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Large Monochromatic Components in Edge 1

Colorings of Graphs: A Survey 2

András Gyárfás 3

1 Introduction 4

The aim of this survey is to summarize an area of combinatorics that lies on the 5

border of several areas: Ramsey theory, resolvable block designs, factorizations, 6

fractional matchings and coverings, and partition covers. Unless stated otherwise, 7

coloring means edge colorings of graphs; an r-coloring is an assignment of elements 8

of f1; 2; : : : ; rg to the edges. 9

1.1 A Remark of Erdős and Rado and Its Extension 10

A very simple statement – the leitmotif of the survey – is a remark of Erdős and 11

Rado. It can be phrased in different ways. 12

Proposition 1.1. The following statements are equivalent: 13

� Either a graph or its complement is connected. 14

� Every 2-colored complete graph has a monochromatic spanning tree. 15

� If two partitions are given on a ground set such that each pair of elements is 16

covered by some block of the partitions then one of the partitions is trivial, i.e., 17

has only one block. 18

� Pairwise intersecting edges of a bipartite multigraph have a common vertex. 19

The first two statements are clearly equivalent. The equivalence of the third 20

and fourth follows through duality: the blocks of the two partitions (through 21

duality) become the two partite sets of the bipartite graph and the vertices become
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(possibly multi-)edges. The equivalence of the second and third statements comes 22

from considering the correspondence of blocks of the two partitions with the com- 23

ponents of the two colored subgraphs in the 2-coloring of the edges of a complete 24

graph. 25

Any of the (equivalent) statements formulated in Proposition 1.1 can be proved 26

immediately; in Sect. 2 we overview many extensions of it. Several natural ques- 27

tions arise: can one say more about the monochromatic spanning tree guaranteed 28

by Proposition 1.1; may connectivity be replaced by stronger properties, such as 29

small diameter, higher connectivity (or both). These are discussed in Sect. 2.1. 30

Another important extension is surveyed in Sect. 2.2 when 2-colorings are replaced 31

by Gallai-colorings; these are colorings where the number of colors is not restricted 32

but the requirement is that there is no multicolored (rainbow) triangle in the color- 33

ings. It turned out that many results that hold for 2-colorings have extensions, or 34

even “black-box” extensions, to Gallai-colorings as well. 35

A separate section, Sect. 3, is devoted to r-colorings. The problem was suggested 36

in [24] and the case r D 3 was solved there; a minor inaccuracy was corrected in [1]. 37

The problem was rediscovered in [5]. The general result for r colors was proved in 38

[25]. It extends Proposition 1.1 as follows. 39

Theorem 1.2 ([25]). The following equivalent statements are true: 40

� In every r-coloring of Kn there is a monochromatic component with at least 41

n=r � 1 vertices. 42

� If r partitions are given on a ground set of n elements such that each pair of 43

elements is covered by some block of the partitions then one of the partitions has 44

a block of size at least n=r � 1. 45

� If an intersecting r-partite (multi)hypergraph has n edges then it has a vertex of 46

degree at least n=r � 1 (intersecting means that any two edges have a vertex in 47

common). 48

The equivalence of statements in Theorem 1.2 follows the same way as in 49

Proposition 1.1 and can be proved by two different proof techniques shown in 50

Sects. 3.1 and 3.2. The next subsection gives an important construction showing 51

that Theorem 1.2 is close to best possible. 52

1.2 Colorings from Affine Planes 53

Consider an affine plane of order r � 1 that is r partitions of a ground set V; jV j D 54

.r � 1/2 into blocks of size r � 1 so that each pair of elements of V is covered by a 55

unique block. (If r�1 is a prime power, affine planes indeed exist.) There is a natural 56

way to color the edges of a complete graph with vertex set V : for i D 1; 2; : : : ; r 57

color the pairs within the blocks of the i th partition class with color i . For example, 58

for r D 3 we obtain the 3-coloring of K4 (a factorization), for r D 4 we obtain 59

the 4-coloring of K9 where each color class is the union of three vertex disjoint 60
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triangles. In general, this coloring is an example showing that Theorem 1.2 holds 61

with equality: every monochromatic connected component has jV j=.r � 1/ D r �1 62

vertices. Further cases of equality are discussed in the next subsection. 63

1.3 Extending Colorings by Substitutions 64

A useful way of extending a coloring of a complete graph is to substitute colored 65

complete graphs to its vertices so that the edges between the substituted parts retain 66

their original colors. 67

In the r-coloring described above, the cardinality of the vertex set is fixed: jV j D 68

.r � 1/2. One can easily extend it by substituting complete graphs – usually with 69

arbitrary colorings – into all vertices. For example, to see that Theorem 1.2 is sharp 70

for n D k.r � 1/2 (and when affine plane of order r � 1 exists) just substitute 71

arbitrarily r-colored complete graphs on k vertices into the coloring defined in the 72

previous subsection. If n ¤ k.r � 1/2 then more subtle substitutions still can be 73

used, these problems are explored in Sect. 3.3. 74

The colorings defined here and in the previous subsection work only when affine 75

planes exist. On the other hand, if they do not exist then a result of Füredi [21] im- 76

mediately implies that Theorem 1.2 can be improved (see Sect. 3.2 for more details). 77

Theorem 1.3. Suppose that affine planes of order r � 1 do not exist. Then in every 78

r-coloring of Kn there is a monochromatic component with at least n.r�1/=r.r�2/ 79

vertices. 80

The first case when Theorem 1.3 applies is r D 7. 81

Problem 1.4. Let f .n/ be the cardinality of the largest monochromatic component 82

that must occur in every 7-coloring of Kn. Then, from the previous results, the 83

asymptotic of f .n/ is between 6n=35 and 7n=35. Improve these bounds! 84

The asymptotic of f .n/ in Problem 1.4 would follow from Füredi’s problem 85

([22], Problem 4.6): to find ˛ where 86

˛ D maxf��.H/ W H is intersecting 7-partite hypergraphg:
In fact, f .n/ � n=˛; see Sect. 3.2. 87

