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Abstract

Geometric versions of Ramsey-type and Turán-type problems are studied in
a special but natural representation of bipartite graphs and similar questions are
asked for general representations. A bipartite geometric graphG(m,n) = [A,B]
is simple if the vertex classes A,B of G(m,n) are represented in R2 as

A = {(1, 0), (2, 0), . . . , (m, 0)}, B = {(1, 1), (2, 1), . . . , (n, 1)}

and the edge ab is the line segment joining a ∈ A and b ∈ B in R2. This and
similar representations (two-layer representations) are studied earlier, and from
the point of view of edge crossings, this representation is equivalent to others
already in the literature, for example to cyclic bipartite graphs or to ordered
bipartite graphs and certainly almost all textbook figures represent bipartite
graphs this way.

Subgraphs - paths, trees, double stars, matchings - are called non-crossing
if they do not contain edges with common interior point. The choice of these
subgraphs are explained by the fact that connected components of non-crossing
subgraphs of simple bipartite geometric graphs must be special trees (caterpil-
lars). We concentrate on balanced bipartite graphs, where m = n.

The maximum number of edges is determined in a simple bipartite geometric
graph G(n, n) that does not contain

• non-crossing matchings with k + 1 edges

• matchings with k + 1 pairwise crossing edges

• non-crossing trees with k + 1 vertices
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and in the last case it is shown that any graph with more edges than the
extremal value contains a non-crossing double star with k + 1 vertices. The
Ramsey number of non-crossing double stars is also determined: in every 2-
coloring of a geometric Kn,n there is a non-crossing monochromatic double star
with at least 4n

5 vertices and this is best possible in asymptotic sense.
Finding the Turán number of non-crossing paths and the Ramsey number

of non-crossing subtrees and paths remain open together with many similar
problems where the position of the vertex set of the bipartite graph is less
restricted, either in convex or in general position.

1 Introduction

This paper expands a short abstract [10]. Following [22], a geometric graph is a graph
whose vertices are in the plane in general position and whose edges are straight-line
segments joining the vertices. A geometric graph is convex , if its vertices form a
convex polygon. A subgraph of a geometric graph is non-crossing if no two edges
have a common interior point.

Analogues of Turán and Ramsey theories have been considered for geometric
graphs and for convex geometric graphs, see [22], [3], [1], [16], [14], [15] and its
references.

To describe a specific example, an old remark of Erdős and Rado says that in any
2-coloring of the edges of Kn there is a monochromatic spanning tree. It was proved
by Bialostocki, Dierker and Voxman in [2] that there is a monochromatic non-crossing
spanning tree in every 2-coloring of the convex geometric graphKn. They conjectured
that this remains true for geometric complete graphs in general and their conjecture
was proved by Károlyi, Pach and Tóth in [14]. There are several Ramsey-type and
Turán-type results for geometric graphs, see [22] chapter 14, [14], [15]. These results
show that Ramsey numbers change significantly for paths, cycles by imposing the
non-crossing condition. However, an unpublished result of Perles (a proof is in [15])
states that the maximum number of edges in a graph of n vertices that does not
contain a path of length k (determined by Erdős and Gallai [7]) remains the same for
non-crossing paths in convex geometric graphs.

In this note we consider geometric versions of Ramsey-type and Turán-type prob-
lems for geometric balanced bipartite graphs, G(n, n), defined as a geometric graph,
whose 2n vertices are in two disjoint n-element sets A,B, and its edges are some seg-
ments ab with a ∈ A, b ∈ B. The concept is studied earlier, for example in the form
of considering A,B as red and blue sets and investigating the properties of red-blue
segments, a survey is [18].

As convex geometric graphs form a natural subclass of geometric graphs, the
following representation, apparently studied first in [6], seems to be a most natural
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subclass of balanced geometric bipartite graphs G(n, n) (in fact a standard way of
drawing bipartite graphs). The partite sets of G in R2 are A = {a1 = (1, 0), a2 =
(2, 0), . . . , an = (n, 0)} and B = {b1 = (1, 1), b2 = (2, 1), . . . , bn = (n, 1)} and the edge
aibj is the line segment joining ai ∈ A and bj ∈ B. This representation is equivalent
(from the point of view of crossings) to cyclic bipartite graphs (Brass, Károlyi, Valtr
[3]), i. e. convex geometric graphs with 2n vertices whose partite classes A,B form
two ‘intervals’. It is also equivalent to ordered bipartite graphs where each element of
A precedes each elements of B (Füredi and Hajnal [8], Pach and Tardos [23]). For
easier reference we call this representation a simple G(n, n) in this paper.

