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Abstract

The asymptotics of 2-color Ramsey numbers of loose and tight cycles
in 3-uniform hypergraphs have been recently determined ([16], [17]). We
address here the same problem for Berge-cycles and for 3 colors. Our
main result is that the 3-color Ramsey number of a 3-uniform Berge cycle
of length n is asymptotic to 5n

4
. The result is proved with the Regularity

Lemma via the existence of a monochromatic connected matching covering
asymptotically 4n/5 vertices in the multicolored 2-shadow graph induced

by the coloring of K
(3)
n .

1 Introduction

The investigations of Turán type problems for paths and cycles of graphs were
started by Erdős and Gallai in [4]. The corresponding Ramsey problems first
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for two colors and for paths have been looked at some years later in [8] and for
three colors and for paths and cycles in [5], [12] and [19].

There are several possibilities to define paths and cycles in hypergraphs. In
this paper we address the case of the Berge-cycle; probably it is the earliest def-
inition of a cycle in hypergraphs in the book of Berge [1]. Turán type problems
for Berge-paths and Berge-cycles of hypergraphs appeared perhaps first in [2].
Other types of hypergraph cycles, loose and tight, have been studied in [18] and
[26]. The investigations of the corresponding Ramsey problems started quite re-
cently with [16] and [17] where Ramsey numbers of loose and tight cycles have
been determined asymptotically for two colors and for 3-uniform hypergraphs.

Let H be an 3-uniform hypergraph (3-element subsets of a set). For vertices
x, y ∈ V (H) we say that x is adjacent to y if there exists an edge e ∈ E(H)
such that x, y ∈ e. Let K

(3)
n denote the complete 3-uniform hypergraph on n

vertices. A 3-uniform `-cycle, or Berge-cycle of length `, denoted by C
(3)
` , is a

sequence of distinct vertices v1, v2, . . . , v`, the core of the cycle , such that each
vi is adjacent to vi+1 and the edges ei that contain vi, vi+1 are all distinct for
i, 1 ≤ i ≤ `, where v`+1 := v1. When 3-uniformity is clearly understood we
may simply write C` for C

(3)
` . It is important to keep in mind that a 3-uniform

Berge-cycle C` is not determined uniquely, it is considered as an arbitrary choice
from many possible cycles with the same parameter. This is in contrast to the
graph case or the case of loose and tight cycles in 3-uniform hypergraphs.

Let Rt(Cn) denote the Ramsey number of a 3-uniform n Berge-cycle using
t colors. It turns out that the case t = 2 can be easily solved: for n > 4,
R2(Cn) = n, i.e. there is a Hamiltonian Berge cycle in every 2-coloring of K

(3)
n ,

see [11]. In this paper we explore the 3-color Ramsey number of a Berge-cycle
in 3-uniform hypergraphs, our main result is that R3(Cn) = (1+o(1)) 5n

4 - as far
as we know this is the first 3-color Ramsey type result for cycles in hypergraphs.
It seems purely incidental that our result has the same asymptotic as the 2-color
Ramsey number of the loose n-cycle in 3-uniform hypergraphs, see ([16]).

Theorem 1. For all η > 0 there exists n0 such that for every n > n0, every
coloring of the edges of K

(3)
n with 3 colors contains a monochromatic Berge-cycle

of length at least
(

4
5 − η

)
n.

In fact we can prove the theorem in the following slightly stronger Ramsey
formulation.

Theorem 2. For all η > 0 there exists n0 such that for every n > n0, we have
the following

R3(Cn) ≤ (
5
4

+ η)n.

Perhaps Theorem 1 can be extended as follows.

Conjecture 3. For all η > 0 and positive integer r there exists n0 = n0(η, r)
such that for every n > n0, every coloring of the edges of K

(r)
n with r colors

contains a monochromatic Berge-cycle of length at least
(

2r−2
2r−1 − η

)
n.
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Conjecture 3 (and thus Theorem 1) is asymptotically best possible as shown
by the following construction. Let A1, . . . , Ar−1 be disjoint vertex sets of size
n/(2r− 1) (for simplicity we assume that n is divisible by 2r− 1). The r-edges
not containing a vertex from A1 are colored with color 1. The r-edges that are
not colored yet and do not contain a vertex from A2 are colored with color 2. We
continue in this fashion. Finally the r-edges that are not colored yet with colors
1, . . . , r− 2 and do not contain a vertex from Ar−1 are colored with color r− 1.
The r-edges that contain a vertex from all r − 1 sets A1, . . . , Ar−1 get color r.
We claim that in this r-coloring of the edges of K

(r)
n the longest monochromatic

Berge-cycle has length ≤ 2r−2
2r−1n. This is certainly true for Berge-cycles in color

i for 1 ≤ i ≤ r − 1, since the subhypergraph induced by the edges in color i
leaves out Ai (a set of size n/(2r−1)) completely. Finally, note that in a Berge-
cycle in color r from two consecutive vertices on the cycle one has to come from
A1 ∪ . . . ∪Ar−1 and thus the cycle has length at most 2(r − 1)n/(2r − 1).

The proofs of Theorems 1 and 2 use the following approach. For a given 3-
uniform hypergraphH, consider the 2-shadow (or simply shadow) graph Γ(H) on
the same vertex set, with edge (x, y) ∈ E(Γ(H)) if and only if x, y is covered by
some hyperedge. To a given 3-coloring of the edges of the 3-uniform hypergraph,
associate an edge multi-coloring of the shadow graph by coloring each edge with
all colors appearing on hyperedges containing that pair. Edge (multi-)colorings
of Γ(H) defined this way will be called 3-uniform colorings of Γ(H).

Then, following the method established in [24] and refined later in several
papers ([5], [12], [13], [14], [15], [16], [17] and [19]), Theorems 1 and 2 can be
reduced to finding a large (of size at least 2n

5 asymptotically) monochromatic
connected matching in any 3-uniform 3-coloring of Γ(H) obtained from an al-
most complete hypergraphH with n vertices. Almost complete (or (1−ε)-dense)
means that H has at least (1−ε)

(
n
3

)
edges. A monochromatic, say red matching

is called connected, if its edges are in the same component in the graph defined
by the red edges. Our key result is phrased as Lemma 4 and will be proved in
Section 2.

Lemma 4. For all η > 0 there exist ε > 0 and n0 such that for every n > n0 the
following is true. In every 3-uniform 3-coloring of Γ(H) obtained from an (1−ε)-
dense 3-uniform hypergraph H, there is a connected monochromatic matching
of size at least ( 2

5 − η)n.