2 2-Colorings 88

2.1 Type of Spanning Trees, Connectivity, Diameter 89

Looking at the first form of Proposition 1.1, it is natural to ask what kind of 90

monochromatic spanning trees can be found in every 2-coloring of a complete 91
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graph. Bialostocki, Dierker, and Voxman [3] suggested three types: trees of height 92

at most two; trees obtained by subdividing the edges of a star with k edges 93

(a k-octopu s); and trees obtained by identifying an endpoint of a path with the 94

center of a star (a broom). 95

Theorem 2.1 ([3]). In every 2-coloring of Kn there exists a monochromatic span- 96

ning k-octopus with k � d.n � 1/=2e and also a monochromatic spanning tree of 97

height at most two. 98

The third suggested type, the broom, remained a conjecture until Burr found a 99

proof. Unfortunately Burr’s manuscript [11] was not published (although general- 100

izations [16,31] appeared), so it is doubly justified to reproduce Burr’s “book-proof” 101

here. 102

Theorem 2.2 ([11]). In every 2-coloring of Kn there exists a monochromatic span- 103

ning broom. 104

Proof. Assume w.l.o.g. that in a red–blue coloring of a complete graph, the red 105

graph is k-connected and the blue graph is at most k connected. Then the blue graph 106

becomes disconnected after the deletion of a set X of at most k vertices. Since the 107

red graph is k-connected, by a theorem of Dirac (see [43], Exercise 6.66) X can be 108

covered by a red cycle (an edge if k D 1). Thus the vertex set of Kn can be covered 109

by a red cycle C and a red complete bipartite graph G D ŒA; B�. Observe that a 110

complete bipartite graph always has a spanning broom such that its starting point 111

is arbitrary. Therefore covering C with a red path then continuing in the complete 112

bipartite graph ŒA n C; B n C � we can find a red broom. ut 113

Concerning the diameter of a monochromatic connected spanning subgraph, the 114

following result is folkloristic (forgive me if I missed further references). 115

Theorem 2.3 ([3, 45, 49]). In every 2-coloring of a complete graph there is a 116

monochromatic spanning subgraph of diameter at most three. 117

Proof. If vertices u; v are at a distance at least three in red then uv is blue and every 118

other vertex w is adjacent to at least one of u; v in blue. Thus there is a spanning 119

double star in blue. ut 120

How large is the largest monochromatic piece of diameter two? The following 121

coloring shows that one cannot expect more than 3n=4. Start with the 2-coloring of 122

K4 where both color classes form a P4. Substitute nearly equal vertex sets into this 123

coloring to get a total of n vertices. Erdős and Fowler [14] proved that this example 124

is best possible. 125

Theorem 2.4 ([14]). In every 2-coloring of Kn there is a monochromatic subgraph 126

of diameter at most two with at least 3n=4 vertices. 127

The proof of Theorem 2.4 is difficult. A weaker result (also best possible) with a 128

very simple proof is the following. 129
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Theorem 2.5 ([26]). In every 2-coloring of Kn there is a color, say red, and a set 130

W of at least 3n=4 vertices such that any pair of points in W can be connected by 131

a red path of length at most two. 132

Another natural question is the maximum order of a monochromatic k-connected 133

subgraph in 2-colorings of Kn. This question was introduced in [9] and further elab- 134

orated in [41, 42]. 135

Example. Let B be the 2-colored complete graph on vertex set Œ5� with red edges 136

12; 23; 34; 25; 35 and with the other edges blue. (Both color classes form a “bull”.) 137

Assuming that n > 4.k � 1/; k � 2, let B.n; k/ be a 2-colored complete graph with 138

n vertices obtained by replacing vertices 1; 2; 3; 4 in B by arbitrary 2-colored com- 139

plete graphs of k � 1 vertices and replacing vertex 5 in B by a 2-colored complete 140

graph of n � 4.k � 1/ vertices. All edges between the replaced parts retain their 141

original colors from B . Note that B.n; k/ denotes a member of a rather large family 142

of graphs. The definition of B.n; k/ is used in the case n D 4.k � 1/ as well, but 143

in this case vertices 1, 4 (2, 3) of B are replaced by red (blue) complete subgraphs 144

(and vertex 5 is deleted). Thus in this case we have just one graph for each k, which 145

we denote by B.k/. Observe that the color classes of B.k/ form isomorphic graphs 146

and there is no monochromatic k-connected subgraph in B.k/. 147

It is easy to check that in B.n; k/ the maximal order of a k-connected monochro- 148

matic subgraph is n � 2.k � 1/. It is conceivable that each B.n; k/ is an optimal 149

example for every k; i.e., the following assertion is true. 150

Conjecture 2.6 ([9]). For n > 4.k � 1/, every 2-colored Kn has a k-connected 151

monochromatic subgraph with at least n � 2.k � 1/ vertices. 152

For k D 2 it is easy to prove the conjecture. 153

Theorem 2.7 ([9]). For n � 5 there is a monochromatic 2-connected subgraph 154

with at least n � 2 vertices in every 2-coloring of Kn. 155

Proof. Every 2-coloring of K5 contains a monochromatic cycle. Proceeding by in- 156

duction, let (w.l.o.g.) H be a 2-connected red subgraph with n � 3 vertices in a 157

