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Abstract: For n even, a factorization of a complete graph Kn is a partition of the edges into
n−1 perfect matchings, called the factors of the factorization. With respect to a factorization,
a path is called rainbow if its edges are from distinct factors. A rainbow Hamiltonian path
takes exactly one edge from each factor and is called orthogonal to the factorization. It is
known that not all factorizations have orthogonal paths. Assisted by a simple edge-switching
algorithm, here we show that for n≥8, the rotational factorization of Kn, GKn has orthogonal
paths. We prove that this algorithm finds a rainbow path with at least (2n+1)/3 vertices in
any factorization of Kn (in fact, in any proper coloring of Kn). We also give some problems
and conjectures about the properties of the algorithm. q 2010 Wiley Periodicals, Inc. J Combin
Designs 18: 167–176, 2010
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1. INTRODUCTION

For n even, a factorization of a complete graph Kn is a partition of the edges into
n−1 perfect matchings, called the factors of the factorization (see [4]—VII/5, [9, 12]).
With respect to a factorization, a path is called a rainbow path or, simply, R-path if
its edges are from distinct factors. A rainbow Hamilton path is called orthogonal to
the factorization because it has exactly one edge from each factor of the factorization.
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There exist factorizations with many orthogonal Hamilton paths. Horton [6] proved that
if n/2 is odd and not divisible by 3 and 5, then there exists a factorization of Kn and a
decomposition of Kn into n/2 Hamilton paths such that every path of the decomposition
is orthogonal to the factorization (a tournament design).
On the other hand, consider the following factorization, called geometric factorization

in [12], defined for n=2k . The vertices of Kn are the binary sequences of length k and
the factors are defined by the vertex pairs with the same binary sum in bitwise addition.
It follows from a simple counting argument ([8, 3, 1]) that this factorization has no
orthogonal Hamilton paths at all. Nevertheless, it is widely believed, in fact conjectured
in [3, 1], that this is a “worst case”, i.e., for every factorization of Kn there is a rainbow
path with n−1 vertices. However, it seems that presently finding a rainbow path even
with n−o(n) vertices is out of reach, in contrast to the situation concerning Ryser’s
conjecture.
Ryser [11] conjectured that every Latin square of order n has a partial transversal of

length n for odd n (and length n−1 for even n). Now the existence of partial transversals
of length n−o(n) is known, here we just cite two important papers [13, 5] from the
history of the advances. It would follow from Ryser’s conjecture (when n is even) that
in every factorization of Kn there is a “partial rainbow 2-factor”, a rainbow subgraph
that is the union of vertex-disjoint cycles covering all but one vertex of Kn . However, it
might happen that all cycles are short in the rainbow 2-factor above. Therefore, Ryser’s
conjecture does not imply the existence of long rainbow paths in factorizations. It is
worth noting that the proof method of [13] is used in [2] to show that there is a Hamilton
path in every factorization of Kn that has edges from n−o(n) distinct factors.
Using an edge-switching technique of Pósa [10] that proved to be useful in extremal

graph theory, it is shown in [2] that every factorization of Kn has a rainbow cycle of
order at least ( 47 −o(1))n (improving an earlier result n/2 in [1]). With a simple edge-
switching algorithm, here we show that there is a slightly longer rainbow path, namely
one with at least (2n+1)/3 vertices (Theorem 3) in every factorization of Kn .
In the light of the above remarks it makes sense to determine the length of the

longest rainbow path in special factorizations. We find that it is not obvious even for the
most well-known factorization either, the rotational factorization of Kn . Although this
factorization obviously contains many rainbow paths (and cycles) on n−1 vertices, a
counting argument, similar to the geometric factorization mentioned above, may prevent
the existence of an orthogonal Hamiltonian path. In fact, there is a counting argument, see
Lemma 1, that prevents the existence of orthogonal Hamilton decompositions mentioned
in the first paragraph. However, our main results, Theorems 1, 2 show that there exist
orthogonal Hamilton paths for n≥8 in the rotational factorization of Kn . In some
cases (for n=4k+2) the patterns of the orthogonal Hamiltonian paths we found have
been suggested by a computer program applying the edge-switching algorithm. It is a
challenge to find more aesthetic, and/or simpler, constructions. We also present some
problems, conjectures and statistics about the properties of the algorithm.

