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Abstract

A family F of graphs is said to be (δ, χ)-bounded if there exists a function f(x)
satisfying f(x) → ∞ as x → ∞, such that for any graph G from the family, one
has f(δ(G)) ≤ χ(G), where δ(G) and χ(G) denotes the minimum degree and chro-
matic number of G, respectively. Also for any set {H1,H2, . . . , Hk} of graphs by
Forb(H1,H2, . . . , Hk) we mean the class of graphs that contain no Hi as an induced
subgraph for any i = 1, . . . , k. In this paper we first answer affirmatively the ques-
tion raised by the second author by showing that for any tree T and positive in-
teger ℓ, Forb(T,Kℓ,ℓ) is a (δ, χ)-bounded family. Then we obtain a necessary and
sufficient condition for Forb(H1,H2, . . . , Hk) to be a (δ, χ)-bounded family, where
{H1,H2, . . . , Hk} is any given set of graphs. Next we study (δ, χ)-boundedness of
Forb(C) where C is an infinite collection of graphs. We show that for any positive
integer ℓ, Forb(Kℓ,ℓ, C6, C8, . . .) is (δ, χ)-bounded. Finally we show a similar result
when C is a collection consisting of unicyclic graphs.

1 Introduction

A family F of graphs is said to be (δ, χ)-bounded if there exists a function f(x) satisfying
f(x) → ∞ as x → ∞, such that for any graph G from the family one has f(δ(G)) ≤
χ(G), where δ(G) and χ(G) denotes the minimum degree and chromatic number of G,
respectively. Equivalently, the family F is (δ, χ)-bounded if δ(Gn) → ∞ implies χ(Gn) →
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∞ for any sequence G1, G2, . . . with Gn ∈ F . Motivated by Problem 4.3 in [6], the second
author introduced and studied (δ, χ)-bounded families of graphs (under the name of δ-
bounded families) in [10]. The so-called color-bound family of graphs mentioned in the
related problem of [6] is a family for which there exists a function f(x) satisfying f(x) →
∞ as x → ∞, such that for any graph G from the family one has f(col(G)) ≤ χ(G),
where col(G) is defined as col(G) = max{δ(H) : H ⊆ G} + 1. As shown in [10] if we
restrict ourselves to hereditary (i.e. closed under taking induced subgraph) families then
two concepts (δ, χ)-bounded and color-bound are equivalent. The first specific results
concerning (δ, χ)-bounded families appeared in [10] where the following theorem was proved
(in a somewhat different but equivalent form).

Theorem 1 ([10]) For any set C of graphs, Forb(C) is (δ, χ)-bounded if and only if there
exists a constant c = c(C) such that for any bipartite graph H ∈ Forb(C) one has δ(H) ≤ c.

Theorem 1 shows that to decide whether Forb(C) is (δ, χ)-bounded we may restrict
ourselves to bipartite graphs. We shall make use of this result in proving the following
theorems.

Similar to the concept of (δ, χ)-bounded families is the concept of χ-bounded families.
A family F of graphs is called χ-bounded if for any sequence Gi ∈ F such that χ(Gi) → ∞,
it follows that ω(Gi) → ∞. The first author conjectured [2] (independently by Sumner [9])
the following

Conjecture 1 For any fixed tree T , Forb(T ) is χ-bounded.

2 Finite (δ, χ)-bounded families

The first result in this section shows that for any tree T and positive integer ℓ, Forb(T,Kℓ,ℓ)
is (δ, χ)-bounded which answers affirmatively a problem of [10].

Theorem 2 For every fixed tree T and fixed integer ℓ, and any sequence Gi ∈ Forb(T,Kℓ,ℓ),
δ(Gi) → ∞ implies χ(Gi) → ∞.

We shall prove Theorem 2 in the following quantified form.

Theorem 3 For every tree T and for positive integers ℓ, k there exist a function f(T, ℓ, k)
with the following property. If G is a graph with δ(G) ≥ f(T, ℓ, k) and χ(G) ≤ k then G
contains either T or Kℓ,ℓ as an induced subgraph.
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In Theorem 3 we may assume that the tree T is a complete p-ary tree of hight r, T r
p ,

because these trees contain any tree. Using Theorem 1 we note that to prove Theorem 3
it is enough to show the following lemma.