In Section 3 we show how to use the Regularity Lemma to convert connected
matchings into Berge-cycles, i.e. how to finish the proofs of Theorems 1 and 2.
Although the approach outlined above is now becoming “standard”, there are
several technical solutions to handle “almost complete” hypergraphs and their
shadow graphs. We think that the following concept and the corresponding
lemma (its straightforward proof is in [11]) are very convenient.

For 0 < δ < 1 fixed, we say that a sequence L ⊂ V (H) of k distinct vertices
was obtained by a δ-bounded selection if its elements are chosen in k consecutive
steps so that in each step there is a set of at most δn forbidden vertices that
cannot be included as the next element. These sets of forbidden vertices may
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depend on the choices of the vertices in the previous steps. For simplicity,
sometimes we shortly call the sequence itself a δ-bounded selection. Observe
that a δ-bounded selection L is also a δ′-bounded selection for any δ′ > δ. A
basic property of almost complete hypergraphs is expressed in the following
lemma.

Lemma 5. Assume that H is a (1− ε)-complete r-uniform hypergraph (r ≥ 2)
and set δ = ε2

−r

. There are forbidden sets such that with respect to them
every δ-bounded selection L ⊂ V (H) of length at most r is contained in at least
(1− δ) nr−|L|

(r−|L|)! edges of H.

The case |L| = r in Lemma 5 is very important, implies that because we get
that every δ-bounded selection L is an edge of H. The case |L| = 0 states that
H has at least (1−δ)nr

r! edges. Throughout this paper we shall use δ = δ(ε, r) as
the function defined in Lemma 5.

To illustrate how to use Lemma 5, we generalize a result in [10] (more general
form in [7]) from complete hypergraphs to almost complete ones. We start with
a proposition (from [11]) about the connected components of a hypergraph.

Proposition 6. Assume H is an arbitrary hypergraph and 0 < s < 1/3. Then
either there is a connected component H′ of H with at least (1− s)n vertices or
the connected components of H can be partitioned into two groups so that each
group contains more than sn vertices.

Proof. Mark the connected components ofH until the union of them has at most
sn vertices. If one unmarked component remains, it can be H′. Otherwise,
we form two groups from the unmarked components. The larger group has
order at least (n− sn)/2 > sn, and the smaller one together with the marked
components have a union containing more than sn vertices as well. ¤

Lemma 7. Assume that H is an (1 − ε)-complete r-uniform hypergraph with
n vertices and δ = δ(ε, r) < 1

3 . Then in every r-coloring of the edges of H
there exists a monochromatic connected component covering all but at most δn
vertices of H.

Proof. If the first possibility of Proposition 6 holds to any of the hypergraphs
determined by the edges of the different color classes, we have nothing to prove.
Otherwise the components of each color class can be partitioned into Xi, Yi so
that both have at least δn vertices. We shall reach a contradiction by defining
a δ-bounded selection of r vertices as follows.

We want to select x1, x2 in the first two steps so that these vertices are in
different partitions (one is in Xi, the other is in Yi) for at least two values of i; in
fact we will have x1 ∈ Xi for i = 1, 2, . . . , r. This can be easily done as follows.
Try an arbitrarily y = x1 (apart from the δn forbidden vertices), assume w.l.o.g
that y ∈ Xi for all i, 1 ≤ i ≤ r. Try an u = x2 such that u ∈ Y1 (there is a
choice since |Y1| > δn). If L = (y, u) does not work, it means that u ∈ Xi for
i = 2, 3, . . . , r. Now select z ∈ Y2 (there is a choice since |Y2| > δn) and observe
that either L = (u, z) or L = (y, z) satisfies the requirement.
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Having x1, x2 with the property required in the previous paragraph, say
x1 ∈ Xi for i = 1, 2, . . . , r, x2 ∈ Y1 ∩ Y2, we continue the δ-bounded selection
by picking xj from Yj for j = 3, . . . , r. Now the vertex set of the sequence
L = (x1, x2, . . . , xr) is an edge of H so it has a color k, 1 ≤ k ≤ r. However,
this is a contradiction since L has elements in both Xk, Yk. ¤

2 Large connected matchings in almost complete
3-uniform 3-colorings

In this section we shall prove Lemma 4. We need some basic facts about match-
ings. The size |M | of a maximum matching is the matching number, ν(G). The
following result is often referred to as the Tutte - Berge formula (see for example
in [23] Theorem 3.1.14). We shall use co(G) for the number of odd components
of a graph G and def(G), the deficiency of G, is defined as |V (G)| − 2ν(G).

Lemma 8. For any graph G, def(G) = max{co(G \ T )− |T |}, where the maxi-
mum is taken over all T ⊆ V (G).

We also need the following obvious property of maximum matchings.

Lemma 9. Suppose M = {e1, . . . , ek} is a maximum matching in a graph G.
Then V (G) \ V (M) spans an independent set and one can select one endpoint
xi of each ei - we call it strong point - so that for each i, 1 ≤ i ≤ k, there is
at most one edge in G from xi to V (G) \ V (M).

We assume that n is sufficiently large,

0 < ε << δ = ε1/8 << η, (1)

and we may also assume that η is sufficiently small since the statement (existence
of a monochromatic connected matching of size ( 2

5 − η)n) of Lemma 4 from any
fixed η follows automatically for any larger η.

To prove Lemma 4, consider an arbitrary 3-uniform 3-coloring of K = Γ(H),
where H is an (1− ε)-complete 3-uniform hypergraph with n vertices. Applying
Lemma 5, we may delete from H the (at most δn) vertices that are excluded
as a first vertex of any δ-bounded selection (with respect to the forbidden sets
ensured by Lemma 5). Moreover, we may also delete those (at most δn3) edges
{x1, x2, x3} of H for which x2 is in the forbidden set of x1. For convenience, we
assume in the rest of the proof that H denotes the hypergraph we have after
these deletions.

The edges of K, the complement of K will be sometimes referred to as the
“missing edges”. These are the edges uncovered by the hyperedges of H. For
convenience, we shall also consider the exceptional edges (from xi to V (G) \
V (M)) of Lemma 9 as missing edges.

