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Abstract

Here we prove a stability version of a Ramsey-type Theorem for paths.
Thus in any 2-coloring of the edges of the complete graph Kn we can either
find a monochromatic path substantially longer than 2n/3, or the coloring
is close to the extremal coloring.

1 Introduction

V (G) and E(G) denote the vertex-set and the edge-set of the graph G. (A,B,E)
denotes a bipartite graph G = (V,E), where V = A+ B, and E ⊂ A× B. For
a graph G and a subset U of its vertices, G|U is the restriction of G to U .
N(v) is the set of neighbors of v ∈ V . Hence the size of N(v) is |N(v)| =
deg(v) = degG(v), the degree of v. δ(G) stands for the minimum and ∆(G)
for the maximum degree in G. When A,B are subsets of V (G), we denote by
e(A,B) the number of edges of G with one endpoint in A and the other in B.
In particular, we write deg(v, U) = e({v}, U) for the number of edges from v to
U . A graph Gn on n vertices is γ-dense if it has at least γ

(
n
2

)
edges. A bipartite

graph G(k, l) is γ-dense if it contains at least γkl edges.
For graphs G1, G2, . . . , Gr, the Ramsey number R(G1, G2, . . . , Gr) is the

smallest positive integer n such that if the edges of a complete graph Kn are
partitioned into r disjoint color classes giving r graphs H1,H2, . . . , Hr, then at
least one Hi (1 ≤ i ≤ r) has a subgraph isomorphic to Gi. The existence of such
a positive integer is guaranteed by Ramsey’s classical result [11]. The number
R(G1, G2, . . . , Gr) is called the Ramsey number for the graphs G1, G2, . . . , Gr.
There is very little known about R(G1, G2, . . . , Gr) even for very special graphs
(see eg. [5] or [10]). For r = 2 a theorem of Gerencsér and Gyárfás [4] states
that

R(Pn, Pn) =

⌊
3n− 2

2

⌋
. (1)

In this paper we prove a stability version of this theorem. Since this is what
we needed in a recent application [6], actually we prove the result in a slightly
more general context; we work with 2-edge multicolorings (G1, G2) of a graph
G. Here multicoloring means that the edges can receive more than one color,
i.e. the graphs Gi are not necessarily edge disjoint. The subgraph colored with
color i only is denoted by G∗

i , i.e.

G∗
1 = G1 \G2, G

∗
2 = G2 \G1.

In order to state the theorem we need to define a relaxed version of the extremal
coloring for (1).

Extremal Coloring (with parameter α): There exists a partition V (G) =
A ∪B such that

• |A| ≥ (2/3− α)|V (G)|, |B| ≥ (1/3− α)|V (G)|.
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• The graph G∗
1|A is (1−α)-dense and the bipartite graph G∗

2|A×B is (1−α)-
dense. (Note that we have no restriction on the coloring inside the smaller
set.)

Then the following stability version of the Gerencsér-Gyárfás Theorem claims
that we can either find a monochromatic path substantially longer than 2n/3,
or the coloring is close to the extremal coloring.

Theorem 1.1. For every α > 0 there exist positive reals η, c1 (0 < η ≪ α ≪ 1
where ≪ means sufficiently smaller) and a positive integer n0 such that for
every n ≥ n0 the following holds: if the edges of the complete graph Kn are
2-multicolored then we have one of the following two cases.

• Case 1: Kn contains a monochromatic path P of length at least ( 23 + η)n.
Furthermore, in the process of finding P , for each vertex of the path P we
have at least c1 logn choices.

• Case 2: This is an Extremal Coloring (EC) with parameter α.

Surprisingly, as far as we know, this natural question has not been studied,
despite the fact that for some classical density results the corresponding stability
versions are well-known (see [2]).

2 Tools

Theorem 1.1 can also be proved from the Regularity Lemma [12], however, here
we use a more elementary approach using only the Kővári-Sós-Turán bound
[7]. This is part of a new direction where we were able to “de-regularize” some
of our proofs, namely to replace the Regularity Lemma with more elementary
classical extremal graph theoretic results such as the Kővári-Sós-Turán bound
(see e.g. [8]).

