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Abstract

Let f(n, r) be the largest integer m with the following property: if the edges
of the complete 3-uniform hypergraph K3

n are colored with r colors then there
is a monochromatic component with at least m vertices. Here we show that
f(n, 5) ≥ 5n

7 and f(n, 6) ≥ 2n
3 . Both results are sharp under suitable divisibility

conditions (namely if n is divisible by 7, or by 6 respectively).

1 Introduction

A first exercise in graph theory - in fact an old remark of Erdős and Rado - states that
for any graphG, eitherG or its complement is connected. The following generalization
(and the solution for r = 3) was suggested in [3]: suppose that the edges of Kn are
colored with r colors in any fashion, what is the order of the largest monochromatic
connected subgraph? The answer for general r, ⌈ n

r−1
⌉, was given in [4] (it is sharp if

r−1 is a prime power and n is divisible by (r−1)2). This also follows from a result of
Füredi [1] on fractional transversals of hypergraphs. The problem was generalized to
hypergraphs in [2]. In the generalization, connectivity and components of hypergraphs
are understood as follows. Let H be a hypergraph. We say that H is connected if
the shadow graph of H, with vertex set V (H) and edge set {xy : xy ⊂ e for some e ∈
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E(H)}, is connected. A component of H is a maximal connected subhypergraph.
The main result of [2] says that any r-coloring of the edges of the complete t-uniform
hypergraph on n vertices contains a connected monochromatic subhypergraph on at
least n

q
vertices, where q is the smallest integer satisfying r ≤ ∑t−1

i=0 q
i. The result is

best possible if q is a prime power and n is divisible by qt. The case t = 2 (with
q = r − 1) gives the graph case discussed above. This paper focuses on t = 3.

Let f(n, r) be the largest integer m with the following property: if the edges
of the complete 3-uniform hypergraph K3

n are colored with r colors then there is a
monochromatic component with at least m vertices. Applying the result mentioned
above for t = 3 we get that f(n, r) = n

q
if r = q2 + q + 1 with a prime power q and

n is divisible by q3. The case q = 2 solves r = 7 and the cases r ≤ 4 are also solved
in [2] (f(n, 3) = n and f(n, 4) ≥ 3n

4
with equality if n is divisible by 4). The cases

r = 5, 6 are left open and the purpose of this note is to fill this gap. We apply the
proof method of Füredi used first in [1] (see also in [2]) which connects f(n, r) to
fractional transversals of certain hypergraphs.

A hypergraph is r-partite if its vertices are partitioned into r classes and each edge
intersects each class in exactly one vertex. A hypergraph is 3-wise intersecting if any
three edges have nonempty intersection. A fractional transversal is a non-negative
weighting of the vertices such that the sum of the weights over any edge is at least
1. The value of a fractional transversal is the sum of the weights over all vertices
of the hypergraph. Finally, τ ∗(H) is the minimum of the values over all fractional
transversals of H. We use the following lemma from [2].

Lemma 1 Let τ ∗(r) be defined as the maximum of τ ∗(H) over all r-partite 3-wise
intersecting hypergraphs H. Then f(n, r) ≥ n

τ∗(r)
.

Theorem 1 f(n, 5) ≥ 5n
7

and this is sharp if n is divisible by 7.

Proof. We start with a construction, showing that f(n, 5) is not larger than the
claimed value if n is divisible by 7. Let n = 7k and partition [n] = {1, . . . , n} into
seven k-element sets, Xi. We define five subsets Ij ⊂ [7] as

I1 = {1, 4, 5, 6, 7}, I2 = {2, 4, 5, 6, 7}, I3 = {3, 4, 5, 6, 7},

I4 = {1, 2, 3, 6, 7}, I5 = {1, 2, 3, 4, 5}.

Observe that every triple of [7] is covered by at least one Ij. Thus every triple T ⊂ [n]
is covered by at least one of the five sets Aj = {∪i∈IjXi}. Color T with color j where
j is the smallest index such that T ⊂ Aj. Clearly each triple of [n] is colored with one
of five colors and there is no monochromatic component of size larger than 5k = 5n

7
.
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On the other hand, f(n, 5) ≥ 5n
7
follows from Lemma 1 if we show that τ ∗(H) ≤ 7

5

holds for every 5-partite 3-wise intersecting hypergraph H. We shall define only the
nonzero weights w(x) for x ∈ V (H). Let Ai denote the vertex classes of H, vertices
in Ai will be indexed with i. Note that if there are two edges e, f ∈ E(H) with
|e∩ f | = 1 then all edges of H intersect and τ ∗(H) = 1 follows. Thus we may assume
that any two edges of H intersect in at least two vertices.