We call color i good if there is a V ′ ⊆ V such that |V ′| ≥ (1− δ)n and the
edges of color i in V ′ form only one nontrivial component C, where a trivial
component is a single vertex. (We shall use that in a good color no edge in
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V ′ \ V (C) has color i.) We select M1 as the largest monochromatic matching
among matchings in good colors, say M1 is red. Note that M1 is well defined
since by Lemma 7 there is a color with a connected component of at least
(1 − δ)n vertices in K. We may assume that |M1| = k1 = ( 2

5 − η − ρ1)n with
some 0 < ρ1 ≤ ( 2

5 − η), otherwise we are done. Furthermore, by a result of
[12], we may also assume that |M1| = k1 ≥ ( 1

4 − η)n (indeed this is true for any
3-coloring of an almost complete graph). Apply Lemma 9 to select the strong
endpoints in M1 and denote the set of these strong endpoints by B, the set of
other endpoints by A and C = V (Kn) \ V (M1). Thus we have

|A| = |B| = k1 = (
2
5
− η − ρ1)n ≥ (

1
4
− η)n, (2)

(
1
5

+ 2η + 2ρ1 − δ)n ≤ |C| ≤ (
1
2

+ 2η)n. (3)

Call an edge of K purely-{blue, green} (or simply p-{blue, green}) if this
edge cannot be red, so it can only be blue and/or green. (We have a multi-
coloring!) Similarly, a p-green edge can only be green. Notice that - using the
convention that the exceptional red edges from each vertex of B are considered
as missing edges - every edge of K inside C and in the bipartite graph [B, C] is
p-{blue, green}. We shall frequently use the following fact.

Fact 1. Consider an edge e ∈ H such that the triangle defined by e in K
contains a p-{blue, green} edge. Then the other two edges of the triangle are
also blue and/or green (however, they may also be red).

Indeed, e ∈ H cannot be red, so it can only be blue or green.
Thus we have the following structural information about the 3-uniform 3-

coloring of K. Every edge of K is blue and/or green except perhaps the edges
inside the set A. In addition every edge of K inside C and in the bipartite graph
[B, C] is p-{blue, green}. Define the subgraph H of K with vertex set A∪B∪C
and with all edges of K in B ∪C and in the bipartite graph [A,B ∪C]. Now all
edges of H have blue and/or green colors. Some of the edges of H might have
a red color as well, we ignore that, i.e. consider H as a 2-multicolored graph.
The pairs in B ∪ C and in [A,B ∪ C] that are not in K will be referred as the
“missing edges” of H.

Proposition 10. All vertices of H has missing degree at most δn.

Proof. By Lemma 5 every δ-bounded selection x1, x2 is covered by at least one
(in fact by at least (1 − δ)n) edge of H. By assumption, every x1 ∈ V (H) can
start such a selection and at most δn choices are forbidden for x2. Thus in case
of x1 ∈ A there are at most δn choices of x2 ∈ B ∪ C such that no edge of
H covers {x1, x2}. Similarly, for x1 ∈ B ∪ C there are at most δn choices of
x2 ∈ V (H) such that no edge of H covers {x1, x2}. ¤

Next we establish some facts about the monochromatic components of H.
From (2) we have |A|, |B ∪ C| > 2δn. Applying Lemma 7 with r = 2 to the
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subgraph H[B ∪C] we get U1 ⊆ B ∪C such that |(B ∪C) \U1| < δn and H[U1]
is connected in blue or green, say w.l.o.g in blue. In fact, we may assume that
B ∪C = U1 since deleting at most δn vertices does not influence the proof. Let
U2 be the set of vertices in A with at least one blue neighbor in U1. Let K1 be
the the subgraph of H induced by the blue edges of U1 ∪ U2. Observe that K1

is the only nontrivial blue component of H so blue is a good color.
Case I. A \ U2 is nonempty. Now all edges of [U1, A \ U2] are green. This

implies that K2, the subgraph of green edges of H is the only nontrivial green
component of H so green is a good color. In this case we define M2 as the larger
of the maximum matchings of K1,K2, without loss of generality, M2 is blue.

Case II. A = U2. If there is only one nontrivial green component (i.e. if green
is a good color) then we have the symmetry as in Case I and M2 is defined as
the larger of two maximal matchings, without loss of generality, M2 is blue
again. Otherwise - if there are more than one nontrivial green components, M2

is defined as a maximum matching in K1. (However, as it will turn out later
we can find the required monochromatic matching without dealing with this
possibility.)

Since M2 is defined in a good color, |M1| ≥ |M2| (and no edge in V (H) \
V (M2) can be blue). We may assume that |M2| = k2 = ( 2

5 − η − ρ2)n with
some 0 < ρ1 ≤ ρ2 ≤ ( 2

5 − η), otherwise we are done. In the remainder of the
proof of Lemma 4 we will show in all cases that either directly we can find
a green connected matching of size at least 2

5n or we show that there is only
one nontrivial green component in Case II and it contains a matching M3 with
|M3| > |M2|, a contradiction.

Consider the set R of remaining vertices that are not covered by M2. Put
RA = R∩A, RB = R∩B and RC = R∩C. Apply Lemma 9 again to select the
strong endpoints in M2 and denote their set by S. Put SA = S∩A, SB = S∩B
and SC = S ∩ C. We have R ∩ S = ∅. Denote the other (possibly weak)
endpoints in M2 by W = WA ∪WB ∪WC . Thus we have A = SA ∪WA ∪ RA,
B = SB ∪WB ∪RB and C = SC ∪WC ∪RC and these sets are all disjoint. We
shall refer to these nine sets as atoms, and - by removing at most 9δn vertices -
we may assume that every nonempty atom has order larger than 2δn. We have

|S| = |W | = k2 = (
2
5
− η − ρ2)n, (4)

(
1
5

+ 2η + 2ρ2 − 10δ)n ≤ |R| ≤ (
1
5

+ 2η + 2ρ2)n. (5)

Notice that - considering at most one blue edge from each vertex of S as a
missing edge - every edge of H in R ∪ (S ×R) is p-green.

Case 1: RC 6= ∅ (then |RC | > 2δn).
Consider a δ-bounded selection starting with v ∈ S. Here we have the

following claim.

Claim 1. All but at most δn edges of H incident to v are green (they may be
blue as well, so they are not necessarily p-green).
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Indeed, assume by symmetry that v ∈ SA. Let u ∈ RC be a second vertex
in the δ-bounded selection (this is possible, since |RC | > δn) (v, u) is p-green
in H . From Lemma 5, for all but at most δn choices of w ∈ B ∪ C the triple
{u, v, w} is an edge of H. The color of this edge cannot be red because of the
edge (u, w) that is p-{blue, green} (since u ∈ C), it cannot be blue because of
the edge (v, u) that is p-green in H, so it must be green. Thus the edge (v, w)
is indeed green proving the claim (since the edge (v, u) is also green).

