseteq \ldots \subseteq N(z_k)$. Now since $d_Y(z_1) \geq k$ so there are k vertices in Y which are all adjacent to z_1 . From other side $N(z_1) \subseteq N(z_i)$ for any $i = 1, \ldots, k$. Therefore all these k neighbors of z_1 are also adjacent to z_i for any i. This introduces a subgraph of H isomorphic to $K_{\ell,\ell}$, a contradiction.

We conclude this section with another (δ, χ) -bounded (infinite) family of graphs. By a unicyclic graph G we mean any connected graph which contains only one cycle. Such a graph is either a cycle or consists of an induced cycle C of length say i and a number of at most i induced subtrees such that each one intersects C in exactly one vertex. We call these subtrees (which intersects C in exactly one vertex) the attaching subtrees of G. Recall from the previous section that T_p^r is the p-ary tree of hight r. For any positive integers p and r by a (p, r)-unicyclic graph we mean any unicyclic graph whose attaching subtrees are subgraph of T_p^r . We also need to introduce some special instances of unicyclic graphs. For any positive integers p, r and even integer i, let us denote the graph consisting of the even cycle C of length i and i vertex disjoint copies of T_p^r which are attached to the cycle C by $U_{i,p,r}$ (to each vertex of C one copy of T_p^r is attached).

Proposition 1 For any positive integers t, p and r, there exists a constant c = c(t, p, r) such that for any $K_{2,t}$ -free bipartite graph H if $\delta(H) \geq c$ then for some even integer i, H contains an induced subgraph isomorphic to $U_{i,p,r}$.

Proof. Let H be any $K_{2,t}$ -free bipartite graph. There are two possibilities for the girth g(H) of H.

Case 1. $g(H) \geq 4r + 3$. Let C be any smallest cycle in H. Since H is bipartite then C has an even length say i = g(H). We prove by induction on k with $0 \le k \le i$ that if $\delta(H) \geq g(p,r,t) + 2$ then H contains an induced subgraph isomorphic to the graph obtained by C and k attached copies of T_p^r , where g(p, r, t) is as in Lemma 1. The assertion is trivial for k=0. Assume that it is true for k and we prove it for k+1. By induction hypothesis we may assume that H contains an induced subgraph L consisting of the cycle C plus k copies of T_p^r attached to C. Let v be a vertex of C at which no tree is attached. Let e and e' be two edges on C which are incident with the vertex v. We apply Lemma 1 for $H \setminus \{e, e'\}$. Note that since $\delta(H) \geq g(p, r, t) + 2$ then the degree of v in $H \setminus \{e, e'\}$ is at least g(p, r, t). We find an induced copy of T_p^r grown from v in $H \setminus \{e, e'\}$. Denote this copy of T_p^r by T_0 . Consider the union graph $L \cup T_0$. We show that $L \cup T_0$ is induced in H. We only need to show that no vertex of T_0 is adjacent to any vertex of L. The distance of any vertex in T_0 from the farthest vertex in C is at most r+i/2. The distance of any vertex in the previous copies of T_p^r in L from C is at most r. Then any two vertices in $T_0 \cup L$ have distance at most 2r+i/2. Now if there exists an edge between two such vertices we obtain a cycle of length at most 2r+i/2+1 in H. By our condition on the girth of H we obtain 2r + i/2 + 1 < g(H), a contradiction. This proves our induction assertion for k + 1, in particular the assertion is true for k = i. But this means that H contains the cycle C with i copies of T_p^r attached to C in induced form. The latter subgraph is $U_{i,p,r}$. This completes the proof in this case.

Case 2. $g(H) \leq 4r + 2$. In this case we prove a stronger claim as follows. If H is any $K_{2,t}$ -free bipartite graph and $\delta(H) \geq (4r+2)(t-1)(\max\{r+1,p^{r+1}\}) + 1$ with g(H) = i then H contains any graph G which is obtained by attaching k trees T_1, \ldots, T_k to the cycle of length i such that any T_j is a subtree of T_p^r and k is any integer with $0 \leq k \leq i$. It is clear that if we prove this claim then the main assertion is also proved.

Now let G be any graph obtained by the above method. We prove the claim by induction on the order of G. If G consists of only a cycle then its length is i and any smallest cycle of H is isomorphic to G. Assume now that G contains at least one vertex of degree one and let v be any such vertex of G. Set $G' = G \setminus v$. We may assume that H contains an induced copy of G'. Denote this copy of G' in H by the very G'. Let $u \in G'$ be the neighbor of v in G. It is enough to show that there exists a vertex in $H \setminus G'$ adjacent to u but not adjacent to any vertex of G'. Define two subsets as follows: $A = \{a \in V(G') : au \in E(G')\}$, $B = \{b \in V(H) \setminus V(G') : bu \in E(H)\}$.