Case (i): there exist e, f ∈ E(H) with |e ∩ f | = 2. Assume e = {x1, x2, y3, y4, y5},
f = {x1, x2, z3, z4, z5}. Set Y = {y3, y4, y5}, Z = {z3, z4, z5}. Using that H is 3-wise
intersecting, it follows that the edge set ofH can be partitioned into E1, E2, E12 where

E12 = {h ∈ E(H) : x1, x2 ∈ h},

E1 = {h ∈ E(H) : x1 ∈ h, x2 /∈ h}, E2 = {h ∈ E(H) : x2 ∈ h, x1 /∈ h}.

We may assume that E1, E2 are both non-empty otherwise - as before - all edges
of H intersect and τ ∗(H) = 1.

Assume first that there is a pair of edges e1 ∈ E1, e2 ∈ E2 such that e1, e2 intersect
on A3 ∪A4 ∪A5 in a 3-element set T = {t3, t4, t5}. Since e, e1 and f, e1 both intersect
in at least two vertices, T ∩ Y, T ∩ Z are nonempty sets, at least one of them, say
T ∩ Z has exactly one element. We may suppose w.l.o.g. t3 = y3, t4 = z4.

If t5 ̸= y5 (t5 ̸= z5 also holds by assumption on T ∩ Z) then the existence of the
triple intersections

e ∩ e1 ∩ b, e ∩ e2 ∩ a, f ∩ e2 ∩ a, f ∩ e1 ∩ b

for a ∈ E1, b ∈ E2 imply that all edges of E1 ∪ E2 contain both t3 and t4. If there
exists an edge e12 ∈ E12 such that neither t3 nor t4 is in e12 then the existence of the
triple intersections e12 ∩ e1 ∩ b, e12 ∩ e2 ∩ a for a ∈ E1, b ∈ E2 imply that all edges of
E1 ∪E2 contain t5 as well. Moreover, then all edges of E12 must also contain t5. Now
every edge in E1 ∪ E2 intersects {x1, x2} in one and intersects T in three elements;
every edge of E12 intersects {x1, x2} in two and T in at least one element. Thus the
weight assignment w(x1) = w(x2) = 2

5
, w(t3) = w(t4) = w(t5) = 1

5
is a fractional

transversal of H with value 7
5
. If every e12 ∈ E12 intersects {t3, t4} then every edge in

E1 ∪E2 ∪E12 intersects S = {x1, x2, t3, t4} in at least three elements thus assigning 1
3

to each element of S gives a fractional transversal of value 4
3
< 7

5
finishing this part

of the proof.
If t5 = y5 then, as in the argument above, the existence of the triple intersections

f ∩e1∩ b, f ∩e2∩a for a ∈ E1, b ∈ E2 imply that all edges of E1∪E2 contain t4. First
suppose that there exist b1, b2 ∈ E2 (not necessarily distinct) with t3 /∈ b1 and t5 /∈ b2.
Then the triple intersections e∩a∩b1 and e∩a∩b2 show that for each a ∈ E1 we have
t3 ∈ a and t5 ∈ a. Therefore we can conclude that all edges of E1 or all edges of E2
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- say all edges of E1 - contain both t3 and t5. Moreover, then the triple intersections
e∩a∩b show that each b ∈ E2 contains either t3 or t5. Now if each e12 ∈ E12 contains
t4 or both t3, t5 then we can assign w(x2) = w(t4) =

2
5
, w(x1) = w(t3) = w(t5) =

1
5

to get a fractional transversal of value 7
5
. Therefore we may assume (without loss of

generality) that the set E ′ = {e12 ∈ E12 : {t4, t5} ∩ e12 = ∅} is nonempty. For any
e12 ∈ E ′, since |e12 ∩ e1| ≥ 2 we know t3 ∈ e12. We know each b ∈ E2 contains t3
or t5, and if t5 ∈ b then |e12 ∩ b| ≥ 2 implies t3 ∈ b also. Thus in this case t3 is in
every element of E1 ∪E2 ∪E12. Now if E ′′ = {e12 ∈ E12 : {t3, t4} ∩ e12 = ∅} = ∅ then
the weight function w(x1) = w(x2) = w(t3) = w(t4) =

1
3
is a fractional transversal of

value 4
3
. If E ′′ ̸= ∅ then as above t5 is also in every element of E1 ∪ E2 ∪ E12. Then

w(x1) = w(x2) =
2
5
, w(t3) = w(t4) = w(t5) =

1
5
is a fractional transversal of value 7

5
.