Since every vertex v ∈ S can start a δ-bounded selection, the green color is
connected and we can span the vertices of the blue matching by a green matching
(every blue matching edge is also green). To get a larger green matching, we
just add an arbitrary green edge in RC , a contradiction. Thus in the rest we
may assume that RC = ∅.

Case 2: RB 6= ∅ (then |RB | > 2δn).
We define an auxiliary green subgraph H1 of H. The vertex set of H1 is

SA ∪ SB ∪ RA ∪ RB ∪ C and its edge set is the set of green edges in the union
of the following subgraphs

H[SA, RB ],H[SB , RA],H[SB , RB ], H[RA, RB ],H[RB ],

H[SA, C],H[RA, C], H[SB , C], H[RB , C]. (6)

We show that H1 contains almost all edges of H in the given subgraphs, so
these subgraphs are almost totally green.

Claim 2. From any vertex of H1, all but at most δn edges of H are present in
H1 (so they are green).

Indeed, the claim is true for the subgraphs in the first line of (6) since
R∪(S×R) is p-green in H. For the subgraphs involving C we proceed similarly
as in Claim 1. For H[SA, C] and H[RB , C] start a δ-bounded selection with
v ∈ SA. Continue with u ∈ RB such that the edge (v, u) is p-green in H (since
v is a strong endpoint, at most one edge from v to R is blue in H, all other
edges are good). Let w be the third vertex of the selection from C. Consider the
color of the edge {u, v, w} in H. It cannot be red because of the edge (u,w) that
is p-{blue, green} (since w ∈ C), it cannot be blue because of the edge (v, u)
that is p-green in H, so it must be green. Thus the edges (v, w) and (u,w) are
indeed green proving the claim for H[SA, C] and H[RB , C]. For H[SB , C] and
H[RA, C] it is similar. This proves the claim.

Subcase 2.1: SC = ∅.
In this case we will prove that H1 has a matching M3 leaving out at most

constant times δn vertices. This will be enough as this matching basically
leaves out only those weak endpoints of M2 which are not in C, so altogether
only k2 − |C|+ 10δn ≤ 1

5n vertices using (1), (3) and (4) and thus

|M3| ≥ 2
5
n.

From Claim 2 and from the assumption on the sizes of the atoms, H1 is con-
nected, and thus the matching M3 is connected.
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To show that ν(H1) is large we bound def(H1) = max{co(H1 \ T ) − |T |}
in the Tutte-Berge formula with Lemma 11. To prepare that, we assign a base
graph G = G(H1) to H1 whose vertices are the atoms of H1 - with the present
H1, G has five vertices. To each vertex v ∈ V (G) the number of vertices
of the atom corresponding to v is assigned as the weight, w(v). Two (not
necessarily distinct) vertices of G are adjacent if there are edges of H1 between
the corresponding atoms, see (6). Using the same notation for the vertices of G
as for the atoms of V (H1), our base graph has one loop at vertex RB and all but
two pairs of distinct vertices are adjacent, the exceptions are (SA, SB), (SA, RA).
The weight of Z ⊆ V (G), w(Z), is the sum of its vertex weights. Define cr∗(Z) =
w(Z) − w(NG(Z)) where NG(Z) is the open neighborhood of S in G, i.e. the
set of vertices in V (G) \ Z adjacent to at least one vertex of Z. Set c∗(G) =
maxS cr∗(S) where the maximum is taken over all independent sets S of the
base graph G (a vertex with a loop cannot be in any independent set). We state
the following lemma for a general base graph with t vertices although t ≤ 9 in
all applications.

Lemma 11. Let G be the base graph of H1, |V (G)| = t. Then def(H1) ≤
c∗(G) + 4tδn + t

Proof. Let Fi denote the atoms of H1 and let i denote the corresponding
vertex in the base. Suppose (see Lemma 8) that def(H1) = c0(H1 \ T ) − |T |
for some T ⊆ V (H1). Set Xi = Fi ∩ T, Yi = Fi \ Xi. If |Yi| ≤ 2δn then Yi is
called small, otherwise it is large. Let W denote the set of vertices in G (set of
indices) for which Yi is small.

Clearly at most 2tδn odd components of H1 \ T intersects the union of the
small Yi-s. The other odd components are in the union of the large Yi-s, however
only a few, at most t, can be nontrivial. Indeed, suppose a component C has an
edge e ∈ E(Hi) between two large Yi, Yj for i 6= j. Since the missing degree of
any vertex of H1 is at most δn, C spans Yi ∪Yj . Similarly if an edge e ∈ E(H1)
of a component is within a large Yi then i has a loop and the component must
span Yi in this case. Therefore at most t nontrivial components (in particular
odd nontrivial components) are in the union of the large Yi-s (this can happen
if all edges of G are loops and each weight is odd). The set B of other odd
components have to be trivial, i.e. one-vertex components in the union of some
large Yi-s, B ⊆ ∪i∈SYi. Notice that S is an independent set of G (can not
contain loops either) and |B| ≤ ∑

i∈S |Yi| ≤ w(S). Thus

co(H1 \ T ) ≤ 2tδn + t +
∑

i∈S

|Yi| ≤ 2tδn + t + w(S). (7)

Notice that NG(S) ⊆ W otherwise there is an edge uv ∈ E(H1) such that
u ∈ B, v ∈ Yj with a large Yj which contradicts to the fact that u is an isolated
vertex in V (H1) \ T . Using this and the definition of W we have

∑

i∈W

|Xi| >
∑

i∈W

w(i)− 2tδn = w(W )− 2tδn ≥ w(NG(S))− 2tδn. (8)
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Combining (7) and (8)

def(H1) = co(H1 \ T )− |T | ≤ 2tδn + t + w(S)−
t∑

i=1

|Xi| ≤

≤ 2tδn + t + w(S)−
∑

i∈W

|Xi| < 4tδn + t + w(S)− w(NG(S)) =

= cr∗(S) + 4tδn + t ≤ c∗(G) + 4tδn + t (9)

giving the claimed estimate of the lemma. ¤
Using Lemma 11, in the next claim we estimate cr∗(S) for the independent

sets S of G(H1). As before, with a slight abuse of notation vertices of G(H1)
are denoted the same way as the corresponding atoms in V (H1). Lemma 11
will be used in the proof of other subcases, at those places we will omit some of
the details.

