Long monochromatic Berge cycles in colored 4-uniform hypergraphs

András Gyárfás*

Computer and Automation Research Institute Hungarian Academy of Sciences Budapest, P.O. Box 63 Budapest, Hungary, H-1518 gyarfas@sztaki.hu

Gábor N. Sárközy[†]

Computer Science Department Worcester Polytechnic Institute Worcester, MA, USA 01609 gsarkozy@cs.wpi.edu and

Computer and Automation Research Institute Hungarian Academy of Sciences Budapest, P.O. Box 63 Budapest, Hungary, H-1518

Endre Szemerédi

Computer Science Department Rutgers University New Brunswick, NJ, USA 08903 szemered@cs.rutgers.edu

November 12, 2009

^{*}Research supported in part by OTKA Grant No. K68322.

[†]Research supported in part by the National Science Foundation under Grant No. DMS-0456401, by OTKA Grant No. K68322 and by a János Bolyai Research Scholarship.

Abstract

Here we prove that for $n \geq 140$, in every 3-coloring of the edges of $K_n^{(4)}$ there is a monochromatic Berge cycle of length at least n-10. This result sharpens an asymptotic result obtained earlier. Another result is that for $n \geq 15$, in every 2-coloring of the edges of $K_n^{(4)}$ there is a 3-tight Berge cycle of length at least n-10.

1 Introduction

Let \mathcal{H} be an r-uniform hypergraph (a family of some r-element subsets of a set). The shadow graph of \mathcal{H} is defined as the graph $\Gamma(\mathcal{H})$ on the same vertex set, where two vertices are adjacent if they are covered by at least one edge of \mathcal{H} . A coloring of the edges of an r-uniform hypergraph \mathcal{H} , $r \geq 2$, induces a multicoloring on the edges of the shadow graph $\Gamma(\mathcal{H})$ in a natural way; every edge e of $\Gamma(\mathcal{H})$ receives the color of all hyperedges containing e. We shall denote by c(x,y) the color set of the edge xy in $\Gamma(\mathcal{H})$. A subgraph of $\Gamma(\mathcal{H})$ is monochromatic if the color sets of its edges have a nonempty intersection. Let $K_n^{(r)}$ denote the complete r-uniform hypergraph on n vertices.

In any r-uniform hypergraph \mathcal{H} for $2 \leq t \leq r$ we define an r-uniform t-tight Berge-cycle of length ℓ , denoted by $C_{\ell}^{(r,t)}$, as a sequence of distinct vertices $v_1, v_2, \ldots, v_{\ell}$, such that for each set $(v_i, v_{i+1}, \ldots, v_{i+t-1})$ of t consecutive vertices on the cycle, there is an edge e_i of \mathcal{H} that contains these t vertices and the edges e_i are all distinct for $i, 1 \leq i \leq \ell$ where $\ell + j \equiv j$. This notion was introduced in [5] to generalize Berge-cycles (t = 2, [1]) and the tight cycle (t = r see e.g. [11] or [15]). A Berge-cycle of length n in a hypergraph of n vertices is called a Hamiltonian Berge-cycle. It is important to keep in mind that, in contrast to the case r = t = 2, for $r > t \geq 2$ a Berge-cycle $C_{\ell}^{(r,t)}$, is not determined uniquely, it is considered as an arbitrary choice from many possible cycles with the same triple of parameters.

In this paper, continuing investigations from [5], [6], [8] and [9], we study long Berge-cycles in hypergraphs. In [5] (by generalizing an earlier conjecture from [6]) the following conjecture was formulated.

Conjecture 1.1. For any fixed $2 \le c, 2 \le t \le r$ satisfying $c + t \le r + 1$ and sufficiently large n, if we color the edges of $K_n^{(r)}$ with c colors, then there is a monochromatic Hamiltonian t-tight Berge-cycle.

In [5] it was proved that if the conjecture is true it is best possible, since for any values of $2 \le c, t \le r$ satisfying c+t > r+1 the statement is not true. The conjecture was proved for r=3 in [6]. The asymptotic form of the conjecture was proved for r=4 and t=2 in [6] and for every r and t=2 in [9] - in both papers the Regularity Lemma was used. In this paper we apply an elementary approach and we study the r=4 case. We prove the conjecture in both cases $(c=3,\,t=2)$ and $(c=2,\,t=3)$ with a constant error term. It seems that the methods applied in this paper fail for (c=3) for (c=3) and (c=3) for (c=3) with a constant error term.