Lemma 1 For every p, r, l there exists g(p, r, ℓ) such that the following is true. Every
bipartite graph H with δ(H) ≥ g(p, r, ℓ) contains either T r

p or Kℓ,ℓ as an induced subgraph.

Proof. To prove the lemma, we prove slightly more. Call a subtree T ⊆ H a distance tree
rooted at v ∈ V (H) if T is rooted at v and for every w ∈ V (T ) the distance of v and w in
T is the same as the distance of v and w in H. In other words, in a distance tree T , level
i of T , Li, is a subset of the vertices at distance i from v in H. Notice that - a distance
tree of H is an induced subtree of H if and only if xy ∈ E(H) such that x ∈ Li, y ∈ Li+1

implies xy ∈ E(T ) (observe that in this statement it is important that H is a bipartite
graph otherwise xy ∈ E(H) would be possible with x, y ∈ Li).

We claim that with a suitable g(p, r, ℓ) lower bound for δ(H) every vertex of a bipartite
graph H is the root of an induced distance tree T r

p in H.
The claim is proved by induction on r. For r = 1, g(p, 1, ℓ) = p is a suitable function

for every ℓ, p. Assuming that g(p, r, ℓ) is defined for some r ≥ 1 and for all p, ℓ, define
P = pr+1(ℓ− 1) and

u = g(p, r + 1, ℓ) = max{g(P, r, ℓ), 1 + 2Ppr(max{p− 1, ℓ− 1})} (1)

Suppose that δ(H) ≥ u, v ∈ V (H). By induction, using that u ≥ g(P, r, ℓ) by (1), we
can find an induced distance tree T = T r

P rooted at v. In fact we shall only extend a subtree
T ∗ of T , defined as follows. Keep p from the P subtrees under the root and repeat this at
each vertex of the levels 1, 2, . . . r − 2. Finally, at level r − 1, keep all of the P children at
each vertex. (Here one can refine the proof to get better bounds.) Let L denote the set
of vertices of T ∗ at level r, L = ∪pr

i=1Ai where the vertices of Ai have the same parent in
T ∗, |Ai| = P . Let X ⊆ V (H) \ V (T ∗) denote the set of vertices adjacent to some vertex
of L. (In fact, since T is a distance tree and H is bipartite, X ⊆ V (H) \ V (T ∗).) Put the
vertices of X into equivalence classes, x ≡ y if and only if x, y are adjacent to the same
subset of L. There are less than q = 2Ppr equivalence classes. Delete from X all vertices
of those equivalence classes that are adjacent to at least ℓ vertices of L. Since H has no
Kℓ,ℓ subgraph, at most q(l − 1) vertices are deleted. Delete also from X all vertices of
those equivalence classes that have at most p− 1 vertices. During these deletions less than
q(max{p − 1, ℓ − 1}) < u − 1 vertices were deleted, the set of remaining vertices is Y . It
follows from (1) that every vertex of L is adjacent to at least one vertex y ∈ Y - in fact to
at least p vertices of Y in the equivalence class of y.

Now we plan selecting vertex xi ∈ Ai so that each of them has a set Bi of p neighbors
in Y , the Bi-s are pairwise disjoint and no xi is adjacent to any vertex in Bj if j ̸= i. Thus
∪pr

i=1Bi extends T
∗ to the required induced distance tree T r+1

p .
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Start with an arbitrary vertex x1 ∈ A1. There are at least p neighbors of x1 in an equiv-
alence class of Y , define B1 as p of them. At most ℓ− 1 vertices of L define this class, thus
we can select x2 ∈ A2 from a different from those. Now take any neighbor of x2 and repeat
the procedure by selecting x3 ∈ A3 different from the at most 2(ℓ − 1) vertices that may
define the previous classes. Since |Apr | = P > (pr−1)(ℓ−1), all these steps can be taken. 2

Using Theorem 2 we can characterize (δ, χ)-bounded families of the form Forb(H1, . . . , Hk)
where {H1, . . . , Hk} is any finite set of graphs. In the following result by a star tree we
mean any tree isomorphic to K1,t for some t ≥ 1.