Claim 3. Set S1 = {SA, RA}, S2 = {SA, SB}, S3 = {C}, S4 = {SA}. Then

cr∗(S1) = (|SA|+ |RA|)− (|SB |+ |RB |+ |C|) ≤ −ηn,

cr∗(S2) = (|SA|+ |SB |)− (|RA|+ |RB |+ |C|) ≤ −ηn,

cr∗(S3) = |C| − (|RA|+ |RB |+ |SA|+ |SB |) ≤ −ηn.

cr∗(S4) = |SA| − (|RB |+ |C|) ≤ −ηn,

Indeed, we get these estimates from the following inequalities.

|SA|+ |RA| ≤ |A| = |B| = |SB |+ |RB |+ |WB | < |SB |+ |RB |+ |C| − ηn,

(Here we used the inequality

|WB | < |C| − ηn. (10)

To get this inequality, note that here all vertices in C are weak endpoints,
so WC = C, but then using (3) we have |WC | = |C| > n

5 + ηn. However,
from (4) we get |WB ∪ WC | ≤ |W | < 2

5n, which implies |WB | < n
5 , and thus

|WB | < n
5 < |C| − ηn, as desired.)

|SA|+ |SB | = |S| ≤
(

2
5
− η

)
n < |RA|+ |RB |+ |C| − ηn,

|C| ≤ |W | = |S| = |SA|+ |SB | ≤ |SA|+ |SB |+ |RA|+ |RB | − ηn,

and

|SA|+ |RA| ≤ |A| ≤
(

2
5
− η

)
n < |R|+ |C| − ηn =

= |RA|+ |RB |+ |C| − ηn.

Furthermore, note that for S5 = {RA} and S6 = {SB} we have cr∗(S5) ≤
cr∗(S1) ≤ −ηn and cr∗(S6) ≤ cr∗(S2) ≤ −ηn since NG(S5) = NG(S1) and
NG(S6) = NG(S2). Thus for each independent set S of G(H1) we have cr∗(S) ≤
−ηn, thus c∗(G(H1)) ≤ −ηn. Thus, from Lemma 11 with t = 5 (and using that
δ << η) we get

10



Claim 4. def(H1) ≤ 20δn + 5.

showing that H1 has an almost perfect matching, finishing the subcase.
Subcase 2.2: |SC | > 0 (then |SC | > 2δn).
In this subcase we extend H1 with the green edges in the subgraphs

H[RA,WB ],H[RB ,WA],H[SC ,WB ], H[SC ,WA].

Thus H1 contains now all the vertices of H. Again, we can show that almost
all edges in these subgraphs are in H1, so they are green. Indeed, let us take a
δ-bounded selection starting with v ∈ SC . Continue with u ∈ RA such that the
edge (v, u) is p-green in H (since v is a strong endpoint, at most one edge from v
to R is blue in H, all other edges are good). Finish the selection with w ∈ WB .
Consider the color of the triple {u, v, w} in the original H. This cannot be red
because of the edge (v, w) that is p-{blue, green} (since v ∈ C), it cannot be
blue because of the edge (v, u) that is p-green in H, so it must be green. Thus
the edges (v, w) and (u,w) are indeed green.

In this subcase we shall show again that H1 has a matching of size at least
2
5n. For this purpose we apply Lemma 11 again similarly as above so we are
not going to present all the details. As above we have to show that for each
maximal independent set S of G(H1) we have cr∗(S) ≤ ( 1

5 − η)n. We have
to check this inequality for all the subsets of the maximal independent sets:
{WA, SA,WB , SB}, {WA, SA, RA}, {WA,WB , WC}, {WC , SC} and {WB , RB}.

For example for the independent sets S1 = {WA, SA,WB , SB} and S2 =
{WC , SC} we get

cr∗(S1) = (|SA|+ |WA|+ |SB |+ |WB |)− (|RA|+ |RB |+ |C|) ≤
(

1
5
− η

)
n,

cr∗(S2) = (|WC |+ |SC |)− (|A|+ |B|) ≤
(

1
5
− η

)
n,

from the following inequalities (using (2), (3) and (5))

|SA|+ |WA|+ |RA|+ |SB |+ |WB |+ |RB | = |A|+ |B| ≤
(

4
5
− η

)
n ≤

≤ 2|R|+ |C|+
(

1
5
− η

)
n = 2(|RA|+ |RB |) + |C|+

(
1
5
− η

)
n,

and

|WC |+ |SC | = |C| ≤
(

3
5
− η

)
n ≤ |A|+ |B|+

(
1
5
− η

)
n.

Similarly, the other independent sets also satisfy cr∗(S) ≤ ( 1
5 − η)n. Then from

Lemma 11 (and using that δ << η) we get again a matching M3 in H1 of size
almost 2

5n. This finishes Case 2, we may assume in the rest of the proof that
|RB | = |RC | = 0 holds. Thus M2 covers all the vertices in B ∪ C.

11



At this point we have to refine the strong-weak structure of M2. Any
endpoint of any edge of M2 is strong, if it has at most one blue edge to
R = V (H) \ V (M2) in H and it is weak if it has at least two blue edges to R
in H. By Lemma 9 every edge of M2 has at least one (now maybe two) strong
endpoint. As above we define S = SA ∪ SB ∪ SC and W = WA ∪ WB ∪ WC ,
now we have only |W | ≤ |S|. Denote by S(W ) the set of strong endpoints of
M2 that are matched to W . We have the following claim.

Claim 5. All edges of H in S(W ) are p-green in H (they cannot be blue).

In fact, if we had a blue edge in S(W ), then we could increase the size of
the blue matching along an alternating path with five edges, a contradiction.

Case 3: |SC | > 0 (then |SC | > 2δn).
Here we define H1 as the green edges in the union of the subgraphs

H[RA,WB ],H[RA, SB ],H[RA, SC ],H[RA,WC ],

H[WB , SC ],H[SB , SC ],H[SB ,WC ], H[SC ,WC ].

Similarly as above we can show that H1 contains almost all edges of H in these
subgraphs, so these subgraphs are almost totally green. We can prove again by
Lemma 11 that H1 contains an almost perfect matching M3. As above we have
to show that for each independent set S of G(H1) here we have cr∗(S) ≤ −ηn.
We have to check this inequality for all the subsets of the maximal independent
sets {WB , WC}, {WB , SB}, {RA} and {SC}. For example for the independent
sets S1 = {WB ,WC} and S2 = {SC} we get

cr∗(S1) = (|WB |+ |WC |)− (|SB |+ |SC |+ |RA|) ≤ −ηn,

cr∗(S2) = |SC | − (|B|+ |RA|+ |WC |) ≤ −ηn

from the following inequalities

|WB |+ |WC | ≤ |W | ≤ |S| = |SA|+ |SB |+ |SC | ≤ |SB |+ |SC |+ |RA| − ηn,

and
|SC | ≤ |C| ≤ |R| = |RA| ≤ |RA|+ |B|+ |WC | − ηn

(using |C| ≤ |R|, i.e. |M1| ≥ |M2|). Similarly, the other independent sets can be
checked, and we get that here cr∗(S) ≤ −ηn holds for all of them. Thus again
we have an almost perfect matching M3 in H1 from Lemma 11. This matching
leaves out only at most

|WA|+ |SA|+ 10δn ≤ 1
5
n

vertices (using (1), (2) and (5)), as we wanted.
Case 4: Finally we may assume that SC = ∅. Hence, C = WC .
Here we define H1 as the green edges in the union of the subgraphs

H[RA, SB ], H[RA, C],H[SB , C].

