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Abstract

Here we prove that for n > 140, in every 3-coloring of the edges of
K'Y there is a monochromatic Berge cycle of length at least n — 10. This
result sharpens an asymptotic result obtained earlier. Another result is
that for n > 15, in every 2-coloring of the edges of K there is a 3-tight
Berge cycle of length at least n — 10.

1 Introduction

Let H be an r-uniform hypergraph (a family of some r-element subsets of a
set). The shadow graph of H is defined as the graph I'(H) on the same vertex
set, where two vertices are adjacent if they are covered by at least one edge of
‘H. A coloring of the edges of an r-uniform hypergraph H, » > 2, induces a
multicoloring on the edges of the shadow graph I'(H) in a natural way; every
edge e of T'(H) receives the color of all hyperedges containing e. We shall
denote by c¢(z,y) the color set of the edge zy in T'(H). A subgraph of T'(H) is
monochromatic if the color sets of its edges have a nonempty intersection. Let
K,(LT) denote the complete r-uniform hypergraph on n vertices.

In any r-uniform hypergraph H for 2 <t < r we define an r-uniform ¢-tight
Berge-cycle of length ¢, denoted by C’y’t), as a sequence of distinct vertices
v1, V2, . .., v, such that for each set (v;, vit1,...,V;4¢—1) of ¢ consecutive vertices
on the cycle, there is an edge e; of H that contains these ¢ vertices and the edges
e; are all distinct for 4,1 < i < £ where £ 4+ j = j. This notion was introduced
in [5] to generalize Berge-cycles (t = 2,[1]) and the tight cycle (t = r see e.g.
[11] or [15]). A Berge-cycle of length n in a hypergraph of n vertices is called
a Hamiltonian Berge-cycle. It is important to keep in mind that, in contrast
to the case r =t = 2, for r > t > 2 a Berge-cycle C’ér’t), is not determined
uniquely, it is considered as an arbitrary choice from many possible cycles with
the same triple of parameters.

In this paper, continuing investigations from [5], [6], [8] and [9], we study
long Berge-cycles in hypergraphs. In [5] (by generalizing an earlier conjecture
from [6]) the following conjecture was formulated.

Conjecture 1.1. For any fized 2 < ¢,2 < t < r satisfying c+t < r+1 and
sufficiently large n, if we color the edges of Kr(f) with ¢ colors, then there is a
monochromatic Hamiltonian t-tight Berge-cycle.

In [5] it was proved that if the conjecture is true it is best possible, since for
any values of 2 < ¢,t < r satisfying ¢+t > r + 1 the statement is not true. The
conjecture was proved for » = 3 in [6]. The asymptotic form of the conjecture
was proved for r =4 and ¢t = 2 in [6] and for every r and ¢ = 2 in [9] - in both
papers the Regularity Lemma was used. In this paper we apply an elementary
approach and we study the r = 4 case. We prove the conjecture in both cases
(¢c=3,t=2and c =2, ¢t=3) with a constant error term. It seems that the
methods applied in this paper fail for r > 5.



Theorem 1.2. Suppose that a 3-coloring is given on the edges of K7(14), where
n > 140. Then there is a monochromatic Berge-cycle of length at least n — 10.

This sharpens the asymptotic result obtained earlier for r = 4 in [6].

Theorem 1.3. Suppose that a 2-coloring is given on the edges of KT(L4), where
n > 15. Then there is a monochromatic 3-tight Berge-cycle of length at least
n — 10.

2 Proofs

Proof of Theorem 1.2. Suppose that ¢ is a 3-coloring on the edges of K =
K7(L4), where n > 140. Color ¢ € ¢(z,y) on the edge zy of G = T'(K) is a good
color if at least 3 edges of color ¢ contain {x,y} in K. We consider G with a new
coloring ¢* where ¢*(z,y) C c(z,y) is the set of good colors on zy. Assuming
that (";2) > 6, i.e. n > 6, every edge of IC has at least one color in ¢*.

Suppose first that some edge xy of G = T'(K) is colored (under ¢*) with
a single color, say with color 1. We claim that there is a Hamiltonian Berge
cycle in I in color 1. Indeed, the definition of xy implies that at most four
edges of K containing {z,y} are not colored with 1. Since for n > 10 we
have n — 6 > (n — 2)/2, the color 1 subgraph of H = G \ {x,y} satisfies
Dirac’s condition (see [13]), and thus one can easily find a Hamiltonian path
P = {y1,...yn—2} of color 1 in H such that there are two extra edges y1y,
and y,_oyi of color 1 from the endpoints of P with 2 < p,k < n — 3. Now
the cyclic ordering x,y1,y2,-..,Yn—2,y defines a Hamiltonian Berge-cycle in
color 1 with the following edge assignments. For z,y; assign e, = {x, y1,yp, y}.
For y;,yj41 (1 < j < n —3) assign e; = {z,y,y;,yj+1}, for y,_o,y assign
en—2 = {Yn—2,Y, Yk, 2}, and finally for x,y we can assign e,,_; as any edge of
color 1 containing x,y and different from all other e;-s.