Now we may assume that any pair of edges e1 ∈ E1, e2 ∈ E2 intersect on A3 ∪
A4 ∪ A5 in a set of at most two elements. Fix e1 ∈ E1, e2 ∈ E2. In fact - since the
triple intersections e1 ∩ e2 ∩ e, e1 ∩ e2 ∩ f exist - e1 and e2 intersect on A3 ∪ A4 ∪ A5

in a two-element set T = {t3, t4}, say t3 = y3, t4 = z4. Since e1, e2 do not intersect
on A5, w.l.o.g. y5 /∈ e1, z5 /∈ e2. The triple intersections e1 ∩ e ∩ b, e2 ∩ f ∩ a imply
t3 ∈ b, t4 ∈ a for a ∈ E1, b ∈ E2. Since each intersection a ∩ b for a ∈ E1, b ∈ E2 has
at least two elements, one of t3, t4, say t3 is in all edges of E1 ∪ E2. Moreover each
e12 ∈ E12 must intersect {t3, t4} because of the triple intersection e12 ∩ e1 ∩ e2. If t4 is
also in all edges of E1 ∪E2 then {x1, x2, t3, t4} intersects every edge of E1 ∪E2 ∪E12

in at least three elements, implying a fractional transversal of value 4
3
. Otherwise

E ′ = {b ∈ E2 : t4 /∈ b} ̸= ∅. In this case, since |b ∩ f | ≥ 2 we see that each
b ∈ E ′ contains z5. Looking at b ∩ a for a ∈ E1, b ∈ E ′ tells us that z5 ∈ a
as well. Finally b ∩ e1 ∩ e12 shows us that if t3 /∈ e12 for some e12 ∈ E12 then
z5 ∈ e12 (and we know that t3 /∈ e12 implies t4 ∈ e12). Summing up, we find that
for each a ∈ E1, x1, t3, t4, z5 ∈ a, and for each b ∈ E2, x2, t3 ∈ b and (t4 ∪ z5) ∩ b
is nonempty. For each e12 ∈ E12, x1, x2 ∈ e12 and either t3 ∈ e12 or {t4, z5} ⊂ e12.
Now the weighting w(t3) = w(x2) =

2
5
, w(x1) = w(t4) = w(z5) =

1
5
gives the required

fractional transversal.

Case (ii): Any two distinct e, f ∈ H intersect in at least three vertices . Assume first
that there is a pair e, f ∈ H intersecting in three elements, e = {x1, x2, x3, x4, x5}, f =
{x1, x2, x3, y4, y5}. Observe then that every edge must intersect {x1, x2, x3} in at least
two elements. Again, if the set of edges Eij that intersect {x1, x2, x3} in {xi, xj} is
empty for some pair i, j ∈ [3] then, for k = [3] \ {i, j}, all edges of H contain xk and
τ ∗(H) = 1. Thus these sets Eij are non-empty. Selecting e12 ∈ E12, e13 ∈ E13, e23 ∈
E23, the assumptions on the intersection sizes imply that for each of the three pairs
of indices eij∩ (A4∪A5) is the same pair, say {x4, y5}. Any edge e123 that contains all
of {x1, x2, x3} must also intersect {x4, y5}, otherwise |e123 ∩ e12| ≤ 2. Now assigning
w(x1) = w(x2) = w(x3) =

1
5
, w(x4) = w(y5) =

2
5
we have a fractional transversal of
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H with value 7
5
.

Finally, if each pair of edges of H intersect in at least four elements, we can assign
weight 1

4
to vertices of any fixed edge. This gives a fractional transversal of H with

value 5
4
< 7

5
. 2

Theorem 2 f(n, 6) ≥ 2n
3

and this is sharp if n is divisible by 6.