It is clear that $A \cup B$ is independent. Let $C = V(G') \setminus A \setminus \{u\}$. The number of edges between B and C is at most (t-1)|C|. We claim that there is a vertex say $z \in B$ which is not adjacent to any vertex of C, since otherwise there will be at least |B| edges between B and C. This leads us to $|B| \leq (t-1)|C|$. From other side for the order of C we have $|C| \leq (4r+2)(\max\{r+1,p^{r+1}\})$. Let $n_{p,r} = (4r+2)(\max\{r+1,p^{r+1}\})$. We have therefore $|B| \leq (t-1)(n_{p,r}-|A|-1)$ and $|A|+|B| \leq (t-1)n_{p,r}$. But $|A|+|B|=d(u)>(t-1)n_{p,r}$, a contradiction. Therefore there is a vertex z that is adjacent to u in H but not adjacent to $G' \setminus \{u\}$. By adding the edge uz to G' we obtain an induced subgraph of H isomorphic to G, as desired.

Finally by taking $c = \max\{g(p,r,t)+2$, $(4r+2)(t-1)(\max\{r+1,p^{r+1}\})+1\}$ the proof completes.

Using Proposition 1 and Theorem 1 we obtain the following result.

Theorem 7 Fix positive integers $t \geq 2$, p and r. For any i = 1, 2, 3, ..., let G_i be any (p, r)-unicyclic graph whose cycle has length 2i + 2. Then $Forb(K_{2,t}, G_1, G_2, ...)$ is (δ, χ) -bounded.

4 Concluding remarks

If a family \mathcal{F} is both (δ, χ) -bounded and χ -bounded then it satisfies the following stronger result. For any sequence G_1, G_2, \ldots with $G_i \in \mathcal{F}$ if $\delta(G_i) \to \infty$ then $\omega(G_i) \to \infty$. Let us call any family satisfying the latter property, (δ, ω) -bounded family.

The following result of Rödl (originally unpublished) which was later appeared in Kierstead and Rödl ([7] Theorem 2.3) proves the weaker form of Conjecture 1.

Theorem 8 For every fixed tree T and fixed integer ℓ , and any sequence $G_i \in Forb(T, K_{\ell,\ell})$, $\chi(G_i) \to \infty$ implies $\omega(G_i) \to \infty$.

Combination of Theorem 3 with Theorem 8 shows that $Forb(T, K_{\ell,\ell})$ is (δ, ω) -bounded. As we noted before the class of even-hole-free graphs is (δ, χ) -bounded. It was proved in [1] that if G is even-hole-free graph then $\chi(G) \leq 2\omega(G) + 1$. This implies that $Forb(C_4, C_6, \ldots)$ too is (δ, ω) -bounded.

References

- [1] L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed, P. Seymour, Bisimplicial vertices in even-hole-free graphs, J. Combin. Theor. Series B, 98 (2008) 1119–1164.
- [2] A. Gyárfás, On Ramsey covering numbers, in Infinite and Finite Sets Coll. Math. Soc. J. Bolyai, North Holland, New York, 1975 10 801-816.
- [3] A. Gyárfás, E. Szemerédi, Zs. Tuza, Induced subtrees in graphs of large chromatic number, *Discrete Mathematics* **30** (1980) 235-244.
- [4] P. L. Hammer, F. Maffray, M. Preissmann, A characterization of chordal bipartite graphs, RUTCOR Research Report, Rutgers University, New Brunswick, NJ, RRR, 1989, pp. 1689.
- [5] J. Huang, Representation characterizations of chordal bipartite graphs, JCT B 96 (2006) 673-683.
- [6] T.R. Jensen, B. Toft, Graph Coloring Problems, Wiley, New York 1995.
- [7] H. Kierstead, V. Rödl, Applications of hypergraph coloring to coloring graphs not inducing certain trees, *Discrete Mathematics* **150** (1996) 187 -193
- [8] S. E. Markossian, G. S. Gasparian, B.A. Reed, β -perfect graphs, J. Combin. Theory Ser. B **67** (1996) 1–11.
- [9] D. P. Sumner, Subterees of a graph and chromatic number, in: G. Chartrand ed., The Theory and Application of Graphs, Wiley, New York, 1981, 557-576.
- [10] M. Zaker, On lower bounds for chromatic number, Submitted.