Now we may assume that ¢* colors all edges of G with one of the four color
sets: 12,13,23,123.

Lemma 2.1. Assume that there is a monochromatic Hamiltonian cycle C' in G
under coloring c¢*. Then there is a Hamiltonian Berge-cycle in KC under coloring
c.

Proof. Assume that C' = z1,29,...,2, is a Hamiltonian cycle of G in color 1
(under ¢*). Then, following the cyclic order of vertices on C, let A; be the set
of edges of K in color 1 containing x;,x;,1. Since each A; has at least three
elements and no element of A; covers more than three consecutive pairs of C,
Hall’s theorem ensures a one-to one correspondence from the consecutive pairs
to the sets A;. This clearly defines the required Hamiltonian Berge-cycle. O

We need some observations on the structure of the coloring c¢*. Let x be
an arbitrary vertex, define Ui2(z), Ui3(x), Uzs(z), Ur2s(z) as the sets to which
x is connected in color sets 12,13, 23, 123 respectively. When « is implicit, for
simplicity we omit the dependence on z. Define

B; = {I € V(G)|UZJ =Uy = wa Ujk 7é ®}7



where i, j, k are the elements of {1,2,3} in some order. Observe that the B;’s
are pairwise disjoint, within the B;’s every edge of G has color set {j, k} or 123,
and for j # 4, an edge of G from B; to B; has color set 123. Set By = {z €
V(G)||Ur23] > n/2}.

Lemma 2.2. Suppose that U}_B; = V(G). Then there is a monochromatic
Hamiltonian cycle G under the coloring c*.

Proof. Suppose w.l.o.g that |B;| < |Bz| < |Bs|. We show that there is a Hamil-
tonian cycle in color 1. Denoting the degree of a vertex v in color i by d;(v), we
have that dl(’U) > |BQ|+|B3| > ‘B2|+‘Bl| ifv e Bl, dl(’U) =n—1ifv € BoUB3
and dy (v) > % if v ¢ U, B; (since in the latter case v € By). These conditions
immediately imply - through either Pésa’s or Chvétal’s condition (see [13]) that
there is a Hamiltonian cycle. [

Thus we may assume that there exists x € V(G)\U?_, B; (otherwise Lemmas
2.1 and 2.2 would finish the proof). Set U = V(G) \ ({z} U Uy23) and assume
w.lo.g. |Uaz| < |Uya| < |Ussl. Since z ¢ By we have Uys # 0 and = ¢ By implies
that |U| > |n/2].

We show that |Uss| < 1. Indeed, otherwise we may select two two-element
sets Az C Usg, A1a C Ujs and a five-element set A3 C Uyz. (The condition
|U| > |n/2] implies that |Uig| > % > 5 s0 Az can be defined.) For every
fixed us3 € Aoz there are at most two edges of color 1 among the edges of K in
the form {x, us3, 12,213} where x12 € A2, 215 € A1 are arbitrary. Repeating
this argument for fixed w12, u13 we get that there are at most 4 +4 + 10 = 18
edges of K in the form {z, x93, x12,213}. However, there are 2 x 2 x 5 = 20 such
edges giving a contradiction.

Now we fix y € Ui,z € Uz and define a graph H on the vertices of V(G) \
(UasU{z,y, z}) as follows. Let uv € E(H) be an edge of H in the following cases:
(i) uw € Urs,c({z,y,u,v}) = 1, in this case the edge is called an xy-edge; (ii)
u € Uya, c({x, z,u,v}) = 1, now the edge is called an zz-edge. Set |V(H)| = N
and note that N > n — 4.

Lemma 2.3. The graph H has a cycle C of length at least N — 6 in color 1.
Proof. Set

Tio = U12 n V(H),Tlg = U13 N V(H),T =Un V(H),Tlgg = U123.