2. HAMILTON PATHS ORTHOGONAL TO THE ROTATIONAL
FACTORIZATION

The Rotational factorization, GKn , is the following well-known factorization of Kn
(arithmetic is modulo n−1). The vertex set is V ={0,1, . . . ,n−2}∪{∞} and for
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m=0,1, . . . ,n−2, factor Fm has the edge set {(m−x,m+x) : x ∈[1, (n−1)/2]}∪
(∞,m). We say that an edge (x, y) has color c(x, y)=m if it belongs to factor Fm .
The definition implies that c(x, y), the color of edge (x, y), can be computed by
x+ y=2c(x, y) if ∞ /∈{x, y}, otherwise, c(x, y)=min{x, y}.
Notice that there is an R-path (in fact an R-cycle) with n−1 vertices in the standard

factorization: 0,1,2, . . . ,n−2. However, this R-path (in fact any R-path through all
vertices of {0,1, . . . ,n−2}) cannot be extended to an orthogonal path. This follows from
the following lemma.

Lemma 1. No orthogonal path starts at ∞ in GKn.

Proof. Suppose there is an orthogonal path ∞, x1, . . . , xn−1, then xi +xi+1=
2c(xi , xi+1) for i=1, . . . ,n−2. Since c(∞, x1)= x1, adding up these equations yields

2
n−1∑

i=1
xi −(x1+xn−1)=2

n−1∑

i=2
xi

leading to x1= xn−1, which is a contradiction. �

Since no orthogonal path can start at vertex ∞, from symmetry, we may suppose that
the orthogonal path we are looking for enters ∞ from 0. It is probably not necessary,
but we shall always use the edge (∞,n/2) to continue it. The solution we provide
for n=4k in Theorem 1 has a relatively easy pattern and was discovered without
computers. We shall mostly use two types of path in the constructions, one is called
increasing path, or simply i-path, the other one is a jumping or simply, j-path. The
i-path takes consecutive vertices a,a+1, . . . of [0,n−2] and the j-path takes vertices
a,a+3,a+2, . . . of [0,n−2] i.e. uses the sequence +3,−1,+3,−1, . . . ,−1 to define
the next element. These paths are useful because along i- and j-paths colors increase
one by one. We shall also use reverse i- and j-paths by reversing the order on the i- and
j-paths, respectively.

Theorem 1. The following path (see Fig. 1) is an orthogonal path from 1 to 2k−1
in GKn for n=4k,k≥2. Take an i-path 1,2, . . . ,2k−3,2k−2; continue with 2k−
2,2k,∞,0,4k−3; finish with the reverse j-path 4k−3,4k−2,4k−5,4k−4, . . . ,2k+
32k+4,2k+12k+2,2k−1.

Proof. The i-path defines colors increasing one by one from 2k+1 to 4k−3 because

1+2=4k+2=2(2k+1), 2k−3+2k−2=2(4k−3).

The reverse j-path defines colors decreasing one by one from 2k−2 to 1 because

4k−3+4k−2=2(2k−2), 2k+2+2k−1=2×1.

Path 2k−2,2k,∞,0,4k−3 gives the four missing colors 2k−1,2k,0,4k−2. �

For n=4k+2, we have a bit more complicated orthogonal paths, in fact, we have
used a computer program to find solutions in the following way. The program starts
with an R-path, Qn on n−1 vertices (see below), and repeatedly applies exchanges
until it ends with a path orthogonal to GKn . Although the program has always ended
with a solution so far, we could not prove so, as stated in Conjecture 1 later. We used
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FIGURE 1. An orthogonal path for n=4k.

the program to get solutions for 10≤n≤46 and tried to guess how to generalize their
patterns for general n=4k+2. We ended up with several possibilities, but not with an
outstandingly aesthetic one.

Theorem 2. There exist orthogonal paths in GKn for n=4k+2,k≥2.

Proof.
Case 1: n=8k+2. Start with i-path 6k+2,6k+3, . . . ,8k,0; continue with 0,∞,4k+
1,1; take i-path 1,2, . . . ,4k−1,4k; finish with j-path 4k,4k+3,4k+2, . . . ,6k+1,6k
(see Fig. 2). The i-paths have colors 2k+2, . . . ,4k−1,4k and 4k+2, . . . ,8k and the
j-path gives the color sequence 1,2, . . . ,2k. Path 0,∞,4k+1,1 brings in the missing
colors 0,4k+1,2k+1.