Lemma 2.1 (Theorem 3.1 on page 328 in [2]). There is an absolute constant
β > 0 such that if 0 < ϵ < 1/r and we have a graph G with

|E(G)| ≥
(
1− 1

r
+ ϵ

)
n2

2

then G contains a Kr+1(t), where

t = ⌊ β log n

r log 1/ϵ
⌋.

For r = 1 this is essentially the Kővári-Sós-Turán bound [7] and for general
r this was proved by Bollobás, Erdős and Simonovits [3]. Here we will use the
result only for r = 1.
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3 Outline of the proof

We will need the following definition. Given a graph G and a positive integer k,
we say that a subset W of the vertex set V (G) is k-well-connected if for any two
vertices u, v ∈ W there are at least k internally vertex disjoint paths of length
at most three connecting u and v in G (note that these paths might leave W ).
We will use this definition with k = ηn, in this case we just say shortly that W
is well-connected.

We will follow a similar outline as in applications of the Regularity Lemma.
However, a regular pair will be replaced with a complete balanced bipartite
graph K(t, t) with t ≥ c log n for some constant c (thus the size of the pair
is somewhat smaller but this is still good enough for our purposes). Then a
monochromatic connected matching in the reduced graph (the usual tool in
these types of proofs using the Regularity Lemma) will be replaced with a
monochromatic cover consisting of vertex disjoint complete balanced bipartite
graphs Ki(ti, ti), 1 ≤ i ≤ s such that these monochromatic complete balanced
bipartite graphs are all contained in a set W that is well-connected in this color
and ti ≥ c log n for every 1 ≤ i ≤ s for some constant c. Let us call a cover
like this a monochromatic well-connected complete balanced bipartite graph
cover. The size of this cover is the total number of vertices in the union of these
complete bipartite graphs.

Then Theorem 1.1 will follow from the following lemma.

Lemma 3.1. For every α > 0 there exist a positive real η (0 < η ≪ α ≪ 1
where ≪ means sufficiently smaller) and a positive integer n0 such that for
every n ≥ n0 the following holds: if the edges of the complete graph Kn are
2-multicolored then we have one of the following two cases.

• Case 1: Kn contains a monochromatic well-connected complete balanced
bipartite graph cover of size at least ( 23 + 2η)n.

• Case 2: This is an Extremal Coloring (EC) with parameter α.

Indeed, let us assume that we have Case 1 in this Lemma. Denote the two
color classes of Ki(ti, ti) by V i

1 and V i
2 for 1 ≤ i ≤ s. Since this cover is inside

the same set W that is well-connected in this color (say red), we can find red
vertex disjoint connecting paths Pi of length at most 3 from a vertex of V i

2 to
a vertex of V i+1

1 for every 1 ≤ i ≤ s − 1. Furthermore, we can also guarantee
that in this connecting process from any V i

j , 1 ≤ j ≤ 2, 1 ≤ i ≤ s we never use

up more than η|V i
j | vertices. Indeed, then during the whole process the total

number of forbidden vertices is at most

4s

η
≤ 4n

2cη log n
≪ ηn,

(if n is sufficiently large) and thus we can always select the next connecting path
that is vertex disjoint from the ones constructed so far.

We remove the internal vertices of these connecting paths Pi from the com-
plete balanced bipartite graphs Ki(ti, ti). By doing this we may create some
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discrepancies in the cardinalities of the two color classes. We remove some ad-
ditional vertices to assure that now we have the same number t′i (≥ (1−η)ti) of
vertices left in both color classes. Now we can connect the endpoint of Pi−1 in
V i
1 and the endpoint of Pi in V i

2 by a red Hamiltonian path Qi in the remainder
of Ki(ti, ti) (using the fact that this is a balanced complete bipartite graph).
Putting together the connecting paths Pi and these Hamiltonian paths Qi we
get a red path P of length at least

(
2

3
+ 2η − 2

3
η)n ≥ (

2

3
+ η)n.