2-coloring of Kn. If some vertex of W D V.Kn/ n V.H/ sends at least two red 158

edges to H then we have a 2-connected red subgraph with n�2 vertices. Otherwise 159

the blue edges between V.H/ and W determine a 2-connected blue subgraph of at 160

least n�2 vertices (either a blue K2;n�4 or a blue K3;n�3 from which three pairwise 161

disjoint edges are removed). ut 162

Conjecture 2.6 was answered positively in [42] for k D 3 and for n � 13k. In [9] 163

it was remarked that it is enough to prove the conjecture for 4.k � 1/ < n < 7k � 5. 164

Another related conjecture – the graph B.k/ shows that it is sharp if true – is the 165

following. 166

Conjecture 2.8 ([9]). Every 2-colored Kn contains a monochromatic subgraph that 167

is at least (n=4)-connected. 168
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The following result was needed as a lemma in [36]. It shows that high 169

connectivity and small diameter can be simultaneously required for monochro- 170

matic subgraphs with order close to n. 171

Theorem 2.9 ([36]). For every k and for every 2-colored Kn there exists W � 172

V.Kn/ and a color such that jW j � n � 28k and any two vertices in W can be 173

connected in that color by k internally vertex disjoint paths, each with length at 174

most three. 175

Notice that the paths connecting vertices of W in Theorem 2.9 may leave W , 176

as in Theorem 2.5. Probably Theorem 2.9 can be strengthened, as Theorem 2.4 177

strengthens Theorem 2.5. 178

Problem 2.10. Is it possible to strengthen Theorem 2.9 by requiring that the 179

monochromatic paths connecting the pairs of W are completely within W ? 180

2.2 Gallai-Colorings: Substitutions to 2-Colorings 181

Edge colorings of complete graphs in which no triangles are colored with three 182

distinct colors are called Gallai-colorings in [31]. These colorings are very close to 183

2-colorings as the following decomposition theorem shows. This result is implicit 184

in Gallai’s seminal paper [23] and was refined in [12]. The form below is from [31]. 185

Theorem 2.11. Every Gallai-coloring can be obtained from a 2-colored complete 186

graph with at least two vertices by substituting Gallai-colored complete graphs into 187

its vertices. 188

Theorem 2.11 is a natural tool to extend results from 2-colorings to Gallai- 189

colorings. In [31] several results were extended, most notably Burr’s theorem (see 190

Theorem 2.16). Certain properties are not extendible though; there is obviously a 191

monochromatic star with at least ..n � 1/=2/ C 1 vertices in every 2-coloring of 192

Kn but this does not extend to Gallai-colorings. Substituting almost equal green 193

complete graphs into the vertices of a 2-colored K5 in which the red and blue colors 194

form pentagons, we get a Gallai-coloring that shows that the following result is 195

almost sharp (for n D 5k C 2 one can be added). 196

Theorem 2.12 ([31]). In every Gallai-coloring of Kn there is a monochromatic 197

star with at least 2n=5 edges. 198

In [35] a method was devised that can extend a result from 2-colorings to Gallai- 199

colorings. It works for certain classes of graphs and when it works it provides a 200

“black-box” extension; i.e., one does not need to know the (occasionally very dif- 201

ficult) proof of the 2-coloring result. To define those classes, a family F of finite 202

connected graphs was called Gallai-extendible in [35] if contains all stars and if for



BookID 186296 ChapID 005 Proof# 1 - 05/08/10

Unc
or

re
cte

d
Pro

of

Large Monochromatic Components in Edge Colorings of Graphs: A Survey

all F 2 F and for all proper nonempty U � V.F / the graph F 0 D F 0.U / defined 203

as follows is also in F : 204

� V.F 0/ D V.F /. 205

� E.F 0/ D E.F / n fuv W u; v 2 U g/ [ fux W u 2 U; x … U; vx 2 E.F / for some 206

v 2 U g.
AQ1

207

Theorem 2.13 ([35]). Suppose that F is a Gallai-extendible family, and that there 208

exists a function f W N ! N such that for every n and for every 2-coloring of Kn 209

there is a monochromatic F 2 F with jV.F /j � f .n/. 210

Then, for every n and every Gallai-coloring of Kn there exists a monochromatic 211

F 0 2 F such that jV.F 0/j � f .n/ – with the same function f. 212

As shown in [35], graphs with spanning trees of height at most h � 2, graphs of 213

diameter at most d for each d > 1, and graphs having a spanning double star are all 214

Gallai-extendible. Therefore Theorems 2.3, 2.4, and Corollary 4.6 have black-box 215

extensions to Gallai-colorings. 216

Theorem 2.14 ([35]). In every Gallai-coloring of Kn one can find monochromatic 217

spanning trees of height at most two, monochromatic double stars and monochro- 218

matic diameter two subgraphs with at least 3n=4 vertices. 219

Graphs having a spanning complete bipartite subgraphs are also Gallai- 220

extendible, therefore we have the following. 221

Theorem 2.15 ([35]). Every Gallai-colored Kn contains a monochromatic com- 222

plete bipartite subgraph with at least d.n C 1/=2e vertices. 223

There are cases when Theorem 2.13 is not applicable (at least directly): brooms 224

(or graphs having spanning brooms) are not Gallai-extendible, however, Theorem 225

2.2 remains true for Gallai-colorings as shown in [31] (conjectured by Bialostocki 226

in [3]). 227

Theorem 2.16 ([31]). In every Gallai-coloring of Kn there exists a monochromatic 228

spanning broom. 229

3 Multicolorings: Basic Results and Proof Methods 230

3.1 Complete Bipartite Graphs: Counting Double Stars 231

Usually Ramsey numbers are larger than the lower bound coming from the corre- 232

sponding Turán numbers of the graph in the majority color. However, the following 233

lemma is an exception. 234

Lemma 3.1 ([25]). In every r-coloring of a complete bipartite graph on n vertices 235

there is a monochromatic subtree with at least n=r vertices. 236
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This lemma was obtained in [25] by proving that a majority color class (a color 237

class with the largest number of edges) always has a subtree with at least n=r ver- 238

tices. A short proof of this is due to Mubayi [45] and Liu, Morris, and Prince [41]. 239