12



Again H1 contains almost all edges in these subgraphs, however, this H1 leaves
out possibly too many vertices (|WA|+ |WB |+ |SA| which could be close to 2

5n).
Thus we have to extend H1.

Let us consider those vertices in WB ∪ WC for which the corresponding
strong endpoints in S(WB ∪ WC) are in SA. Denote the set of these vertices
by W ′ and their strong endpoints by S′ = S(W ′). Thus S′ ⊂ SA. Write
S1

B = S((WB ∪WC) \W ′)(⊂ SB) and S2
B = SB \ S1

B . We have the following
estimate on the size of S′.

|S′| ≥ |WB | − (ρ2 + δ)n. (11)

Indeed, as the strong endpoints corresponding to vertices in

((WA ∪ SA) \ S′) ∪ ((WB ∪WC) \W ′)

should all go to SB (using the fact that there are no edges of H in A), we have

|WA|+ |SA| − |S′|+ |WC |+ |WB | − |S′| ≤ |SB | = |B| − |WB |.

From this, (3) and (5) we get the estimate

2|S′| ≥ |WA|+ |SA|+ 2|WB |+ |C| − |B| = |A| − |RA|+ 2|WB |+ |C| − |B| =

= |A|− |R|+2|WB |+ |C|− |B| ≥ 2|WB |+2(ρ1−ρ2−δ)n ≥ 2(|WB |− (ρ2 +δ)n),

and thus we get (11).
We extend H1 with the green edges in the union of the subgraphs

H[S′, C],H[S′, S1
B ].

Again we can show that almost all edges in these subgraphs are in H1, so they
are green. Indeed, let us take a δ-bounded selection with u ∈ S′, v ∈ S1

B and
w ∈ C. Consider the color of the triple {u, v, w} in the original H. This cannot
be red because of the edge (v, w) that is p-{blue, green} (since w ∈ C), it cannot
be blue because of the edge (v, u) that cannot be blue by Claim 5, so it must
be green. Thus the edges (u, v) and (u,w) are indeed green.

In this case again we can prove with Lemma 11 that H1 contains a matching
M3 covering all but at most |S′| − |WB |+ (ρ2 + 2δ)n (≥ δn using (11)) vertices
of H1. This will be enough as by (11) this matching leaves out only at most

|WB |+ |WA|+ |SA| − |S′|+ |S′| − |WB |+ (ρ2 + 2δ)n + 10δn ≤

≤ |WA|+ |SA|+ ρ2n + 12δn ≤ 1
5
n

vertices, as we wanted. Here the last inequality follows from (1), (2), (5) and

|WA|+ |SA|+ 1
5
n + ρ2n + 12δn ≤ |WA|+ |SA|+ |RA| = |A| ≤ 2

5
n.
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For the existence of the matching M3 again we have to show that for each
independent set S of G(H1) here we have

cr∗(S) ≤ |S′| − |WB |+ (ρ2 + 2δ − η)n. (12)

We have to check this inequality for all the subsets of the maximal independent
sets {S′, RA}, {S′, S2

B}, {S1
B , S2

B} and {C}. For example for the independent
sets S1 = {S′, RA} and S2 = {S′, S2

B} we get

cr∗(S1) = (|S′|+ |RA|)− (|SB |+ |C|) ≤ |S′| − |WB |+ (ρ2 + 2δ − η)n,

cr∗(S2) = (|S′|+ |S2
B |)− (|S1

B |+ |RA|+ |C|) ≤ |S′| − |WB |+ (ρ2 + 2δ − η)n

from the following inequalities (using (10) again)

|S′|+ |RA| ≤ |A| = |B| = |SB |+ |WB | ≤ |SB |+ |C| − ηn ≤

≤ |SB |+ |C|+ |S′| − |WB |+ (ρ2 + 2δ − η)n

and

|S′|+ |S2
B | = |S′| − |WB |+ |WB |+ |S2

B | ≤ |S′| − |WB |+ (ρ2 + 2δ)n + |B| ≤

≤ |S′|−|WB |+(ρ2+2δ−η)n+
2
5
n ≤ |S′|−|WB |+(ρ2+2δ−η)n+|RA|+|C|+|S1

B |.
Similarly, the other independent sets can be checked, and we get that for each
(12) is satisfied, as we wanted. This completes the proof of Lemma 4.

3 From connected matchings to Berge-cycles

We shall assume throughout the rest of the paper that n is sufficiently large.
First we will need a generalization of the Regularity Lemma ([28]) for hyper-
graphs. There are several generalizations of the Regularity Lemma for hyper-
graphs due to various authors (see [3], [6], [9], [27] and [29]). Here we will use
the simplest one due to Chung [3]. First we need to define the notion of ε-
regularity. Let ε > 0 and let V1, V2, V3 be disjoint vertex sets of size m, and let
H be a 3-uniform hypergraph such that every edge of H contains exactly one
vertex from each Vi for i = 1, 2, 3. The density of H is dH = |E(H)|

m3 . The triple
{V1, V2, V3} is called an (ε,H)-regular triple of density dH if for every choice of
Xi ⊂ Vi, |Xi| > ε|Vi|, i = 1, 2, 3 we have

∣∣∣∣
H[X1, X2, X3]
|X1||X2||X3| − dH

∣∣∣∣ < ε.

Here by H[X1, X2, X3] we denote the subhypergraph of H induced by the vertex
set X1 ∪X2 ∪X3. In this setting the 3-color version of the (weak) Hypergraph
Regularity Lemma from [3] can be stated as follows.
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Lemma 12 (3-color Weak Hypergraph Regularity Lemma). For every positive
ε and positive integer m there are positive integers M and n0 such that for
n ≥ n0 the following holds. For all 3-uniform hypergraphs H1, H2,H3 with
V (H1) = V (H2) = V (H3) = V , |V | = n, there is a partition of V into l + 1
classes (clusters)

V = V0 + V1 + V2 + ... + Vl

such that

• m ≤ l ≤ M ,

• |V1| = |V2| = ... = |Vl|,
• |V0| < εn,

• apart from at most ε
(

l
3

)
exceptional triples, the triples {Vi1 , Vi2 , Vi3} are

(ε,Hs)-regular for s = 1, 2, 3.