Proof.
To show that f(n, 6) is not larger than claimed value if n is divisible by 6, let

n = 6k and partition [n] into six k-element sets, Xi. We define six subsets Ij ⊂ [6] as

I1 = {3, 4, 5, 6}, I2 = {1, 4, 5, 6}, I3 = {2, 4, 5, 6},

I4 = {1, 2, 3, 6}, I5 = {1, 2, 3, 4}, I6 = {1, 2, 3, 5}

Observe that every triple of [6] is covered by at least one Ij. Thus every triple T ⊂ [n]
is covered by at least one of the six sets Aj = {∪i∈IjXi}. Color T with color j where
j is the smallest index such that T ⊂ Aj. Clearly each triple of [n] is colored with one
of six colors and there is no monochromatic component of size larger than 4k = 2n

3
.

As in the proof of Theorem 1, f(n, 6) ≥ 2n
3
follows from Lemma 1 if we show that

τ ∗(H) ≤ 3
2
holds for every 6-partite 3-wise intersecting hypergraph H. To see that,

let Ai denote the vertex classes of H. Note that if there are two edges e, f ∈ E(H)
with |e ∩ f | = 1 then all edges of H intersect and τ ∗(H) = 1 follows. Thus we may
assume that any two edges of H intersect in at least two vertices. We basically follow
the argument of the proof of Theorem 1.

Case (i): There exist e, f ∈ E(H) with |e ∩ f | = 2. Set e ∩ f = {x1, x2} and define

E12 = {h ∈ E(H) : x1, x2 ∈ h},

E1 = {h ∈ E(H) : x1 ∈ h, x2 /∈ h}, E2 = {h ∈ E(H) : x2 ∈ h, x1 /∈ h}.

Then as before H = E1 ∪ E2 ∪ E12.
Let E1 = {a1, a2, . . . as}, E2 = {b1, b2, . . . , bt}. We may assume that E1, E2 are

both nonempty, otherwise - as before - all edges of H intersect and τ ∗(H) = 1. Notice
that ai ∩ bj ⊂ ∪6

k=3Ak for any ai ∈ E1, bj ∈ E2.
If all edges of E1 ∪ E2 have a common vertex v then assigning weight 1

2
to the

vertices in {x1, x2, v} we have a fractional transversal of value 3
2
and the proof is

finished. Thus we may suppose that∩
i∈[s]

ai ∩
∩
j∈[t]

bj = ∅. (1)
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Lemma 2 Suppose there exist distinct edges a1, a2 ∈ E1, b1, b2 ∈ E2 such that a1 ∩
a2 ∩ b1 ∩ b2 = ∅. Then τ ∗(H) ≤ 3

2
.

Proof. Observe that the four triple intersections among these edges are all disjoint
(and nonempty). Let U denote the union over all four triple intersections, so |U | ≥ 4.
Note that if x, x′ ∈ U then one of (in fact, at least two of) a1, a2, b1, b2 contain both
x and x′. Thus we cannot have distinct x, x′ in the same partite class Ai. Therefore
U = {x3, x4, x5, x6} for some xi ∈ Ai for i = 3, 4, 5, 6, and we may assume without
loss of generality that

x3 ∈ (a1 ∩ b1 ∩ b2) \ a2, x4 ∈ (a2 ∩ b1 ∩ b2) \ a1,

x5 ∈ (a1 ∩ a2 ∩ b1) \ b2, x6 ∈ (a1 ∩ a2 ∩ b2) \ b1. (2)

We observe that - apart from the exceptional case when ai ∩ U = {x3, x4} - each
edge ai ∈ E1 intersects U in at least three vertices. Indeed, if ai ∩ U ⊆ {x3, x5} then
the triple intersection ai ∩ a2 ∩ b2 is missing. If ai ∩ U ⊆ {x4, x6} then ai ∩ a1 ∩ b1
is missing. Similarly, ai ∩ U ⊆ {x3, x6}, {x4, x5}, {x5, x6} in turn imply the missing
intersections ai ∩ a2 ∩ b1, ai ∩ a1 ∩ b2, ai ∩ b1 ∩ b2. (The argument in the exceptional
case would require missing ai ∩ a1 ∩ a2 but that intersection is present at x1.)