In fact they prove the following stronger statement: if the edges of the complete 240

bipartite graph with n vertices are colored with r colors, there is a monochromatic 241

double star with at least n=r vertices. A double star is a tree obtained by joining the 242

centers of two disjoint stars by an edge. 243

Lemma 3.2 ([41, 45]). In every r-coloring of a complete bipartite graph on n ver- 244

tices there is a monochromatic double star with at least n=r vertices. 245

Proof. Suppose that G D ŒA; B� is an r-colored complete bipartite graph, let di .v/ 246

denote the degree of v in color i . For any edge ab of color i , a 2 A; b 2 B , set 247

c.a; b/ D di .a/ C di .b/. Using the Cauchy–Schwartz inequality, we get 248

X

ab2E.G/

c.a; b/ D
X

a2A

rX

iD1

d 2
i .a/ C

X

b2B

rX

iD1

d 2
i .b/

� jAjr
�P

a2A

Pr
iD1 di .a/

jAjr
�2

C jBjr
�P

b2B

Pr
iD1 di .b/

jBjr
�2

D jAjjBj
� jAj C jBj

r

�
;

therefore for some a 2 A; b 2 B , c.a; b/ � jAj C jBj=r; i.e., there is a monochro- 249

matic double star of the required size. ut 250

Lemma 3.2 implies Theorem 1.2 in a stronger form. 251

Corollary 3.3. Suppose that the edges of Kn are colored with r colors. Then either 252

all color classes have monochromatic spanning trees or there is a monochromatic 253

double star with at least n=r � 1 vertices. 254

Proof. Indeed, if a color class does not have a spanning tree, there is a complete 255

bipartite subgraph colored with r � 1 colors and Lemma 3.2 concludes the proof. ut 256

It is possible that for r � 3 the second conclusion of Corollary 3.3 is always true. 257

This problem and some results in this direction can be found in Sect. 4.2. 258

A possible improvement of Lemma 3.1 is suggested in [6]. 259

Conjecture 3.4. If the edges of a complete bipartite graph ŒA; B� are colored with 260

r colors then there exists a monochromatic subtree with at least djAj=re C djBj=re 261

vertices. 262

For 2 � r � 4 Conjecture 3.4 was proved in [6] with an example that shows 263

that, unlike the case of Lemma 3.1, for r D 5 the conjectured large monochromatic 264

subgraph is not in the majority color. 265
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3.2 Fractional Transversals: Füredi’s Method 266

To present a very powerful method introduced by Füredi, the notion of fractional 267

covers and matchings is summarized. A fractional transversal of a hypergraph is 268

a nonnegative weighting on the vertices such that the sum of the weights over any 269

edge is at least 1. The value of a fractional transversal is the sum of the weights over 270

all vertices of the hypergraph. Then ��.H/ is the minimum of the values over all 271

fractional transversals of H. A fractional matching of a hypergraph is a nonnegative 272

weighting on the edges such that the sum of weights over the edges containing 273

any fixed vertex is at most 1. The value of a fractional matching is the sum of the 274

weights over all edges of the hypergraph. Then ��.H/ is the maximum of the values 275

over all fractional matchings of H. By LP duality, ��.H/ D ��.H/ holds for every 276

hypergraph H. 277

Assume that the edges of Kn are r-colored. By Theorem 1.2, to find a monochro- 278

matic component with at least n=r � 1 vertices is equivalent to finding a vertex of 279

degree at least n=r � 1 in an intersecting r-partite multihypergraphH with n edges. 280

Füredi proved [20] that in such hypergraphs ��.H/ � r � 1. Using the observation 281

that weighting all edges by the reciprocal of the maximum degree of the hypergraph 282

is a fractional matching with value jE.H/j=.D.H//, we get 283

jE.H/j
D.H/

� ��.H/ D ��.H/ � r � 1; (1)

where D is the maximum degree of H. Thus we have n=r � 1 D jE.H/j=r � 1 � 284

D.H/. 285

Notice that the above proof uses the LP duality theorem and this is applicable 286

in other variants of the problem; see, for example, Sect. 3.5. Moreover, whenever 287

the nonexistence of affine planes of order r � 1 is known, Füredi [21] improved his 288

upper bound �� � r � 1 by 1=r � 1 and this leads to Theorem 1.3. 289

3.3 Fine Tuning 290

Theorem 1.2 says that in any r-coloring of Kn there is a monochromatic component 291

with at least n=r � 1 vertices. We have already seen that this is sharp if r � 1 is a 292

prime power and n is divisible by .r � 1/2. The first case when one can improve on 293

this (by one) occurs for r D 3 and n D 4k C 2 ([1]). In [6] the order of the largest 294

monochromatic connected subgraph of Kn has been found for r D 4; 5 and for 295

all values of n. It turned out that these values depend on the smallest multicover of 296

affine planes. An i -cover of a hypergraph is a nonnegative integer weight assignment 297

to the vertices such that the sum of weights on every edge is at least i . The minimum 298

total weight over all i -covers is the i -cover number of the hypergraph. Let w.i; q/ 299

be defined as the minimum of the i -cover numbers over all affine planes of order q. 300

(The i -covers of affine planes are also called affine blocking sets.) For example, 301

a fundamental result of Jamison [10,37] says that 2q � 1 points (points on the union 302
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of two intersecting lines) is the smallest 1-cover of the Desarguesian affine plane. 303