Theorem 1.2. Suppose that a 3-coloring is given on the edges of $K_n^{(4)}$, where $n \geq 140$. Then there is a monochromatic Berge-cycle of length at least n-10.

This sharpens the asymptotic result obtained earlier for r = 4 in [6].

Theorem 1.3. Suppose that a 2-coloring is given on the edges of $K_n^{(4)}$, where $n \geq 15$. Then there is a monochromatic 3-tight Berge-cycle of length at least n-10.

2 Proofs

Proof of Theorem 1.2. Suppose that c is a 3-coloring on the edges of $\mathcal{K} = K_n^{(4)}$, where $n \geq 140$. Color $i \in c(x,y)$ on the edge xy of $G = \Gamma(\mathcal{K})$ is a good color if at least 3 edges of color i contain $\{x,y\}$ in \mathcal{K} . We consider G with a new coloring c^* where $c^*(x,y) \subseteq c(x,y)$ is the set of good colors on xy. Assuming that $\binom{n-2}{2} > 6$, i.e. n > 6, every edge of \mathcal{K} has at least one color in c^* .

Suppose first that some edge xy of $G = \Gamma(\mathcal{K})$ is colored (under c^*) with a single color, say with color 1. We claim that there is a Hamiltonian Berge cycle in \mathcal{K} in color 1. Indeed, the definition of xy implies that at most four edges of \mathcal{K} containing $\{x,y\}$ are not colored with 1. Since for n>10 we have n-6>(n-2)/2, the color 1 subgraph of $H=G\setminus\{x,y\}$ satisfies Dirac's condition (see [13]), and thus one can easily find a Hamiltonian path $P=\{y_1,\ldots y_{n-2}\}$ of color 1 in H such that there are two extra edges y_1y_p and $y_{n-2}y_k$ of color 1 from the endpoints of P with 2< p, k< n-3. Now the cyclic ordering $x,y_1,y_2,\ldots,y_{n-2},y$ defines a Hamiltonian Berge-cycle in color 1 with the following edge assignments. For x,y_1 assign $e_n=\{x,y_1,y_p,y\}$. For y_j,y_{j+1} ($1 \leq j \leq n-3$) assign $e_j=\{x,y,y_j,y_{j+1}\}$, for y_{n-2},y assign $e_{n-2}=\{y_{n-2},y,y_k,x\}$, and finally for x,y we can assign e_{n-1} as any edge of color 1 containing x,y and different from all other e_i -s.

Now we may assume that c^* colors all edges of G with one of the four color sets: 12, 13, 23, 123.

Lemma 2.1. Assume that there is a monochromatic Hamiltonian cycle C in G under coloring c^* . Then there is a Hamiltonian Berge-cycle in K under coloring c

Proof. Assume that $C = x_1, x_2, \ldots, x_n$ is a Hamiltonian cycle of G in color 1 (under c^*). Then, following the cyclic order of vertices on C, let A_j be the set of edges of \mathcal{K} in color 1 containing x_j, x_{j+1} . Since each A_j has at least three elements and no element of A_j covers more than three consecutive pairs of C, Hall's theorem ensures a one-to one correspondence from the consecutive pairs to the sets A_j . This clearly defines the required Hamiltonian Berge-cycle. \square

We need some observations on the structure of the coloring c^* . Let x be an arbitrary vertex, define $U_{12}(x), U_{13}(x), U_{23}(x), U_{123}(x)$ as the sets to which x is connected in color sets 12, 13, 23, 123 respectively. When x is implicit, for simplicity we omit the dependence on x. Define

$$B_i = \{ x \in V(G) | U_{ij} = U_{ik} = \emptyset, U_{jk} \neq \emptyset \},$$

where i, j, k are the elements of $\{1, 2, 3\}$ in some order. Observe that the B_i 's are pairwise disjoint, within the B_i 's every edge of G has color set $\{j, k\}$ or 123, and for $j \neq i$, an edge of G from B_i to B_j has color set 123. Set $B_4 = \{x \in V(G) | |U_{123}| \geq n/2\}$.