Case 2: n=8k+6. Start with j-path Q=6k+6,6k+5,6k+8, . . . ,8k+4,8k+3,1;
then take i-path R=1,2, . . . ,4k+1,4k+2. Paths Q, R have colors 2k+3,2k+
4, . . . ,4k+1,4k+2 and 4k+4,4k+5, . . . ,8k+4. The last part of the path, P , varies
slightly according to the parity of k:

Subcase 2.1. k is odd. Here, P= P1∪P2, where P1=4k+2,4k+5,4k+6,4k+
3,∞,0,4k+4, then we repeatedly jump with jumping sequence +5,+1,−3,+1 to get
P2=4k+4,4k+9,4k+10,4k+7,4k+8, . . . ,6k−2,6k+3,6k+4,6k+1,6k+2 (for
k=1, we do not take P2), see Figure 3. Path P1 has colors 1,3,2,4k+3,0,2k+2, then
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FIGURE 2. An orthogonal path for n=8k+2.

P2 brings in colors 4,7,6,5, . . . ,2k+1,2k,2k−1, together with the colors of Q, R,
we have everything in [0,n−2]=[0,8k+4].
Subcase 2.2. k is even. Here, P= P1∪P2, where P1=4k+2,4k+5,4k+8,4k+7,
4k+4,0,∞,4k+3,4k+6, thenwe repeatedly jumpwith jumping sequence+5,+1,−3,
+1 to get P2=4k+6,4k+11,4k+12,4k+9,4k+10, . . . ,6k−2,6k+3,6k+4,6k+1,
6k+2 (for k=2 we do not take P2), see Figure 4. Path P1 has colors 1,4,5,3,2k+
2,0,4k+3,2, then P2 brings in colors 6,9,8,7, . . . ,2k+1,2k,2k−1, together with
the colors of Q, R, we have everything in [0,n−2]=[0,8k+4]. �

3. AN EDGE SWITCHING PROCEDURE GENERATING RAINBOW PATHS

Next, we describe a procedure we used for generating paths orthogonal to GKn to guess
patterns that generalize if n is in certain residue classes. It repeatedly “adds color” to
R-paths and resembles to the idea used by Pósa ([10], see also in [7] 10.20) to find long
paths in graphs with a certain expansion property. Similar methods were used in [13, 2]
to find long R-paths in factorizations.

Procedure “add color”
Assume we have an R-path Pi = x, . . . , y and a color c is missing from Pi . We define

an R-path Pi+1= y, . . . , z that will use color c as follows. Let p be the vertex for which
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FIGURE 3. An orthogonal path for n=8k+6 with k odd.

xp has color c.

• Step 1. If p /∈V (Pi ), then set z= p, Pi+1= y, . . . , x, z. (Note that we get a longer
R-path here.)

• Step 2. If p∈V (Pi ), then Pi+1 is defined by starting at y, following Pi until p,
then jumping to x and following Pi again and stopping at the predecessor z of
p. Briefly, one may say that Pi+1= y, . . . , z is obtained by an “edge-switching”:
deleting the edge zp and adding the edge xp (see Fig. 5). (Note that we do not
increase the length of the R-path here.)

One can make an algorithm from this procedure by selecting an R-path and a factor-
ization as the input, then iterating the procedure (if adding color used an edge-switching,
then a natural choice of new missing color is the color removed from the path). One
may notice that the add color procedure induces an orientation of the path, as it selects
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FIGURE 4. An orthogonal path for n=8k+6 with k even.

FIGURE 5. Edge-switching step.

the endpoint x in both Step 1 and Step 2. In fact it adds a missing color using the first
vertex of a path. Similarly, one can define an add color procedure using the end vertex
of a path, though it is easy to see that edge-switching using the last vertex is the reverse
of edge-switching using the first vertex: indeed, starting from a path Pi = x . . . y and a
missing color c(x, p), the standard edge-switching produces path Pi+1= y, . . . , z with a
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174 GYÁRFÁS AND MHALLA

0
1

2

3

4

5

6
7

8

9

10

11

0
1

2

3

4

5

6
7

8

9

10

11
12 12

FIGURE 6. Edge switching for n=14.

missing color c(z, p). Then edge-switching using the endpoint z and the missing color
c(z, p) produces back the original path Pi .
Note that it is possible that the algorithm never ends because Step 2 can be repeated

endlessly.
Mostly we tried the “add color” procedure with factorization GKn , n≥8, and with an