Furthermore, clearly for each vertex of P we have at least (c/2) log n choices, as
desired in Theorem 1.1. �

4 Monochromatic well-connected components

In this section we show that in any 2-multicoloring of Kn there is a large set W
and a color such that W is k-well-connected in this color.

Lemma 4.1. For every integer k and for every 2-multicolored Kn there exist
W ⊂ V (Kn) and a color (say color 1) such that |W | ≥ n − 28k and W is
k-well-connected in the color 1 subgraph of Kn.

Proof. Assume that a 2-multicoloring is given on Kn - in fact it is enough to
prove the lemma for a coloring obtained by ignoring one of the colors of every 2-
colored edge. A pair u, v ∈ V (Kn) is bad for color 1 if there are no k internally
vertex disjoint paths of length at most three from u to v all monochromatic
in color 1. Let m be the maximum number of vertex disjoint bad pairs for
color 1. If m < 2k then deleting 2m < 4k vertices of a maximum matching
of bad pairs for color 1, we have a set W of more than n − 4k vertices that
is k-well-connected for color 1 and the proof is finished (with 24k to spare).
Otherwise select a matching {u1v1, . . . , u2kv2k} of 2k bad pairs for color 1. For
t ∈ [2k], i, j ∈ [1, 2] define At,i,j as the set of vertices adjacent to ut in color
i and to vt in color j. From the definition of bad pairs |A(t, 1, 1)| < k. For
the same reason - using König’s theorem - all edges of color 1 in the bipartite
graph [A(t, 1, 2), A(t, 2, 1)] can be met by a set St of less than k vertices. Set
Bt = A(t, 1, 2)\St, Ct = A(t, 2, 1)\St. Observe that between Bt and Ct we have
a complete bipartite graph in color 2 (if both are non-empty). A set Bt (Ct) is
small if it has less than 2k elements. Define Ht as the union of A(t, 1, 1) ∪ St

and the small sets Bt, Ct. Observe that |Ht| < 6k. Consider the hypergraph H
with vertex set X = V (Kn) \ (∪t∈[2k]{ut, vt} and edge set X ∩Ht for t ∈ [2k].
Let M be the set of vertices of H with degree at least k/2. Then

12k2 = 2k × 6k ≥
2k∑
t=1

|Ht| =
∑
x∈X

d(x) ≥
∑
x∈M

d(x) ≥ |M |(k/2)
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implying that 24k ≥ |M |. Therefore |X \ M | ≥ n − 24k − 4k = n − 28k. We
claim that W = X \ M is k-well-connected in color 2 and that will finish the
proof.

To prove the claim, consider a pair of vertices x, y ∈ W . From the definition
of W , x, y are both in less than k/2 edges of H. Thus x, y are both covered
by at least k sets in the form Yt = (∪i,j∈[1,2]A(t, i, j)) \ Ht where t ∈ [2k].
Therefore in every Yt the pair x, y can be connected in color 2 either by a
path of length two through ut (if x, y ∈ A(t, 2, 2) ∪ A(t, 2, 1) ) or through vt (if
x, y ∈ A(t, 2, 2) ∪ A(t, 1, 2)) or through a path of length three (if one of x, y is
in A(t, 2, 1) and the other is in A(t, 1, 2). It is easy to see - using that there are
at least k choices for t, |Bt| = |A(t, 1, 2) \ St| ≥ 2k, |Ct| = |A(t, 2, 1) \ St| ≥ 2k
and that we have a complete bipartite graph between Bt and Ct in color 2 -
that there are at least k internally edge disjoint paths of length at most three
in color 2 connecting x, y. �

5 Proof of Lemma 3.1

Assume that we have an arbitrary 2-multicoloring (red/blue) of Kn. We shall
assume that n is sufficiently large and use the following main parameters

0 ≪ η ≪ α ≪ 1, (2)

where a ≪ bmeans that a is sufficiently small compared to b. In order to present
the results transparently we do not compute the actual dependencies, although
it could be done. We will use the constant

c = (
η

2
)

8
η3

β

2 log 1
η

,

where β is from Lemma 2.1.
Let us apply Lemma 4.1 with k = ηn to find a W ⊂ V (Kn) and a color

(say red) such that |W | ≥ (1 − 28η)n and W is ηn-well-connected (or shortly
well-connected) in the red subgraph of Kn. Put R = Kn \ W , then we have
|R| ≤ 28ηn. From now on we will work inside W .