Lemma 2.2. Suppose that $\bigcup_{i=1}^4 B_i = V(G)$. Then there is a monochromatic Hamiltonian cycle G under the coloring c^* .

Proof. Suppose w.l.o.g that $|B_1| \leq |B_2| \leq |B_3|$. We show that there is a Hamiltonian cycle in color 1. Denoting the degree of a vertex v in color i by $d_i(v)$, we have that $d_1(v) \geq |B_2| + |B_3| \geq |B_2| + |B_1|$ if $v \in B_1$, $d_1(v) = n - 1$ if $v \in B_2 \cup B_3$ and $d_1(v) \geq \frac{n}{2}$ if $v \notin \bigcup_{i=1}^3 B_i$ (since in the latter case $v \in B_4$). These conditions immediately imply - through either Pósa's or Chvátal's condition (see [13]) that there is a Hamiltonian cycle. \square

Thus we may assume that there exists $x \in V(G) \setminus \bigcup_{i=1}^4 B_i$ (otherwise Lemmas 2.1 and 2.2 would finish the proof). Set $U = V(G) \setminus (\{x\} \cup U_{123})$ and assume w.l.o.g. $|U_{23}| \leq |U_{12}| \leq |U_{13}|$. Since $x \notin B_2$ we have $U_{12} \neq \emptyset$ and $x \notin B_4$ implies that $|U| \geq |n/2|$.

We show that $|U_{23}| \leq 1$. Indeed, otherwise we may select two two-element sets $A_{23} \subseteq U_{23}$, $A_{12} \subseteq U_{12}$ and a five-element set $A_{13} \subseteq U_{13}$. (The condition $|U| \geq \lfloor n/2 \rfloor$ implies that $|U_{13}| \geq \frac{\lfloor n/2 \rfloor}{3} \geq 5$ so A_{13} can be defined.) For every fixed $u_{23} \in A_{23}$ there are at most two edges of color 1 among the edges of \mathcal{K} in the form $\{x, u_{23}, x_{12}, x_{13}\}$ where $x_{12} \in A_{12}, x_{13} \in A_{13}$ are arbitrary. Repeating this argument for fixed u_{12}, u_{13} we get that there are at most 4+4+10=18 edges of \mathcal{K} in the form $\{x, x_{23}, x_{12}, x_{13}\}$. However, there are $2 \times 2 \times 5 = 20$ such edges giving a contradiction.

Now we fix $y \in U_{12}$, $z \in U_{13}$ and define a graph H on the vertices of $V(G) \setminus (U_{23} \cup \{x, y, z\})$ as follows. Let $uv \in E(H)$ be an edge of H in the following cases: (i) $u \in U_{13}$, $c(\{x, y, u, v\}) = 1$, in this case the edge is called an xy-edge; (ii) $u \in U_{12}$, $c(\{x, z, u, v\}) = 1$, now the edge is called an xz-edge. Set |V(H)| = N and note that $N \geq n - 4$.

Lemma 2.3. The graph H has a cycle C of length at least N-6 in color 1.

Proof. Set

$$T_{12} = U_{12} \cap V(H), T_{13} = U_{13} \cap V(H), T = U \cap V(H), T_{123} = U_{123}.$$

Consider an arbitrary vertex $u \in T_{12} \cup T_{13}$. Set w = z if $u \in T_{12}$ otherwise set w = y. Apart from at most four choices of $v \in V(H)$ the edge $\{x, u, w, v\}$ of \mathcal{K} is of color 1. Thus every vertex of $T \subseteq V(H)$ has degree at least N-5 in H. Consider the set $S \subseteq T_{123}$ of vertices whose degrees are at most 11 in the bipartite subgraph $[T, T_{123}]$ of H. Observe that

$$|T|(|T_{123}|-5) \le |E[T,T_{123}]| \le (|T_{123}|-|S|)|T|+11|S|$$

implying that $|S| \le 6$ if $66 \le |T|$ and this is true since $|T| > \lfloor n/2 \rfloor - 4 > 65$. Now consider the subgraph F of H induced by $T \cup (T_{123} \setminus S)$. In fact, we may assume that |S|=6 since deleting 6-|S| vertices does not influence the following observation: each vertex $v\in T$ has degree at least N-11 in F and each vertex $v\in T_{123}\setminus S$ has degree more than 11. Now we can apply Chvátal's condition (see [13]) to prove that there is a Hamiltonian cycle in $F\subset H$. Indeed, with M=|V(F)|, we have to show that $d_k\leq k<\frac{M}{2}$ implies that $d_{M-k}\geq M-k$ where $d_1\leq d_2\leq \cdots \leq d_M$ is the degree sequence of F. This is immediate because the number of vertices with possibly small degrees (i.e. $v\in T_{123}\setminus S$) is at most