Notice the following characterization of non-crossing subgraphs of simple G(n, n)-
s, sometimes referred as biplanar graphs , apparently first discovered by Harary and
Schwenk, [13]. A caterpillar is a special tree in which the vertices of degree larger
than one form a path.

Proposition 1. ([13],[5]) Every connected component of a non-crossing subgraph of
simple G(n, n) is a caterpillar.

Simple geometric graphs are very similar to the ‘cyclic bipartite’ graphs considered
by Brass, Károlyi and Valtr in [3] and the ‘ordered bipartite’ graphs considered by
Füredi and Hajnal [8], and by Pach and Tardos [23]. However, here we investigate
only non-crossing subgraphs and do not go into finer details of ordered subgraphs.

It follows from counting arguments of Mubayi [21] and Liu, Morris, Prince [20]
that in every 2-coloring of the edges of the complete bipartite graph Kn,n there is
a monochromatic double star with at least n vertices and this is a sharp result. (A
double star is a tree obtained by joining the centers of two disjoint stars by an edge,
the base edge of the double star). Here we prove that in the geometric version the
situation is different.

Theorem 1. In every 2-coloring of the simple Kn,n there is a non-crossing monochro-
matic double star with at least 4n

5
vertices. This bound is asymptotically best possible.

Theorem 2. Suppose that 2n ≥ k and a simple bipartite graph G = G(n, n) does
not contain non-crossing double stars with k + 1 vertices. Then |E(G)| ≤ n(k − 1)−
⌊ (k−1)2

4
⌋. This bound is sharp for each pair of integers satisfying 2n ≥ k.

It is worth noting that in Theorem 2 the maximum number of edges is approxi-
mately n2

2
when k is approximately (2−

√
2)n. Thus Theorem 1 does not follow from

Theorem 2. The construction, showing that Theorem 2 is sharp, does not contain
any non-crossing subgraph with k + 1 vertices.

Turán and Ramsey problems are also studied for matchings in geometric graphs.
Kupitz ([16], see also Theorem 14.4 in [22]) determined the maximal number of edges
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in a convex geometric graph with n vertices that does not contain non-crossing match-
ings with k + 1 edges. Similar result is proved for matchings with pairwise crossing
edges ([4], see also Theorem 14.14 in [22]). These results have a unified form for
simple bipartite graphs.

Theorem 3. Assume that G = G(n, n) is a simple bipartite graph that does not
contain a non-crossing (crossing) matching with k+1 edges. Then |E(G)| ≤ 2kn−k2

and this bound is sharp for both cases.

For the Ramsey problem, it is known ([14]) that in any 2-coloring of the edges of
a geometric complete graph with n vertices there is a monochromatic non-crossing
matching with ⌊n+1

3
⌋ edges and this is sharp. The bipartite version here follows

immediately from the well-known result that every geometric Kn,n contains a perfect
matching [19] so the proof of the next proposition is left to the reader.

Proposition 2. In every r-coloring of the edges of a geometric graph Kn,n there is
a monochromatic non-crossing matching with at least ⌈n

r
⌉ edges. This bound is best

possible.

2 Open problems

2.1 Problems for simple geometric bipartite graphs.

The 2-color Ramsey problem for paths in balanced bipartite graphs have been solved
independently in [11] and in [9]. Concerning the geometric version we ask

Problem 1. What is the length of the largest monochromatic non-crossing path that
exists in every 2-coloring of a simple geometric Kn,n? The bounds n

2
and 2n

3
follow

from the cited result of Perles and from using the graph H(n, p) defined below with
suitable p .

The Turán number of paths in bipartite graphs have been determined in [12].
Concerning the geometric version the straightforward question is

Problem 2. What is the maximum number of edges in a simple geometric graph
G(n, n) that does not contain a non-crossing path of length k? The upper bound is

n(k − 1) from the cited result of Perles and the lower bound is n(k − 1) −
⌊
(k−1)2

4

⌋
,

according to the construction given in the proof of Theorem 2.

Presently we can not separate the Ramsey number of non-crossing trees (caterpil-
lars) from the Ramsey number of non-crossing double stars.
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Problem 3. What is the order of the largest monochromatic non-crossing subtree
(caterpillar) that exists in every 2-coloring of the edges of a simple geometric Kn,n?
The bounds are 4n

5
and n or n + 1 (depending of the parity of n). Note that the

largest monochromatic non-crossing subforest F has at least n+ 1 vertices because a
simple geometric Kn,n has non-crossing spanning trees (this remark is valid for any
geometric Kn,n).