For an extensive survey on different variants of the Regularity Lemma see
[22].

Consider a 3-edge coloring (H1,H2,H3) of the 3-uniform complete hyper-
graph K

(3)
n , i.e. H1 is the subhypergraph induced by the first color, H2 is

the subhypergraph induced by the second color, and H3 is the subhypergraph
induced by the third color.

We apply the above 3-color Weak Hypergraph Regularity Lemma with a
small enough ε and we get a partition of V (K(3)

n ) = V = ∪0≤i≤lVi, where
|Vi| = m, 1 ≤ i ≤ l. We define the following reduced hypergraph HR: The
vertices of HR are p1, . . . , pl, and we have a triple on vertices pi1 , pi2 , pi3 if the
triple {Vi1 , Vi2 , Vi3} is (ε,Hs)-regular for s = 1, 2, 3. Thus we have a one-to-one
correspondence f : pi → Vi between the vertices of HR and the clusters of the
partition. Then,

|E(HR)| ≥ (1− ε)
(

l

3

)
,

and thus HR is a (1 − ε)-dense 3-uniform hypergraph on l vertices. Define a
3-edge coloring (HR

1 ,HR
2 ,HR

3 ) of HR with the majority color, i.e. the triple
{Vi1 , Vi2 , Vi3} ∈ HR

s if color s is the most frequent color in this triple. Note
then that the density of this color is ≥ 1/3 in this triple. Finally we consider
the multi-colored shadow graph Γ(HR). The vertices are V (HR) = {p1, . . . , pl}
and we join vertices x and y by an edge of color s, s = 1, 2, 3 if x and y are
contained in an edge of HR that is colored with color s.

The main lemma that allows us to convert monochromatic connected match-
ings into monochromatic Berge-cycles is the following.

Lemma 13. Assume that for some positive constant c we can find a monochro-
matic connected matching M spanning at least cl vertices in Γ(HR). Then in
the original 3-edge colored K

(3)
n we can find a monochromatic Berge-cycle of

length at least c(1− 3ε)n.
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We note here again that the use of a connected matching in this type of
proofs (first suggested by [24]) has become somewhat standard by now (see [5],
[11], [12], [13], [14], [15] and [24]), so a proof of this lemma can be found in [11]
for example. For the sake of completeness we give the proof here again.

Proof. We may assume that M is in Γ(HR
1 ). Denote the edges on M by M =

{e1, e2, . . . , el1} and thus 2l1 ≥ cl. Furthermore, write f(ei) = (V i
1 , V i

2 ) for
1 ≤ i ≤ l1 where V i

1 , V i
2 are the clusters assigned to the end points of ei.

Next we define good vertices for an arbitrary edge e in Γ(HR
1 ). Denote

f(e) = (V 1, V 2). Since e is an edge in Γ(HR
1 ), the endpoints of e are contained

in a triple E in HR
1 . By definition this triple corresponds to an (ε,H1)-regular

triple f(E) (containing clusters V 1, V 2 and one more cluster) that has density
≥ 1/3. We say that a vertex x ∈ V j , j = 1, 2 is good for V j′ , j′ = 1, 2, j′ 6= j
if for at least m/6 vertices y ∈ V j′ , there are at least m/6 triples in H1[f(E)]
containing both x and y. The next claim shows that most vertices are good in
each V j .

Claim 6. In each V j , j = 1, 2 the number of vertices that are good for V j′ , j′ =
1, 2, j′ 6= j is at least (1− ε)m.

Indeed, let X ⊂ V j denote the set of vertices in V j that are not good for
V j′ . Assume indirectly that |X| > εm. The total number of triples in H1[f(E)]
that contain a vertex from X is smaller than

|X|
(

m

6
m + (1− 1

6
)m

m

6

)
=

(
1
3
− 1

36

)
|X|m2, (13)

which contradicts the fact that f(E) is an (ε,H1)-regular triple with density at
least 1/3 if ε is small enough. Thus the claim is true.

The good vertices determine an auxiliary bipartite graph G(V 1, V 2) in the
following natural way. In V j , j = 1, 2 we keep only the vertices that are good
for V j′ , j′ = 1, 2, j′ 6= j. For simplicity we keep the V 1, V 2 notation. For a
vertex x ∈ V j that is good for V j′ we connect it in G(V 1, V 2) to the

≥ (1/6− ε)m > m/7 (14)

vertices y ∈ V j′ such that there are at least m/6 triples in H1[f(E)] containing
both x and y.

At this point we introduce a one-sided notion of regularity. A bipartite
graph G(A,B) is (ε, δ,G)-super-regular if for every X ⊂ A and Y ⊂ B satisfying
|X| > ε|A|, |Y | > ε|B| we have

EG(X,Y ) > δ|X||Y |,

and furthermore,

degG(a) > δ|B| for all a ∈ A, and degG(b) > δ|A| for all b ∈ B.

Then it is not hard to see that the following is true.
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Claim 7. G(V 1, V 2) is a (2ε, 1/7, G)-super-regular bipartite graph.

Indeed, the second condition of super-regularity follows from (14). For the
first condition let X ⊂ V 1, Y ⊂ V 2 with |X| > 2ε|V 1|(> εm), |Y | > 2ε|V 2|(>
εm). Assume indirectly that EG(X,Y ) ≤ |X||Y |/7. The total number of triples
in H1[f(E)] that contain a vertex from X and a vertex from Y is smaller than

|X||Y |
(

m

7
+ (1− 1

7
)
m

6

)
=

(
1
3
− 1

21

)
|X||Y |m, (15)

which again contradicts the fact that f(E) is an (ε,H1)-regular triple with
density at least 1/3. Thus the claim is true.