We may assume that inside W the red density is at least η, since otherwise
we can switch colors as the blue-only subgraph is almost complete. Thus we
can apply Lemma 2.1 with r = 1 and ϵ = η to the red subgraph inside W to
find a red complete balanced bipartite subgraph K1(t1, t1) in W with

t1 =
β

2 log 1
η

log n

(for simplicity we assume that this is an integer). We remove this K1(t1, t1)
from W and in the remainder of W iteratively we find red complete balanced
bipartite graphs K(t1, t1) until we can. Suppose that we found this way the red
well-connected complete balanced bipartite graph cover

M1 = (K1(t1, t1),K2(t1, t1), . . . ,Ks1(t1, t1))
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for some positive integer s1. If this red cover M1 has size |M1| ≥ (2/3 + 2η)n,
then we are done, we have Case 1 in Lemma 3.1. Otherwise we will show that
we can either increase the size of this red cover by an η2/2-fraction, or we can
find directly a monochromatic well-connected complete bipartite graph cover of
size at least (2/3 + 2η)n unless we are in the Extremal Coloring (Case 2), as
desired.

We know that at least we have

|M1| ≥
η

4
n, (3)

since otherwise in the remainder of W the red density is still at least η/2, and
we can still apply Lemma 2.1 in the remainder to find a red K(t1, t1). Let
Ki(t1, t1) = (V i

1 , V
i
2 ), 1 ≤ i ≤ s1. Denote

V1 = ∪s1
i=1V

i
1 , V2 = ∪s1

i=1V
i
2 and V3 = W \ (V1 ∪ V2).

From

|V1|+ |V2| <
(
2

3
+ 2η

)
n,

we have

|V3| >
(
1

3
− 30η

)
n. (4)

Furthermore, since in V3 we cannot pick another red complete balanced bipartite
subgraph K(t1, t1), by Lemma 2.1 V3 is (1−η)-dense in the blue-only subgraph.

Next let us look at the bipartite graphs (V1, V3) and (V2, V3). We will show
that either one of them is (1−2η)-dense in blue-only or we can increase our red
cover M1. Indeed, assume first the following: (i) There is a subcover of M1

M ′
1 = (Ki1(t1, t1),Ki2(t1, t1), . . . ,Kis′1

(t1, t1))

with 1 ≤ s′1 ≤ s1 such that if we denote V ′
1 = ∪s′1

j=1V
ij
1 , V ′

2 = ∪s′1
j=1V

ij
2 we have

• |V ′
1 | = |V ′

2 | ≥ η|V1| = η|V2|, and

• the bipartite graphs (V
ij
1 , V3) and (V

ij
2 , V3) are both η-dense in red for

every 1 ≤ j ≤ s′1.

Consider the bipartite graph (V
ij
1 , V3) for some 1 ≤ j ≤ s′1. Since this is η-dense

in red, there must be at least η|V3|/2 vertices in V3 for which the red degree

in V
ij
1 is at least η|V ij

1 |/2 = ηt1/2. Indeed, otherwise the total number of red
edges would be less than

η

2
|V3||V

ij
1 |+ η

2
|V3||V

ij
1 | = η|V3||V

ij
1 |,

a contradiction with the fact that (V
ij
1 , V3) is η-dense in red. Consider all the

red neighborhoods of these vertices in V
ij
1 . Since there can be at most

2t1 = n
β

2 log 1
η
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such neighborhoods, by averaging and using (2) and (4) there must be a red
neighborhood that appears for at least

η
2 |V3|

n
β

2 log 1
η

≥ η

8
n
1− β

2 log 1
η ≫ η

2
t1

such vertices of V3. This means that we can find a red complete balanced bi-
partite graph K(t2, t2) in the red bipartite graph (V

ij
1 , V3), where t2 = ηt1/2.