2.2 Problems for general geometric bipartite graphs.

It looks as the ‘really geometric’ problems arise when the vertex set of G(n, n) is
allowed to be in general position or in convex position (with no restriction on the
sets A,B). Of course, Proposition 1 limits the non-crossing subgraphs to caterpillars.
There are some results in the literature, for example it is known that every geometric
Kn,n contains a perfect matching [19] and a spanning tree of maximum degree three
[17]. It seems that from the following (twelve) problems only one can be answered
easily (Proposition 2).

Problem 4.What is the maximum number of edges in a geometric (convex geometric)
G(n, n) that does not contain a non-crossing matching (path, caterpillar) with k edges?

Problem 5. What is the maximum number of edges in a non-crossing monochromatic
matching (path, caterpillar) contained in every 2-coloring of the edges of a geometric
(convex geometric) Kn,n?

3 A construction

We shall often use a simple balanced geometric graph H = H(n, p) defined as follows.
Fix 1 ≤ p ≤ n, and the vertices of H are ai = (i, 0), bi = (i, 1) for i = 1, 2, . . . , n. The
edge set of H is {aibj : p+ 2 ≤ i+ j ≤ 2n− p}.

Lemma 1. Suppose that F is a non-crossing subgraph of H without isolated vertices.
Then |V (F )| ≤ 2(n− p).

Proof. Let q be the smallest integer such that aq ∈ V (F ) and let r be the smallest
integer for which aqbr ∈ E(F ). Similarly, s is the largest integer such that as ∈ V (F )
and t is the largest integer for which asbt ∈ E(F ). Since F has no isolates, q, s, t, r
are well defined. Set

X = {ai : 1 ≤ i < q} ∪ {bj : 1 ≤ j < r}, Y = {ai : s < i ≤ n} ∪ {bj : t < j ≤ n}.
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We claim that at least p vertices of X and at least p vertices of Y are not in V (F ).
This is obvious for q > p and for s < n− p+ 1. Suppose q ≤ p, now q − 1 vertices of
A∩X are not in V (F ) from the definition of q. From the definition of H, aqbj /∈ E(H)
for j = 1, 2, . . . , p− q+1, thus any edge of F incident to bj would cross the edge aqbr.
Therefore none of the bj-s are in V (F ) for j = 1, 2, . . . , p − q + 1. Thus we have at
least q−1+p− q+1 = p vertices not in V (F ). A symmetric argument shows that at
least p vertices of Y are not in V (F ). This proves the claim and the lemma follows
from it. 2

In Ramsey problems we may consider H and its (bipartite) complement as a 2-
colored simple geometrical graph Kn,n. In H the order of largest non-crossing tree,
path, double star is the same. This is not the case for H. For example, it is easy to
see that for 2p ≥ n, H always contains a non-crossing tree with n + 1 vertices. This
is not true for double stars as the following lemma shows(we need that to show that
Theorem 1 is asymptotically sharp).

Lemma 2. Assume that n = 5k+2, p = 3k+1. Then the largest non-crossing double
star of both H and H has 4k + 2 vertices.

Proof. Any non-crossing subgraph of H without isolated vertices has at most
2(n−p) = 4k+2 vertices from Lemma 1. On the other hand, the complete geometric
subgraph of H spanned by {a1, . . . , an−p, bp+1, . . . , bn} clearly has a spanning double
star. Thus the statement of the lemma follows for H. To prove it for H, we need to
look at three cases only, according to the indices of the base edge e = aibj of a double
star T . If i, j are both at most n − p then T has at most p + 1 = 3k + 2 < 4k + 2
vertices. If 1 ≤ i ≤ n− p, n− p+ 1 ≤ j then j ≤ p+ 1− i follows from the definition
of H. There are two non-crossing maximal double stars with base e. One is taking
the j ‘left’ neighbors of ai and the 2p− n+ 2− i+ j ‘right’ neighbors of bj. Now

2p−n+2−i+j ≤ 2p−n+2−1+p+1−i ≤ 3p−n+1 = 3(3k+1)−(5k+2)+1 = 4k+2

proving what we want. The other maximal non-crossing double star on e has p−j+2
vertices since there are p− j − i+ 2 ‘right’ neighbors of i and i ‘left’ neighbors of j.
Clearly, p− j + 2 < 4k + 2 thus this double star is small. Finally, if n− p+ 1 ≤ j ≤
p+ 1− i, n− p+ 1 ≤ i ≤ p+ 1− j, then the two maximal non-crossing double stars
on e have 2p − n + 2 − i + j and 2p − n + 2 − j + i vertices. Assume by symmetry
that the first is the maximum, then

2p− n+ 2− i+ j ≤ 2p− n+ 2− i+ p+ 1− i ≤ 3p− n+ 2 = 4k + 2. 2
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4 Proof of Theorems 1,2,3

Proof of Theorem 1. Consider an arbitrary red-blue coloring of the edges of a
balanced geometric bipartite graph G = [A,B]. Let GR, GB denote the red and blue
subgraphs of G. Set

D = max{dGR
(a1), dGR

(bn), dGB
(a1), dGB

(bn)}.