However, w.1; 9/ < 17 because the Hughes plane of order 9 has a transversal of 16 304

points [10]. 305

The most general sharp result is obtained by Füredi’s method in [21] (similarly 306

as explained in Sect. 3.2). In terms of the parameter w.i; q/, it gives a sharp result 307

whenever the number of colors is one less than a power of prime. The result confirms 308

a conjecture of Bierbrauer [7]. It is more convenient to use inverse notation here: let 309

f .D; r/ be the maximum n such that there exists an r-coloring of the edges of 310

Kn for which the largest monochromatic connected subgraph has no more than D 311

vertices. 312

Theorem 3.5 ([21]). Assume that an affine plane of order q exists. Define i for 313

every D by i D q dD=qe � D where 0 � i < q. Then, for every D � q2 � q, 314

f .D; q C 1/ D q2

�
D

q

�
� w.i; q/:

3.4 When Both Methods Work: Local Colorings 315

The analogue of Theorem 1.2 for local r-colorings was obtained in [32]. A local 316

r-coloring of a complete graph is a coloring where the number of colors incident to 317

each vertex is at most r . How large is the largest monochromatic connected subgraph 318

in local r-colorings of Kn? 319

Let f .n; r/ denote the largest m such that in every local r-coloring of the 320

edges of Kn there is a monochromatic connected subgraph with m vertices. Clearly 321

f .n; r/ � n=r � 1 whenever Theorem 1.2 is sharp, because r-colorings are special 322

local r-colorings. This function has been also defined implicitly in [3], in connec- 323

tion with mixed Ramsey numbers. In particular, RM.Tn; G/ was defined as the 324

minimum m such that in any edge coloring of Km there is either a monochromatic 325

tree on n vertices or a totally multicolored copy of G. The special case when G 326

is a star was treated in [4]. Since the requirement of forbidding a multicolored star 327

K1; rC1 is equivalent to local r-colorings, the next result implies the asymptotic 328

value of RM.Tn; K1;ŠrC1/ (extending the special case r D 2 in [4]). 329

Theorem 3.6 ([32]). f .n; r/ � rn=.r2 � r C 1/ with equality if a finite plane of 330

order r � 1 exists and r2 � r C 1 divides n. 331

The construction for showing that Theorem 3.6 is sharp when indicated is as 332

follows. Consider the points of a finite plane of order r � 1 as the vertices of a 333

complete graph, label the lines, and color each pair of vertices by the label of the 334

line going through it. Then substitute each vertex i by a k-element set Ai so that 335

the Ai s are pairwise disjoint. The coloring is extended naturally with the proviso 336

that the edges within Ai s are colored with some color among the colors that were 337

incident to vertex i . The result is a locally r-colored Kn where n D k.r2�rC1/ and 338

the largest monochromatic connected subgraph has kr D nr=.r2 � r C 1/ vertices. 339
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Both methods discussed in Sects. 3.1, and 3.2 can be used to prove Theorem 3.6. 340

The method of counting double stars can be applied through the following theorem. 341

Theorem 3.7 ([32]). Assume that the edges of a complete bipartite graph 342

G D ŒA; B� are colored so that the edges incident to any vertex of A are col- 343

ored with at most p colors and the edges incident to any vertex of B are colored 344

with at most q colors. Then there exists a monochromatic double star with at least 345

jAj=q C jBj=p vertices. 346

A corollary of Theorem 3.7 is an extension of Lemmas 3.1 and 3.2. 347

Corollary 3.8 ([32]). In every local r-coloring of a complete bipartite graph G 348

there exists a monochromatic double star with at least jV.G/j=r vertices. 349

Proof of Theorem 3.6. If any monochromatic, say red component C satisfies jC j � 350

rn=.r2 � r C 1/, we have nothing to prove. Otherwise apply Theorem 3.7 for the 351

complete bipartite graph ŒA; B� D ŒV .C /; V .G/ n V.C /�. The edges incident to 352

any v 2 A are colored with at most p D r � 1 colors and the edges incident to 353

any v 2 B are colored with at most q D r colors. Thus, using Theorem 3.7 and 354

jAj < rn=.r2 � r C 1/, there is a monochromatic component of size at least 355

jAj=q C jBj=p D jAj
r

C n � jAj
r � 1

D n

r � 1
� jAj

�
1

r � 1
� 1

r

�

> n

�
1

r � 1
� r

r2 � r C 1

�
1

r.r � 1/

��
D rn

r2 � r C 1
: ut

Proof of Theorem 3.7. Let di .v/ denote the degree of v in color i . For any edge 356
ab of color i , a 2 A; b 2 B , set c.a; b/ D di .a/ C di .b/. Let I.v/ denote the set 357
of colors on the edges incident to v 2 V.G/. Then, by using the Cauchy–Swartz 358
inequality and the local coloring conditions, we get 359
X

ab2E.G/

c.a; b/ D
X

a2A

X

i2I.a/

d 2
i .a/ C

X

b2B

X

i2I.b/

d 2
i .b/

� jAjp
 P

a2A

P
i2I.a/ di .a/

jAjp

!2

C jBjq
 P

b2B

P
i2I.b/ di .b/

jBjq

!2

D jAjjBj
� jBj

p
C jAj

q

�
;

360

therefore for some a 2 A; b 2 B , c.a; b/ � jAj=qCjBj=p. Since the edges incident 361

to a or b in the color of ab span a monochromatic connected double star with c.a; b/ 362

vertices, Theorem 3.7 follows. ut 363

The second proof of Theorem 3.6 follows the argument shown in Sect. 3.2. 364

Assume that the edges of Kn are locally r-colored. Consider the hypergraph H 365

whose vertices are the vertices of Kn and whose edges are the vertex sets of the con- 366

nected monochromatic components. In the dual of H , H �, every edge has at most r 367
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vertices and each pair of edges has a nonempty intersection. Füredi proved [20] that 368

in such hypergraphs the fractional transversal number, ��.H �/ � r � 1 C .1=r/. 369