“almost orthogonal” input R-path, Qn with n−1 vertices, defined as follows: Qn starts
with i-path 1,2, . . . ,n/2−1, then continues with j-path n/2−1,n/2+2,n/2+1, . . . ,
n−6,n−3,n−4,0, and finally, 0,∞,n/2. We used Step 2 with alternating endpoints
until Step 1 is reached, i.e. the extension to an orthogonal path is found.
For n=14 (see Fig. 6), for example, we have x=1, y=7, z=12,

P1=1,2,3,4,5,6,9,8,11,10,0,∞,7

with missing color m=6. Then, p=11 from 1+ p=2×6 and

P2=7,∞,0,10,11,1,2,3,4,5,6,9,8= x .

The missing color is c(8,11)=3 and p=12 because 7+ p=2×3. Since z= p, the
procedure stops, 12∪P2 is the orthogonal path.
For n=18, we have x=1, y=9, z=16,

P1 = 1,2,3,4,5,6,7,8,11,10,13,12,15,14,0,∞,9; m=8, p=15,

P2 = 9,∞,0,14,15,1,2,3,4,5,6,7,8,11,10,13,12; m=5, p=1,

P3 = 12,13,10,11,8,7,6,5,4,3,2,1,9,∞,0,14,15; m=8, p=4,

P4 = 15,14,0,∞,9,1,2,3,4,12,13,10,11,8,7,6,5; m=13, p=11,

P5 = 5,6,7,8,11,15,14,0,∞,9,1,2,3,4,12,13,10; m=2, p=16,

and the procedure stops with orthogonal path 16∪P5.

Conjecture 1. The procedure described above produces an orthogonal path for every
n≥8 if P1=Qn.

The following table represents the number of edge switches done before finding an
increasing path starting from Qn . The part “one-direction” gives the data where the
algorithm runs as described, and in part “both directions” we try both endpoints run in
parallel. Column maxtrn is the maximal number of edge switches, column avgtrn is the
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average number of edge switches and column dir1 is the percentage of the cases where
adding the missing color at the first vertex found an orthogonal path faster.
In all the cases the procedure produced an orthogonal path, though the orbits of

the almost orthogonal paths by edge-switchings (number of almost orthogonal paths
reachable by edge-switchings) seem to increase quickly. We also noticed that using both
directions increases the speed of the algorithm significantly.

Both directions One direction

Interval dir1 (%) maxtrn avgtrn maxtrn avgtrn

10–498 46,34 1278 174 2822 415
10–998 45,16 5281 404 384,720 4336
10–1498 44,5 10,502 610 29,482,774 257,673
10–1998 44,58 11,724 841 2,110,203,018 3,300,528
10–9998 44,27 187,575 5373

We conclude the paper by questions and a result about the effectiveness of the “greedy”
edge-switching procedure we used. What is the longest R-path in the standard factor-
ization starting from an arbitrary edge in the switching procedure? In particular, is it
possible that the procedure should stop with a non-extendible R-path with less than n−1
vertices? One may ask the same question about the procedure if the input is an arbitrary
factorization of Kn . The next result gives a lower bound valid also for proper colorings
of Kn , i.e. for colorings where incident edges are colored with different colors.

Theorem 3. In every proper coloring of Kn, the edge-switching procedure finds an
R-path with at least (2n+1)/3 vertices.

Proof. Suppose that P= x1, x2, . . . , xk is an R-path non-extendible by edge-switching,
colored with color set C, |C |=k−1. Let A denote the set of vertices not covered by P .
Since P is not extendible from xk , only the colors of C can be present on the edge
set E={xk y|y∈ A}. Applying the same argument to x1 and using that there are n−1
distinct colors on the edge set incident to x1, we get that at least (n−1)−|C |=n−k
edges go from x1 to a subset B of V (P), each colored with a color not in C . Let B−
denote the set of predecessors of the vertices in B along P . Observe that the color of
xi xi+1 cannot be used on any xk y∈E , for any xi ∈ B−; otherwise, the path

yxkxk−1 . . . xi+1x1x2 . . . xi

obtained by edge-switching would give a longer R-path. We conclude that n−k=|A|≤
|C |−(n−k)=(k−1)−(n−k), giving the desired result. �
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