Assume first that D ≥ (1/2 + 1/10)n, without loss of generality the maximum is
attained at bn in the red color. Let i denote the smallest index for which aibn is red.
If ai has at least (1/4−1/20)n red neighbors in B, we have a red non-crossing double
star on aibn spanning at least (1/4+ 1/2+ 1/20)n = 4n

5
vertices. Otherwise ai has at

least (3/4+1/20)n = 4n
5
blue neighbors in B giving a red star (a special non-crossing

double star) that is as large as required.
In the case whenD < (1/2+1/10)n, assume (w.l.o.g.) that edge a1bn is red. Now -

from the definition ofD - both dGR
(a1) and dGR

(bn) are at least (1/2−1/10)n therefore
we have a non-crossing red double star on a1bn with at least 2(1/2 − 1/10)n = 4n

5

vertices.
It follows from Lemma 2 that the bound is asymptotically sharp. 2

Proof of Theorem 2. We claim first that a geometric G(n, n) that contains no non-
crossing double star with k + 1 vertices, has at most the claimed number of edges.
The proof is by induction n, keeping k fixed. The cases 2n = k and 2n − 1 = k are
obvious. For the induction step, assume that there is no non-crossing double star
with k + 1 vertices in a geometric graph G = G(n, n) for 2n ≥ k + 2. Select an edge
e = aibj ∈ E(G) with |i − j| is as large as possible. From the choice of e, the edges
of G incident to e form a non-crossing double star, thus, from the assumption on G,
we have dG(ai) + dG(bj) ≤ k. Deleting the vertices ai, bj with its incident edges we
delete at most k − 1 edges and get a balanced geometric graph F = G(n− 1, n− 1).
By the inductive hypothesis

|E(G)| ≤ k−1+ |E(F )| ≤ k−1+(n−1)(k−1)−
⌊
(k − 1)2

4

⌋
= n(k−1)−

⌊
(k − 1)2

4

⌋

proving the claim.
To see that the maximum can be attained, we use the graph H(n, p) for even k.

Set p = n− k
2
, from Lemma 1, the largest non-crossing double star in H has at most

2(n−p) = k vertices. On the other hand, H(n, p) has n2−2
(
p+1
2

)
= n(k−1)−⌊ (k−1)2

4
⌋

vertices.
For odd k we modifyH(n, p) toH ′(n, p) so that its edge set is {aibj : p+2 ≤ i+j ≤

2n−p−1}. Set p = n− k−1
2
, now the largest non-crossing double star of H ′(n, p) has
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at most 2(n−p)+1 = k vertices and H ′(n, p) has n2−
(
p+1
2

)
−

(
p
2

)
= n(k−1)− (k−1)2

4

edges. 2

Proof of Theorem 3. To prepare the proof, we define matchings in the geometric
Kn,n having pairwise non-crossing (pairwise crossing) edges. For i = 0, 1, 2, . . . , n −
k − 1 let Mi denote the matching with edge set {a1, b1+i, a2b2+i . . . , an−ibn} and let
Ni denote the edge set {an, bn−i, an−1bn−1−i . . . , ai+1b1}. Since N0 = M0, we have
2(n − k − 1) + 1 edge-disjoint non-crossing matchings. Assume that G = G(n, n) is
a geometric graph containing no non-crossing matching with k + 1 edges. Then at
most k edges of G can be selected from each of the matchings above, thus |E(G)| ≤
k(2n− 2k− 1)+m where m is the number of edges of Kn,n not covered by the union

of the matchings Mi, Ni. Since m = 2
(
k+1
2

)
we get that

|E(G)| ≤ k(2n− 2k − 1) + (k + 1)k = 2kn− k2

as desired. This proves the extremal result for non-crossing matchings. The proof
for the crossing matching is similar, since one can replace the non-crossing matchings
Mi, Ni by matchings containing pairwise crossing edges. To see that both results are
sharp, consider k-element sets X ⊂ A, Y ⊂ B and define the graph whose edges are
incident to X ∪ Y . This graph has 2kn − k2 edges and for X = {a1, . . . , ak}, Y =
{b1, . . . , bk} it does not contain a non-crossing matching with k + 1 edges; for X =
{a1, . . . , ak}, Y = {bn−k+1, . . . , bn} it does not contain a matching with k+1 pairwise
crossing edges. 2
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