Then, as (1) in Sect. 3.2, we have 370

jE.H �/j
D.H �/

� ��.H �/ D ��.H �/ � r � 1 C 1

r
(2)

where D is the maximum degree of H �. Thus ..r jE.H �/j/=.r2�rC1// � D.H �/. 371

Noting that jE.H �/j D n and D.H �/ equals the maximum size of an edge in 372

H (i.e., the maximum size of a connected component in the local r-coloring), the 373

inequality of Theorem 3.6 follows. 374

3.5 Hypergraphs 375

Theorem 1.2 was extended to hypergraphs in [17] as follows. We note here that for 376

hypergraphs there are several notions of connectivity. Unless stated otherwise we 377

consider a hypergraph connected if its cover graph – the pairs of vertices that are 378

covered by at least one edge of the hypergraph – spans a connected graph. 379

Theorem 3.9 ([17]). In every r-coloring of the edges of the complete t-uniform 380

hypergraph on n vertices, there is a connected monochromatic subhypergraph on 381

at least n=q vertices, where q is the smallest integer satisfying r � Pt�1
iD0 qi . The 382

result is best possible if q is a prime power and n is divisible by qt . 383

The lower bound of Theorem 3.9 comes from Füredi’s method. Let f .n; r; t/ be 384

defined as the minimum size of a monochromatic component that must be present 385

in any r-coloring of the t-sets of an n-element set. Since here hypergraphs are col- 386

ored instead of graphs, the equivalent formulations of Theorem 1.2 have to be modi- 387

fied accordingly. Instead of intersecting r-partite (multi)hypergraphs we have t-wise 388

intersecting (multi)hypergraphs (i.e., hypergraphs in which any t edges have a com- 389

mon vertex). Then – similarly to the arguments leading to (1) and (2) – one can 390

estimate f .n; r; t/ as follows. 391

Lemma 3.10 ([17]). f .n; r; t/ � n=��.r; t/ where 392

��.r; t/ D maxf��.H/ W H is r-partite, t-wise intersecting hypergraphg:
The example showing that Theorem 3.9 is sharp when stated is a natural exten- 393

sion of the construction in Sect. 1.2 from affine planes to affine spaces of dimen- 394

sion t . Consider A.t; q/, the affine space of dimension t and order q, define color 395

class i by the t-element subsets of points that are within some hyperplane of the 396

ith parallel class of hyperplanes. This coloring can be extended by substituting sets 397

for points of A.t; q/ as in Sect. 1.3; in particular, if n D qt m, one can substitute m 398

vertices to all points of A.t; q/. 399

It is worth noting that for t D 2 we have r D q C 1 and Theorem 3.9 becomes 400

Theorem 1.2. For t � 3 there are big gaps in the values of r for which Theorem 3.9 401
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provides a sharp answer. For example, if t D 3, we get from Theorem 3.9 that for 402

r � 3 we have a spanning monochromatic connected subhypergraph (i.e., one span- 403

ning all vertices) and for r D 7 we have one spanning at least n=2 vertices. For four 404

five, and six colors Theorem 3.9 provides the same lower bound (n=2). The value of 405

��.4; 3/ was determined in [25] and the values ��.5; 3/; ��.6; 3/ in [29]. Through 406

Lemma 3.10 it follows that 407

Theorem 3.11. 408

f .n; 4; 3/ � 3n

4
Œ25�; f .n; 5; 3/ � 5n

7
; f .n; 6; 3/ � 2n

3
Œ29�:

In fact, Theorem 3.11 is sharp for infinitely many n (when the fractions in the 409

lower bounds are integers). 410

4 Multicolorings: Type of Components 411

It would be interesting to know more about the structure of the largest monochro- 412

matic components. In the basic extremal colorings (Sect. 1.2) the components are 413

complete graphs and after substitutions (Sect. 1.3) the components are balanced 414

complete partite graphs. Thus it is expected that extremal colorings have strong 415

connectivity properties. 416

4.1 Components with Large Matching 417

In Ramsey-type applications, for example, in [19, 30], and others, it turned out that 418

the problem of finding a large matching in a monochromatic component can be ap- 419

plied to Ramsey problems concerning paths and cycles. Let g.n; r/ be the maximum 420

m such that in every r-coloring of Kn there is a monochromatic component with a 421

matching that covers at least m vertices. There are two natural upper bounds for 422

g.n; r/. From the constructions showing that Theorem 1.2 is sharp (at least asymp- 423

totically) it follows that g.n; r/ � n=r � 1 for infinitely many n and r . Since the 424

Ramsey number of matchings was determined long ago by Cockayne and Lorimer 425

[13], it follows that g.n; r/ � 2n=r C 1. The two bounds coincide for r D 3 and 426

in [30] it was proved that indeed, g.n; 3/ is asymptotic to n=2 and this was a very 427

important step to determine exactly the three color Ramsey number of paths. The 428

following is probably a difficult problem (even for r D 4). 429

Problem 4.1. Is g.n; r/ asymptotic to n=r � 1? 430

The affirmative answer would imply (through the regularity lemma, applying a 431

principle introduced by Łuczak in [44]) that the r-color Ramsey number of Pn is 432

asymptotic to .r � 1/n and would probably be useful in many other applications 433

as well. 434

Gyárfás András
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4.2 Double Stars 435