$$|U_{123}| - 6 \le \left\lfloor \frac{n}{2} \right\rfloor - 6 \le \left\lfloor \frac{N+4}{2} \right\rfloor - 6 = \left\lfloor \frac{M+10}{2} \right\rfloor - 6 = \left\lfloor \frac{M}{2} \right\rfloor - 1.$$
 (1)

Indeed, let us take a k for which $d_k \leq k < \frac{M}{2}$. $11 < d_k \leq k$ implies that k > 11. But then from (1) we get

$$d_{M-k} \ge d_{\lceil \frac{M}{2} \rceil} \ge N - 11 \ge M - 11 > M - k,$$

as desired. \square

To finish the proof of Theorem 1.2, observe that the cycle C obtained from Lemma 2.3 defines a Berge-cycle if its xy-edges and xz-edges are extended (with $\{x,y\}$ or with $\{x,z\}$ to edges of \mathcal{K} . Thus we have a Berge-cycle of length $N-6 \geq n-10$ as required. \square

Proof of Theorem 1.3. Suppose that a 2-coloring c is given on the edges of $\mathcal{K} = K_n^{(4)}$. Let V be the vertex set of \mathcal{K} and observe that c defines a 2-multicoloring on the complete 3-uniform hypergraph \mathcal{T} with vertex set V by coloring a triple T with the colors of the edges of \mathcal{K} containing T. We say that $T \in \mathcal{T}$ is $good\ in\ color\ i$ if T is contained in at least two edges of \mathcal{K} of color i (i = 1, 2).

Lemma 2.4. Let $G = \Gamma(K)$. Every edge $xy \in E(G)$ is in at least n-4 good triples of the same color.

Proof. Consider an edge xy in G and the edges of K containing both x and y. Coloring c induces a 2-coloring c' on $W = V \setminus \{x,y\}$. Applying a result of Bollobás and Gyárfás, [2], there exists a subgraph H with at least |W|-2=n-4 vertices such that H is 2-connected and monochromatic under c', say in color 1. In particular, every vertex of H has degree at least two in color 1. Thus, for every vertex z of H, $\{x,y,z\}$ is a good triple in color 1. \square

Using Lemma 2.4, we can define a 2-coloring c^* on the shadow graph $G = \Gamma(\mathcal{K})$ by coloring $xy \in E(G)$ with the color of the (at least n-4) good triples containing xy. Using a well-known result about the Ramsey number of even cycles ([4], [14]) there is a monochromatic even cycle C of length 2t where $2t = \lceil \frac{2n}{3} \rceil - 6$ or $2t = \lceil \frac{2n}{3} \rceil - 7$. (In fact there is a bit longer cycle, but that is too long for our purposes.) Assume that C is in color 1. Label the edges of C as $e_j = \{p_j, p_{j+1}\}, j = 1, 2, \ldots, 2t$. We use here index arithmetic mod 2t.

We will find a large Berge-cycle in color 1 with a greedy procedure as follows. By Lemma 2.4, for each $i \in [2t]$ there is a set $A_i \subset V$ such that $|A_i| \geq n-4$ and the triple $T_i = \{p_i, p_{i+1}, x\}$ is good in color 1 for every $x \in A_i$.