Corollary 1 Given a finite set of graphs {H1, H2, . . . , Hk}. Then Forb(H1, H2, . . . , Hk) is
(δ, χ)-bounded if and only if one of the following holds:
(i) For some i, Hi is a star tree.
(ii) For some i, Hi is a forest and for some j ̸= i, Hi is complete bipartite graph.

Proof. Set for simplicity F = Forb(H1, H2, . . . , Hk). First assume that F is (δ, χ)-
bounded. From the well-known fact that for any d and g there are bipartite graphs of
minimum degree d and girth g, we obtain that some Hi should be forest. If Hi is star
tree then (i) holds. Assume on contrary that none of Hi’s is neither star tree nor complete
bipartite graph. Then Kn,n belongs to F for some n. But this violates the assumption that
F is (δ, χ)-bounded.

To prove the converse, first note that by a well known fact (see [10]) if Hi is a star tree
then Forb(Hi) is (δ, χ)-bounded. Now since F ⊆ Forb(Hi) then F too is (δ, χ)-bounded.
Now let (ii) hold. We may assume that Hi0 is forest and Hj0 is an induced subgraph of Kℓ,ℓ

for some l. It is enough to show that Forb(Hi0 , Kℓ,ℓ) is (δ, χ)-bounded. If Hi0 is a tree then
the assertion follows by Theorem [2]. Let T1, . . . , Tk be the connected components of Hi0

where k ≥ 2. We add a new vertex v and connect v to each Ti by an edge. The resulting
graph is a tree denoted by T . We have Forb(Hi0 , Kℓ,ℓ) ⊆ Forb(T,Kℓ,ℓ) since Hi0 is induced
subgraph of T . The proof now completes by applying Theorem [2] for Forb(T,Kℓ,ℓ). 2

3 Infinite (δ, χ)-bounded families

In the sequel we consider Forb(H1, H2, . . .) where {H1, H2, . . .} is any infinite collection of
graphs. When at least one of the Hi-s is tree then the related characterization problem is
easy. The following corollary is immediate.

Corollary 2 Let T be any non star tree. Then Forb(T,H1, . . .) is (δ, χ)-bounded if and
only if at least one of Hi-s is complete bipartite graph.
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When no graph is acyclic in our infinite collection H1, H2, . . . we face with non-trivial
problems. The first result in this regard is a result from [8]. They showed that if G is
any even-cycle-free graph then col(G) ≤ 2χ(G) + 1. This shows that Forb(C4, C6, C8, . . .)
is (δ, χ)-bounded. Another result concerning even-cycles was obtained in [10] where the
following theorem has been proved. Note that d(G) stands for the average degree of G.

Theorem 4 ([10]) Let F be any set of even integers, G a graph with F ⊆ F (G) and A =
E \ F where E is the set of even integers greater than two. Assume that A = {g1, g2, . . .}.
Set λ = 2d(d+ 1) where d = gcd(g1 − 2, g2 − 2, . . .). If d ≥ 4 then

χ(G) ≥ d(G)

λ
+ 1.

In the sequel using a result from [4] we show that for any positive integer ℓ, Forb(Kℓ,ℓ, C6, C8,
C10, . . .) is (δ, χ)-bounded. For this purpose we need to introduce bipartite chordal graphs.
A bipartite graph H is said to be bipartite chordal if any cycle of length at least 6 in H
has at least one chord. Let H be a bipartite graph with bipartition (X,Y ). A vertex v of
H is simple if for any u, u′ ∈ N(v) either N(u) ⊆ N(u′) or N(u′) ⊆ N(u). Suppose that
L : v1, v2, . . . , vn is a vertex ordering of H. For each i ≥ 1 denote H[vi, vi+1, . . . , vn] by Hi.
An ordering L is said to be a simple elimination ordering of H if vi is a simple vertex in
Hi for each i. The following theorem first appeared in [4] (see also [5]).

Theorem 5 ([4]) Let H be a bipartite graph with bipartition (X, Y ). Then H is chordal
bipartite if and only if it has a simple elimination ordering. Furthermore, suppose that
H is chordal bipartite. Then there is a simple ordering y1, . . . , ym, x1, . . . , xn where X =
{x1, . . . , xn} and Y = {y1, . . . , ym}, such that if xi and xk with i < k are both neigh-
bors of some yj, then NH′(xi) ⊆ NH′(xk) where H ′ is the subgraph of H induced by
{yj, . . . , ym, x1, . . . , xn}.