Another type of component that emerged from the first proof of Theorem 1.2 is the 436

double star. Corollary 3.3 states that in r-colorings of Kn where at least one color 437

class is disconnected, there is a monochromatic double star with at least n=.r � 1/ 438

vertices. Perhaps this statement remains true for all colorings. 439

Problem 4.2. For r � 3, is there a monochromatic double star of size asymptotic 440

to n=.r � 1/ in every r-coloring of Kn? 441

However, even the following problem is open. 442

Problem 4.3. Is there a constant d (perhaps d D 3) such that in every r-coloring 443

of Kn there is a monochromatic subgraph of diameter at most d with at least 444

n=.r � 1/ vertices? 445

For r D 3 the affirmative answer to Problem 4.3 follows from a result of Mubayi. 446

Theorem 4.4 ([45]). In every 3-coloring of Kn there is a monochromatic subgraph 447

of diameter at most four with at least n=2 vertices. 448

The best known estimate for double stars is the following. 449

Theorem 4.5 ([33]). For r � 2 there is a monochromatic double star with at least 450

.n.r C 1/ C r � 1/=r2 vertices in any r-coloring of the edges of Kn. 451

Corollary 4.6 ([33]). In every 2-coloring of Kn there is a monochromatic double 452

star with at least .3n C 1/=4 vertices. 453

Corollary 4.6 is close to best possible, 2-colorings of Kn where the largest 454

monochromatic double star is asymptotic to 3n=4 and can be obtained from ran- 455

dom graphs or from Paley graphs. In [15] the existence of such a 2-coloring was 456

proved by the random method. However, for r � 3 the random method does not 457

provide a good upper bound for f .n; r/. 458

Observing that a double star has diameter at most three, the bound in Theorem 4.5 459

provides a slight improvement (for r � 3) of the following result of Mubayi. 460

Theorem 4.7 ([45]). There is a monochromatic subgraph of diameter at most three 461

with at least n=.r � 1 C 1=r/ vertices in every r-coloring of Kn. 462

5 Variations 463

We finish the survey by showing some variations of the basic theme in chronological 464

order. 465
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5.1 Vertex-Coverings by Components 466

A well-known conjecture, frequently cited as the Lovász–Ryser conjecture, states 467

the following extension of Theorem 1.2. It is stated in three forms to parallel 468

Theorem 1.2. �.H/ denotes the transversal number, the minimum number of ver- 469

tices needed to intersect all edges of H. 470

Conjecture 5.1. The following equivalent statements are true: 471

� In every r-coloring of Kn, V.Kn/ can be covered by the vertex sets of at most 472

r � 1 monochromatic components. 473

� If r partitions are given on a ground set of n elements such that each pair of 474

elements is covered by some block of the partitions then the ground set can be 475

covered by at most r � 1 blocks. 476

� For every intersecting r-partite (multi)hypergraphH, �.H/ � r � 1. 477

Conjecture 5.1 is proved for r � 4 in [25] and for r D 5 in [48]. Related prob- 478

lems can be found in a recent survey by Kano and Li [38]. 479

5.2 Coloring by Group Elements 480

Bialostocki and Dierker conjectured that Proposition 1.1 can be generalized as fol- 481

lows. In every coloring of the edges of KnC1 with colors in Zn D f0; 1; : : : ; n � 1g 482

there is a spanning tree with color sum zero modulo n (to get Proposition 1.1, use 483

0; 1 as two colors). The conjecture is proved for n prime in [2] and for general n in 484

[18], [47]. In fact, the proof of Schriver and Seymour in [47] works for hypergraphs 485

as well. An r-uniform hypertree T is a connected r-uniform hypergraph with p 486

edges on p.r � 1/ C 1 vertices. Notice that for r D 2 we get the usual definition of 487

a tree in graphs. 488

Theorem 5.2 ([47]). Suppose that K is the complete r-uniform hypergraph on 489

p.r � 1/ C1 vertices and the edges of K are labeled with an Abelian group of 490

order p. Then K has a spanning hypertree with total weight zero. 491

5.3 Coloring Geometric Graphs 492

Following [46], a geometric graph is a graph whose vertices are in the plane in 493

general position and whose edges are straight-line segments joining the vertices. 494

A geometric graph is convex if its vertices form a convex polygon. A subgraph of 495

a geometric graph is noncrossing if no two edges have a common interior point. 496

Ramsey-type problems for geometric graphs were first studied in [39] and [40]. The 497
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following result of Károlyi, Pach, and Tóth (a geometric generalization of Proposi- 498

tion 1.1) was conjectured by Bialostocki and Erdős (see [3] with a proof for convex 499

geometric graphs). 500

Theorem 5.3 ([39]). In every 2-coloring of a geometric complete graph there is a 501

non-crossing monochromatic spanning tree. 502

Proof. The nice inductive proof of Theorem 5.3 from [39] is as follows. We 503

may assume that vertices P1; : : : ; Pn of the geometric Kn have strictly increasing 504

x-coordinates. Set L.i/ D fPj W 1 � j � ig; R.i/ D fPj W i < j � ng. We may 505

also assume that the edges along the convex hull (meaning, really, the perimeter 506

of the convex hull) of Kn have the same color, say red, otherwise induction works 507

by removing a point Pj of the convex hull where two colors meet. Induction also 508

works if for any i , 2 � i � n � 1, the monochromatic spanning trees in L.i/; R.i/ 509

have the same color. Thus these spanning trees switch colors at each i , moreover for 510

i D 2 the switch is from red to blue and for i D n�1 the switch is from blue to red, 511

otherwise a red edge along the convex hull from P1 or from Pn would define red 512

noncrossing spanning trees. The conclusion is that for some i , 2 � i � n � 2, there 513

is a red–blue switch at i and blue–red switch at i C 1. Taking a (red) edge along the 514

convex hull that joins the left (red) tree at i with the right (red) tree at i C 1 results 515

in a red noncrossing spanning tree. ut 516

One can ask whether Lemmas 3.1 and 3.2 have geometric versions as well. The 517

simplest case is when the complete bipartite graph is balanced and drawn with par- 518

tite sets A D f.1; 0/; .2; 0/; : : : ; .n; 0/g and B D f.1; 1/; .2; 1/; : : : ; .n; 1/g (and the 519

edge ab is the line segment joining a 2 A and b 2 B in R2). Call this representation 520

a simple geometric Kn;n. 521

It is possible that (for two colors) Lemma 3.1 extends to simple geometric Kn;n 522