We claim that we can find a set $\{v_j \in A_{2j-1} \setminus V(C)\}\$ of t distinct vertices for $j \in [t]$ with the following property: for every $j \in [t]$,

$$v_j \in A_{2j-2} \cap A_{2j-1} \cap A_{2j}. \tag{2}$$

To prove the claim, assume that for some h, $1 \le h < t$ we have a set $R = \{v_1, \ldots, v_h\}$ of h distinct vertices such that $\{v_j \in A_{2j-1} \setminus V(C)\}$ for $1 \le j \le h$, satisfying (2) and there are at least seven vertices in $S = V \setminus (V(C) \cup R)$. We show that v_{h+1} can be defined so that property (2) is preserved. Indeed, each of the three sets $A_{2h}, A_{2h+1}, A_{2h+2}$ intersects S in at least |S| - 2 elements, therefore $|S| \ge 7$ implies that $U = S \cap A_{2h} \cap A_{2h+1} \cap A_{2h+2} \ne \emptyset$. Thus we can select $v_{h+1} \in U$. Now we only have to observe that at each step of the whole process defining $\{v_1, \ldots, v_t\}$,

$$|S| \ge n - 3t \ge n - \frac{3}{2} \left(\left\lceil \frac{2n}{3} \right\rceil - 6 \right) \ge 7,$$

and the claim is proved.

Now we finish the proof by claiming that the cyclic permutation $P = p_1, v_1, p_2, p_3, v_2, p_4, \ldots, p_{2t-1}, v_t, p_1$ determines a Berge-cycle. Indeed, from the definition of v_j , every triple of three consecutive vertices on P is good in color 1. Therefore at least two edges \mathcal{K} of color 1 are available to cover a consecutive triple. However, no edge of \mathcal{K} can cover more than two consecutive triples of P. Thus, by Hall's theorem, there is a matching from the consecutive triples of P to the set of color 1 edges of \mathcal{K} containing them. The length of this Berge-cycle is $3t \geq \frac{3}{2}(\lceil \frac{2n}{3} \rceil - 7) \geq n - 10$. \square

References

- [1] C. Berge, Graphs and Hypergraphs, North Holland, Amsterdam and London, 1973.
- [2] B. Bollobás, A. Gyárfás, Highly connected monochromatic subgraphs, to appear in Discrete Mathematics.
- [3] A. Figaj, T. Łuczak, The Ramsey number for a triple of long even cycles, Journal of Combinatorial Theory, Ser. B, 97 (2007), pp. 584-596.
- [4] R.J. Faudree, R.H. Schelp, All Ramsey numbers for cycles in graphs, *Discrete Mathematics* 8 (1974), pp. 313-329.
- [5] P. Dorbec, S. Gravier, G.N. Sárközy, Monochromatic Hamiltonian t-tight Berge-cycles in hypergraphs, Journal of Graph Theory, 59 (2008), pp. 34-44.
- [6] A. Gyárfás, J. Lehel, G.N. Sárközy, R. H. Schelp, Monochromatic Hamiltonian Berge-cycles in colored complete uniform hypergraphs, *Journal of Combinatorial Theory*, Ser. B, 98 (2008), pp. 342-358.

- [7] A. Gyárfás, M. Ruszinkó, G.N. Sárközy, E. Szemerédi, Three-color Ramsey numbers for paths, *Combinatorica*, 27 (2007), pp. 35-69.
- [8] A. Gyárfás, G.N. Sárközy, The 3-color Ramsey number of a 3-uniform Berge-cycle, accepted in *Combinatorics, Probability and Computing*.
- [9] A. Gyárfás, G.N. Sárközy, E. Szemerédi, Monochromatic matchings in the shadow graph of almost complete hypergraphs, accepted in *Annals of Combinatorics*.
- [10] P. Haxell, T. Łuczak, Y. Peng, V. Rödl, A. Ruciński, M. Simonovits, J. Skokan, The Ramsey number for hypergraph cycles I, *Journal of Combinatorial Theory, Ser. A* 113 (2006), pp. 67-83.
- [11] P. Haxell, T. Luczak, Y. Peng, V. Rödl, A. Ruciński, J. Skokan, The Ramsey number for hypergraph cycles II, manuscript.
- [12] T. Łuczak, $R(C_n, C_n, C_n) \leq (4 + o(1))n$, Journal of Combinatorial Theory, Ser. B 75 (1999), pp. 174-187.
- [13] L. Lovász, Combinatorial Problems and Exercises, 2. edition, North-Holland, 1979.
- [14] V. Rosta, On a Ramsey type problem of Bondy and Erdős, I and II, *Journal of Combinatorial Theory B* **15** (1973), pp. 94-120.
- [15] V. Rödl, A. Rucinski, E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, *Combinatorics, Probability and Computing* 15 (2006), pp. 229-251.