Consider an arbitrary vertex u € Tio U T13. Set w = z if u € T15 otherwise
set w = y. Apart from at most four choices of v € V(H) the edge {z,u,w, v}
of K is of color 1. Thus every vertex of T' C V(H) has degree at least N — 5 in
H. Consider the set S C Tjo3 of vertices whose degrees are at most 11 in the
bipartite subgraph [T, Th23] of H. Observe that

|T|(|T123] — 5) < |E[T, Thas]| < (|Ti23| — |SIT| + 11]S|

implying that |S| < 6 if 66 < |T'| and this is true since |T'| > |n/2] — 4 > 65.
Now consider the subgraph F of H induced by T'U (T123 \ S). In fact, we may



assume that |\S| = 6 since deleting 6—|S| vertices does not influence the following
observation: each vertex v € T has degree at least NV — 11 in F’ and each vertex
v € Ty93 \ S has degree more than 11. Now we can apply Chvdtal’s condition
(see [13]) to prove that there is a Hamiltonian cycle in F' C H. Indeed, with
M = |V(F)|, we have to show that dj, < k < & implies that dy— > M — k
where d; < dy < --- < djps is the degree sequence of F. This is immediate
because the number of vertices with possibly small degrees (i.e. v € T3\ S) is
at most

Uias| — 6 < {gJ—(jg {NQHJ()‘_ {M—FlOJG— VjJ1 (1)

Indeed, let us take a k for which d, < k < % 11 < di < k implies that & > 11.
But then from (1) we get

dM_kZdr%-‘ZN—IIZM—11>M—k‘,

as desired. O

To finish the proof of Theorem 1.2, observe that the cycle C' obtained from
Lemma 2.3 defines a Berge-cycle if its xy-edges and xz-edges are extended (with
{z,y} or with {z,z} to edges of K. Thus we have a Berge-cycle of length
N —6 >n — 10 as required. [
Proof of Theorem 1.3. Suppose that a 2-coloring ¢ is given on the edges
of K = K7(L4). Let V be the vertex set of K and observe that ¢ defines a 2-
multicoloring on the complete 3-uniform hypergraph 7 with vertex set V' by
coloring a triple T' with the colors of the edges of K containing 7. We say that
T € T is good in color i if T is contained in at least two edges of IC of color i
(i=1,2).

Lemma 2.4. Let G = T'(K). Every edge xy € E(G) is in at least n — 4 good
triples of the same color.

Proof. Consider an edge zy in G and the edges of K containing both z and
y. Coloring ¢ induces a 2-coloring ¢/ on W = V' \ {z,y}. Applying a result of
Bollobds and Gyarfas, [2], there exists a subgraph H with at least |W|—2 = n—4
vertices such that H is 2-connected and monochromatic under ¢, say in color
1. In particular, every vertex of H has degree at least two in color 1. Thus, for
every vertex z of H, {x,y,z} is a good triple in color 1. O

Using Lemma 2.4, we can define a 2-coloring ¢* on the shadow graph G =
I'(K) by coloring xy € E(G) with the color of the (at least n — 4) good triples
containing zy. Using a well-known result about the Ramsey number of even
cycles ([4], [14]) there is a monochromatic even cycle C of length 2¢ where
2t = [22] — 6 or 2t = [2*] — 7. (In fact there is a bit longer cycle, but that is
too long for our purposes.) Assume that C is in color 1. Label the edges of C'
as e; = {pj,pj+1}, 7 =1,2,...,2t. We use here index arithmetic mod 2t.

We will find a large Berge-cycle in color 1 with a greedy procedure as follows.
By Lemma 2.4, for each ¢ € [2t] there is a set A; C V such that |4;| > n —4
and the triple T; = {p;, pi+1,x} is good in color 1 for every x € A;.



We claim that we can find a set {v; € Ag;_1 \ V(C)} of ¢ distinct vertices
for j € [t] with the following property: for every j € [¢],

’Uj S Agj,Q N A2j71 N A2j. (2)

To prove the claim, assume that for some h, 1 < h < t we have a set R =
{v1,...,vp} of h distinct vertices such that {v; € Ag;_1 \ V(C)} for 1 < j < h,
satisfying (2) and there are at least seven vertices in S = V' \ (V(C)U R). We
show that vpy; can be defined so that property (2) is preserved. Indeed, each
of the three sets Asgjp,, Aopi1, Aopyo intersects S in at least |S| — 2 elements,
therefore |S| > 7 implies that U = S N Ay, N Agpy1 N Agpye # 0. Thus we can
select vp11 € U. Now we only have to observe that at each step of the whole
process defining {vq,...,v¢},

12wz 2 ([2]6) 2

and the claim is proved.

Now we finish the proof by claiming that the cyclic permutation P =
P1, U1, P2, P3, V2, Pa, - - -, Pat—1, Vs, p1 determines a Berge-cycle. Indeed, from the
definition of vj, every triple of three consecutive vertices on P is good in color
1. Therefore at least two edges I of color 1 are available to cover a consecutive
triple. However, no edge of K can cover more than two consecutive triples of P.
Thus, by Hall’'s theorem, there is a matching from the consecutive triples of P
to the set of color 1 edges of KC containing them. The length of this Berge-cycle
is 3t > 2([2] - 7) >n—10. O
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