(perhaps even for arbitrary drawings of Kn;n). 523

Problem 5.4 ([27, 28]). In every 2-coloring of a simple geometric Kn;n there is a 524

noncrossing monochromatic subtree (a caterpillar) with at least n vertices. 525

However, the stronger result, Lemma 3.2 does not extend but has the following 526

geometric version. 527

Theorem 5.5 ([27, 28]). In every 2-coloring of a simple geometric Kn;n there is a 528

noncrossing monochromatic double star with at least 4n=5 vertices. This bound is 529

asymptotically best possible. 530

5.4 Coloring Noncomplete Graphs 531

Can one extend some of the results above from complete graphs to arbitrary graphs? 532

Somewhat surprisingly, the answer is yes. Theorem 1.2 can be extended to arbitrary 533

graphs as follows. Let ˛.G/ denote the cardinality of a largest independent set of G. 534
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Theorem 5.6. The following equivalent statements are true: 535

� In every r-coloring of a graph G with n vertices there is a monochromatic com- 536

ponent with at least n=..r � 1/ ˛ .G// vertices. 537

� If r partitions are given on a ground set of n elements such that among any ˛ C1 538

elements at least one pair is covered by some block of the partitions then one of 539

the partitions has a block of size at least n=..r � 1/˛/. 540

� If an r-partite hypergraph has n edges and among them at most ˛ are pairwise 541

disjoint then it has a vertex of degree at least n=..r � 1/˛/. 542

Proof. The equivalence of the statements can be proved by the same translation 543

process as in Theorem 1.2. Their proof is again by Füredi’s method, using his result 544

in a form that is more general than in the previous applications. Let �.H/ denote the 545

maximum number of pairwise disjoint edges in a hypergraphH. ut 546

Theorem 5.7 ([20]). If an r-uniform hypergraph H does not contain a projective 547

plane of order r � 1 than ��.H/ � .r � 1/�.H/. 548

To see that the third statement of Theorem 5.6 holds, let H be an r-partite hyper- 549

graph with n edges and �.H/ � ˛. Since a finite plane of order r � 1 is obviously 550

not r-partite, Theorem 5.7 applies and – as in previous applications – (1) in Sect. 3.2 551

and (2) in Sect. 3.4, 552

jE.H/j
D.H/

� ��.H/ D ��.H/ � .r � 1/˛;

where D is the maximum degree of H. Thus we have 553

n

.r � 1/˛
D jE.H/j

.r � 1/˛
� D.H/:

ut 554

Theorem 5.6 may give hope that results mentioned so far for coloring complete 555

graphs can have (hopefully nice) extensions or at least analogues for coloring graphs 556

with fixed independence number. It looks as if this area is rather unexplored; almost 557

all previous results can be the subjects of investigation. The test cases can very well 558

be graphs with ˛.G/ D 2. 559

One particular attempt is started in [34] to extend Gallai-colorings to arbitrary 560

graphs as edge colorings without multicolored triangles. Suppose that we have a 561

Gallai-coloring of a graph G with ˛.G/ D 2. Let f .n/ be the minimum order of 562

the largest monochromatic connected subgraph over all such colorings of graphs 563

with n vertices. Clearly, by looking at the union of two disjoint complete graphs, 564

f .n/ � n=2. At first sight it is not clear that f .n/ is linear; it turns out [34] that it is, 565

n

5
� f .n/ � 3n

8

but not with coefficient 1
2

. In general, f .n; ˛/ is within reasonable limits. 566
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Theorem 5.8 ([34]). .˛2 C ˛ � 1/�1n � f .n; ˛/ � .cn log ˛/=˛2 567

The following quick proof of the linearity of f .n/ (with a coefficient weaker than 568

in Theorem 5.8) points to a far-reaching generalization. Let G be a graph with n ver- 569

tices with a Gallai-coloring. By Ramsey’s theorem every set of k D R.3; ˛.G/ C 1/ 570

vertices contains a triangle. By easy counting this implies that G has at least cn3 571

triangles, where c depends only on ˛. To each triangle T assign an edge of T whose 572

color is repeated in T . By the pigeonhole principle, some xy 2 E.G/ is assigned 573

to cn3=
�

n
2

� � 2cn triangles Ti D xyzi . Since in each Ti there are two edges in 574

the color of xy, say in red, the graph spanned by the red edges in the union of the 575

fx; y; zi g is connected, and has at least 2cn C 2 vertices. 576

With the idea of the proof above, Theorem 5.8 can be extended to hypergraphs 577

and also to colorings that do not contain any multicolored copy of a fixed hypergraph 578

F (in Gallai-colorings F D K3). As for graphs, for a hypergraph H, ˛.H/ denotes 579

the maximum cardinality of S � V.H/ such that no edges of H are completely 580

in S . 581

Theorem 5.9 ([34]). Suppose that the edges of an r-uniform hypergraph H are 582

colored so that H does not contain multicolored copies of an r-uniform hyper- 583

graph F . Then there is a monochromatic connected subhypergraph H1 � H such 584

that jV.H1/j � cjV.H/j, where c depends only on F , r , and ˛.H/ (thus does not 585

depend on H). 586
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[31] A. Gyárfás, G. Simonyi, Edge colorings of complete graphs without tricolored triangles, 645

J. Graph Theor. 46 (2004) 211–216. 646
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