Theorem 6 Forb(Kℓ,ℓ, C6, C8, C10, . . .) is (δ, χ)-bounded.

Proof. By Theorem 1 it is enough to show that the minimum degree of any bipartite
graph H ∈ Forb(Kℓ,ℓ, C6, C8, C10, . . .) is at most ℓ− 1.

Let H be a bipartite (Kℓ,ℓ, C6, C8, C10, . . .)-free graph with δ(H) ≥ ℓ. Let y1, . . . , ym, x1,
. . . , xn be the simple ordering guaranteed by Theorem 5. The vertex y1 has at least k neigh-
bors say z1, . . . , zk such that N(z1) ⊆ N(z2) ⊆ . . . ⊆ N(zk). Now since dY (z1) ≥ k so there
are k vertices in Y which are all adjacent to z1. From other side N(z1) ⊆ N(zi) for any
i = 1, . . . , k. Therefore all these k neighbors of z1 are also adjacent to zi for any i. This
introduces a subgraph of H isomorphic to Kℓ,ℓ, a contradiction. 2
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We conclude this section with another (δ, χ)-bounded (infinite) family of graphs. By
a unicyclic graph G we mean any connected graph which contains only one cycle. Such
a graph is either a cycle or consists of an induced cycle C of length say i and a number
of at most i induced subtrees such that each one intersects C in exactly one vertex. We
call these subtrees (which intersects C in exactly one vertex) the attaching subtrees of G.
Recall from the previous section that T r

p is the p-ary tree of hight r. For any positive
integers p and r by a (p, r)-unicyclic graph we mean any unicyclic graph whose attaching
subtrees are subgraph of T r

p . We also need to introduce some special instances of unicyclic
graphs. For any positive integers p, r and even integer i, let us denote the graph consisting
of the even cycle C of length i and i vertex disjoint copies of T r

p which are attached to the
cycle C by Ui,p,r (to each vertex of C one copy of T r

p is attached).

Proposition 1 For any positive integers t, p and r, there exists a constant c = c(t, p, r)
such that for any K2,t-free bipartite graph H if δ(H) ≥ c then for some even integer i, H
contains an induced subgraph isomorphic to Ui,p,r.

Proof. Let H be any K2,t-free bipartite graph. There are two possibilities for the girth
g(H) of H.

Case 1. g(H) ≥ 4r + 3. Let C be any smallest cycle in H. Since H is bipartite
then C has an even length say i = g(H). We prove by induction on k with 0 ≤ k ≤ i
that if δ(H) ≥ g(p, r, t) + 2 then H contains an induced subgraph isomorphic to the graph
obtained by C and k attached copies of T r

p , where g(p, r, t) is as in Lemma 1. The assertion
is trivial for k = 0. Assume that it is true for k and we prove it for k + 1. By induction
hypothesis we may assume that H contains an induced subgraph L consisting of the cycle
C plus k copies of T r

p attached to C. Let v be a vertex of C at which no tree is attached.
Let e and e′ be two edges on C which are incident with the vertex v. We apply Lemma 1
for H \ {e, e′}. Note that since δ(H) ≥ g(p, r, t) + 2 then the degree of v in H \ {e, e′} is at
least g(p, r, t). We find an induced copy of T r

p grown from v in H \{e, e′}. Denote this copy
of T r

p by T0. Consider the union graph L ∪ T0. We show that L ∪ T0 is induced in H. We
only need to show that no vertex of T0 is adjacent to any vertex of L. The distance of any
vertex in T0 from the farthest vertex in C is at most r+ i/2. The distance of any vertex in
the previous copies of T r

p in L from C is at most r. Then any two vertices in T0 ∪ L have
distance at most 2r+ i/2. Now if there exists an edge between two such vertices we obtain
a cycle of length at most 2r + i/2 + 1 in H. By our condition on the girth of H we obtain
2r + i/2 + 1 < g(H), a contradiction. This proves our induction assertion for k + 1, in
particular the assertion is true for k = i. But this means that H contains the cycle C with
i copies of T r