Since M is a connected matching in Γ(HR
1 ) we can find a connecting path

PR
i in Γ(HR

1 ) from f−1(V i
2 ) to f−1(V i+1

1 ) for every 1 ≤ i ≤ l1 (for i = l1 put
i+1 = 1). Note that these paths in Γ(HR

1 ) may not be internally vertex disjoint.
From these paths PR

i in Γ(HR
1 ) we can construct vertex disjoint connecting paths

Pi in Γ(H1) connecting a vertex vi
2 of V i

2 that is good for V i
1 to a vertex vi+1

1 of
V i+1

1 that is good for V i+1
2 . More precisely we construct P1 with the following

simple greedy strategy. Denote PR
1 = (p1, . . . , pt), 2 ≤ t ≤ l, where according

to the definition f(p1) = V 1
2 and f(pt) = V 2

1 . Let the first vertex u1 (= v1
2)

of P1 be a vertex u1 ∈ V 1
2 that is good for both V 1

1 and f(p2). By Claim 6
most of the vertices satisfy this in V 1

2 . The second vertex u2 of P1 is a vertex
u2 ∈ (f(p2) ∩ NG(f(p1),f(p2))(u1)) (using the above defined bipartite graph G)
that is good for f(p3). Again using Claim 6 and the fact that ε is sufficiently
small, most vertices satisfy this in f(p2) ∩NG(f(p1),f(p2))(u1). The third vertex
u3 of P1 is a vertex u3 ∈ (f(p3) ∩ NG(f(p2),f(p3))(u2)) that is good for f(p4).
We continue in this fashion, finally the last vertex ut (= v2

1) of P1 is a vertex
ut ∈ (f(pt) ∩NG(f(pt−1),f(pt))(ut−1)) that is good for V 2

2 .
Then we move on to the next connecting path P2. Here we follow the same

greedy procedure, we pick the next vertex from the next cluster in PR
2 . However,

if the cluster has occurred already on the path PR
1 , then we just have to make

sure that we pick a vertex that has not been used on P1.
We continue in this fashion and construct the vertex disjoint connecting

paths Pi in Γ(H1), 1 ≤ i ≤ l1. Next we have to make these connecting paths
Berge-paths. By the construction, since every edge on every path Pi, 1 ≤ i ≤ l1
came from an appropriate bipartite graph G, the two endpoints of every edge
are contained in at least m/6 triples in H1[f(E)]. Since the total number of
edges on the paths Pi is a constant (≤ l2) and n (and thus m) is sufficiently
large, we can clearly “assign” a triple from H1 for each edge on the paths such
that the assigned triple contains the corresponding edge and the assigned H1

triples are distinct for distinct edges on the paths Pi.
We remove the internal vertices of these paths Pi from f(M). We also remove

the triples from H1 that are assigned to the edges of the paths Pi, since these
triples cannot be used again on the Berge-cycle. Note again that the number of
vertices and edges that we remove this way is a constant. Furthermore, in a pair
(V i

1 , V i
2 ) in V i

1 we keep only the vertices that are good for V i
2 , and in V i

2 we keep
only the vertices that are good for V i

1 , all other vertices are removed. By these
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removals we may create some discrepancies in the cardinalities of the clusters of
this connected matching. We remove an additional at most 2εm vertices from
each cluster V i

j of the matching to assure that now we have the same number
of vertices left in each cluster of the matching. For simplicity we still keep the
notation V i

j . Note that by Claim 7 the remaining bipartite graph G(V i
1 , V i

2 )
is clearly still (4ε, 1/8, G)-super-regular for every 1 ≤ i ≤ l1 and now we have
|V i

1 | = |V i
2 |.

We will use the following property of (ε, δ,G)-super-regular pairs.

Lemma 14. For every δ > 0 there exist an ε > 0 and m0 such that the following
holds. Let G be a bipartite graph with bipartition V (G) = V1 ∪ V2 such that
|V1| = |V2| = m ≥ m0, and let the pair (V1, V2) be (ε, δ,G)-super-regular. Then
for every pair of vertices v1 ∈ V1, v2 ∈ V2, G contains a Hamiltonian path
connecting v1 and v2.

A lemma somewhat similar to Lemma 14 is used by ÃLuczak in [24]. Lemma
14 is a special case of the much stronger Blow-up Lemma (see [20] and [21]).
Note that an easier approximate version of this lemma would suffice as well, but
for simplicity we use this lemma.

Applying Lemma 14 inside each G(V i
1 , V i

2 ), 1 ≤ i ≤ l1 together with the
connecting paths Pi we get a cycle C in Γ(H1) that has length at least

cl(1− 2ε)m ≥ c(1− ε)(1− 2ε)n ≥ c(1− 3ε)n.

We only have to make this cycle a Berge-cycle. For the edges on the connecting
paths Pi we already have assigned distinct H1 triples. The other edges came
from the bipartite graphs G(V i

1 , V i
2 ), 1 ≤ i ≤ l1, and thus the two endpoints

of every edge are contained in at least m/7 (we already removed some vertices
and triples) triples in H1[f(Ei)] (here Ei denotes the triple in HR

1 containing
the endpoints of the edge ei). Note that the triples Ei must be distinct for each
i, 1 ≤ i ≤ l1, because the pairs (V i

1 , V i
2 ), 1 ≤ i ≤ l1, are all distinct. Furthermore,

the triples containing two distinct edges from G(V i
1 , V i

2 ) are distinct. Thus if m
is sufficiently large we can clearly assign distinct triples to each edge on C and
this makes the cycle C a Berge-cycle, completing the proof of Lemma 13. ¤

Putting together Lemma 13 with the asymptotic result of the previous sec-
tion on monochromatic connected matchings (Lemma 4) we get the desired
asymptotic result on monochromatic Berge-cycles (Theorem 1).

Here in the hypergraph case there are no parity problems, we can easily
modify the proof technique of this section to yield the stronger Ramsey formu-
lation in Theorem 2. Indeed Lemma 14 has the following stronger form. In the
statement of the lemma v1 and v2 can actually be connected by a path of length
m′ for every even integer 4 ≤ m′ ≤ 2m. If the parity is not right we can change
the parity with the following simple trick. Consider PR

1 = (p1, . . . , pt). Since
the edge (p1, p2) is in Γ(HR

1 ), there is a triple E in HR
1 containing p1 and p2.

Take the third vertex p from E that is different from p1 and p2 and splice in
p between p1 and p2 on the connecting path PR

1 . This way we increased the
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length by one and thus we changed the parity. Hence in Theorem 2 we can find
a monochromatic Berge-cycle of length exactly n.
Acknowledgement. Thanks to an unknown referee whose useful remarks
improved the presentation.

References

[1] C. Berge, Graphs and Hypergraphs, North Holland, Amsterdam and Lon-
don, 1973.

[2] J. C. Bermond, A. Germa, M. C. Heydemann, D. Sotteau, , Hypergraphes
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[24] T. ÃLuczak, R(Cn, Cn, Cn) ≤ (4+o(1))n, Journal of Combinatorial Theory,
Ser. B 75 (1999), pp. 174-187.

[25] V. Rosta, On a Ramsey-type problem of J. A. Bondy and P. Erdős, I and
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