We can proceed similarly for the red bipartite graph (V
ij
2 , V3). Thus the red

complete balanced bipartite graph Kij (t1, t1) can be replaced with 3 red com-
plete balanced bipartite graphs. We can proceed similarly for all Kij (t1, t1), 1 ≤
j ≤ s′1. This way we obtain a new red well-connected complete bipartite graph
cover

M2 = (K1(t
2
1, t

2
1),K2(t

2
2, t

2
2), . . . ,Ks2(t

2
s2 , t

2
s2))

such that

• |M2| ≥
(
1 + η2

2

)
|M1|, and

• t1 ≥ t2i ≥ t2 = ηt1/2 for every 1 ≤ i ≤ s2.

Iterating this process (j − 1) times we get a new cover

Mj = (K1(t
j
1, t

j
1),K2(t

j
2, t

j
2), . . . ,Ksj (t

j
sj , t

j
sj ))

such that

• |Mj | ≥
(
1 + η2

2

)j−1

|M1|, and

• t1 ≥ tji ≥ tj = (η/2)j−1t1 for every 1 ≤ i ≤ sj .

This and (3) imply that if we could iterate this process 8/η3 times, then
we would get a red complete balanced bipartite graph cover of size at least
(2/3 + 2η)n, where for each Ki(ti, ti) in the cover we would still have

ti ≥ (
η

2
)

8
η3 t1 = (

η

2
)

8
η3

β

2 log 1
η

log n = c log n

and thus we would have Case 1 in Lemma 3.1.
We may assume that this is not the case and after (j−1) iterations for some

j < 8/η3 we get a cover Mj as above for which (i) does not hold. In this case we
will show that we can find directly a monochromatic well-connected complete
bipartite graph cover of size at least (2/3 + 2η)n unless we are in the Extremal
Coloring (Case 2). For simplicity we still use the notation V1, V2, V3 for Mj just
as for M1. Since (i) does not hold for Mj , for most of the complete bipartite

graphs Ki(t
j
i , t

j
i ) = (V i

1 , V
i
2 ) (namely for complete bipartite graphs covering at

least an (1 − η)-fraction of the total size of Mj) the red density in one of the
bipartite graphs (V i

1 , V3) and (V i
2 , V3) is less than η. By renaming we may
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assume that this is always the bipartite graph (V i
2 , V3). This means that indeed

(V2, V3) is (1− 2η)-dense in blue-only, as we wanted. However, this implies that

|V3| <
(
1

3
+ α3

)
,

since otherwise using (2) we can easily find a blue well-connected complete
balanced bipartite graph cover of size at least (2/3+2η)n by iteratively applying
Lemma 2.1 in blue, first in the bipartite graph (V2, V3) until we can, and then
continuing inside V3. Similarly if the blue density in the bipartite graph (V1, V2)
is at least α3, then again we can find a blue well-connected complete balanced
bipartite graph cover of size at least (2/3+2η)n by iteratively applying Lemma
2.1 in blue, first in the bipartite graph (V1, V2), then in the bipartite graph
(V2, V3), and finally inside V3. Thus we may assume that the bipartite graph
(V1, V2) is (1− α3)-dense in red-only.

Making progress towards the Extremal Coloring, next let us look at the red
density inside V2. Assume first that this density is at least α2. Similarly as
above this implies that the bipartite graph (V1, V3) is (1 − α2)-dense in blue-
only, since otherwise we can find again a red cover of size at least (2/3 + 2η)n.
Thus the bipartite graph (V1 ∪ V2, V3) is (1 − α2)-dense in blue-only. This in
turn implies that V1 ∪ V2 is (1 − α)-dense in red-only since otherwise we can
find again a blue cover of size at least (2/3 + 2η)n. This gives us the Extremal
Coloring where A = V1 ∪ V2, B = V3, G1 is red and G2 is blue (actually here
in a somewhat stronger form since inside B most of the edges are blue-only as
well).

Hence we may assume that V2 is (1 − α2)-dense in blue-only. This implies
again that (V1, V3) is (1 − α)-dense in red-only and this gives us the Extremal
Coloring again where A = V2 ∪ V3, B = V1, G1 is blue and G2 is red. This
finishes the proof of Lemma 3.1. �
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