p attached to C in induced form. The latter subgraph is Ui,p,r. This completes
the proof in this case.
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Case 2. g(H) ≤ 4r + 2. In this case we prove a stronger claim as follows. If H is any
K2,t-free bipartite graph and δ(H) ≥ (4r + 2)(t− 1)(max{r + 1, pr+1}) + 1 with g(H) = i
then H contains any graph G which is obtained by attaching k trees T1, . . . , Tk to the cycle
of length i such that any Tj is a subtree of T r

p and k is any integer with 0 ≤ k ≤ i. It is
clear that if we prove this claim then the main assertion is also proved.

Now let G be any graph obtained by the above method. We prove the claim by induction
on the order of G. If G consists of only a cycle then its length is i and any smallest cycle of
H is isomorphic to G. Assume now that G contains at least one vertex of degree one and
let v be any such vertex of G. Set G′ = G \ v. We may assume that H contains an induced
copy of G′. Denote this copy of G′ in H by the very G′. Let u ∈ G′ be the neighbor of
v in G. It is enough to show that there exists a vertex in H \ G′ adjacent to u but not
adjacent to any vertex of G′. Define two subsets as follows: A = {a ∈ V (G′) : au ∈ E(G′)},
B = {b ∈ V (H) \ V (G′) : bu ∈ E(H)}.

It is clear that A ∪ B is independent. Let C = V (G′) \ A \ {u}. The number of edges
between B and C is at most (t − 1)|C|. We claim that there is a vertex say z ∈ B which
is not adjacent to any vertex of C, since otherwise there will be at least |B| edges between
B and C. This leads us to |B| ≤ (t − 1)|C|. From other side for the order of C we have
|C| ≤ (4r+2)(max{r+1, pr+1}). Let np,r = (4r+2)(max{r+1, pr+1}). We have therefore
|B| ≤ (t− 1)(np,r − |A| − 1) and |A|+ |B| ≤ (t− 1)np,r. But |A|+ |B| = d(u) > (t− 1)np,r,
a contradiction. Therefore there is a vertex z that is adjacent to u in H but not adjacent
to G′ \ {u}. By adding the edge uz to G′ we obtain an induced subgraph of H isomorphic
to G, as desired.

Finally by taking c = max{g(p, r, t) + 2 , (4r + 2)(t − 1)(max{r + 1, pr+1}) + 1} the
proof completes. 2

Using Proposition 1 and Theorem 1 we obtain the following result.

Theorem 7 Fix positive integers t ≥ 2, p and r. For any i = 1, 2, 3, . . ., let Gi be any
(p, r)-unicyclic graph whose cycle has length 2i + 2. Then Forb(K2,t, G1, G2, . . .) is (δ, χ)-
bounded.

4 Concluding remarks

If a family F is both (δ, χ)-bounded and χ-bounded then it satisfies the following stronger
result. For any sequence G1, G2, . . . with Gi ∈ F if δ(Gi) → ∞ then ω(Gi) → ∞. Let us
call any family satisfying the latter property, (δ, ω)-bounded family.

The following result of Rödl (originally unpublished) which was later appeared in Kier-
stead and Rödl ([7] Theorem 2.3) proves the weaker form of Conjecture 1.
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Theorem 8 For every fixed tree T and fixed integer ℓ, and any sequence Gi ∈ Forb(T,Kℓ,ℓ),
χ(Gi) → ∞ implies ω(Gi) → ∞.

Combination of Theorem 3 with Theorem 8 shows that Forb(T,Kℓ,ℓ) is (δ, ω)-bounded.
As we noted before the class of even-hole-free graphs is (δ, χ)-bounded. It was proved

in [1] that if G is even-hole-free graph then χ(G) ≤ 2ω(G) + 1. This implies that
Forb(C4, C6, . . .) too is (δ, ω)-bounded.

References

[1] L. Addario-Berry, M. Chudnovsky, F. Havet, B. Reed, P. Seymour, Bisimplicial vertices
in even-hole-free graphs, J. Combin. Theor. Series B, 98 (2008) 1119–1164.
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