Similarly, apart from the exceptional case when bj ∩ U = {x5, x6}, each edge of
bj ∈ E2 intersects U in at least three vertices. Finally, observe that any e12 ∈ E12

intersects U in at least two vertices. Indeed, e12 ∩ U ⊂ {xl} for some l ∈ {3, 4, 5, 6}
would contradict the existence of the triple intersection e12 ∩ ai ∩ bj where i, j ∈ [2]
such that one of ai, bj does not contain xl. Consider e12 ∈ E12 exceptional if e12∩U =
{x3, x4} or e12 ∩ U = {x5, x6}.

Based on the above observations we can define the required fractional transversal
as follows. If no edge in E1∪E2 is exceptional, w(xi) =

1
4
for i = 1, 2, . . . 6 is suitable.

If there exists an exceptional edge in E1∪E2, say ai, then no bj ∈ E2 can be exceptional
(otherwise ai∩bj cannot exist) - in fact the following stronger statement is true for any
bj: if {x5, x6} ⊂ bj then U ⊂ bj. Indeed, U ∩ bj = {x4, x5, x6} (U ∩ bj = {x3, x5, x6})
contradicts the existence of ai∩bj∩a1 (ai∩bj∩a2). Moreover no e12 ∈ E12 is exceptional
with e12 ∩ U = {x5, x6} otherwise e12 ∩ ai ∩ b1 cannot exist. These properties ensure
that w(x1) = w(x3) = w(x4) =

1
3
, w(x2) = w(x5) = w(x6) =

1
6
is a suitable fractional

transversal. 2

By Lemma 2, from now on we may suppose that

ai ∩ aj ∩ bk ∩ bl ̸= ∅

for every choice of the indices (if i = j or k = l the 3-wise intersecting property
ensures it).
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Because of (1) we can select a minimal nonintersecting subfamily of E1 ∪ E2,
that is S ⊆ [s], T ⊆ [t] such that

∩
i∈S ai ∩

∩
j∈T bj = ∅ but for any proper subset

S1 ∪ T1 ⊂ S ∪ T

∩
i∈S1

ai ∩
∩
j∈T1

bj ̸= ∅. (3)

Since A = ∩i∈[s]ai, B = ∩j∈[t]bj are both nonempty (x1 ∈ A, x2 ∈ B), it follows
that S, T are nonempty. Moreover |S ∪ T | ≥ 4 because H is 3-wise intersecting. Set
u = |S∪T |. Then by choice of S∪T , all (u−1)-wise intersections of elements of S∪T
are disjoint and nonempty, so their union U has size at least u, and as in the proof of
Lemma 2 no two vertices in U are in the same partite class Ai. Thus if |S|, |T | ≥ 2
then U ⊂ ∪6

k=3Ak, implying that u = 4. But then the assumptions of Lemma 2 hold,
so the proof is done in this case.

Thus we may assume that one of S, T has one element only, say T = {1}. In this
case x1 ∈ U and x2 /∈ U , so U ⊂ {x1} ∪ ∪6

k=3Ak, implying that u = 4 or u = 5. In
both cases, without loss of generality we may select three vertices X = {x3, x4, x5}
from U with xi ∈ Ai for i = 3, 4, 5 as follows:

x3 ∈ (a1 ∩ a2 ∩ b1) \ a3, x4 ∈ (a1 ∩ a3 ∩ b1) \ a2, x5 ∈ (a2 ∩ a3 ∩ b1) \ a1. (4)

Lemma 3 Suppose there exists ai ∈ E1 such that |ai ∩X| ≤ 1. Then τ ∗(H) ≤ 3
2
.

Proof. Suppose without loss of generality that ai ∩ {x4, x5} = ∅. Then, for each
bj ∈ E2, the (nonempty) quadruple intersection a3 ∩ ai ∩ b1 ∩ bj must be in A6. This
is possible only if all bj-s intersect on A6, say in a vertex x6 ∈ a3 ∩ ai ∩B. Because of
(1) the set K = {k ∈ [s]|x6 /∈ ak} is nonempty. For every k ∈ K, j ∈ [t] the quadruple
intersection ak ∩ ai ∩ b1 ∩ bj contains x3. This implies x3 ∈ B ∩ (∩k∈Kak). Reversing
the argument, L = {l ∈ [s]|x3 /∈ al} is nonempty implying that for every l ∈ L, j ∈ [t]
the quadruple intersection al ∩ ai ∩ b1 ∩ bj contains x6, implying x6 ∈ B ∩ (∩l∈Lal).
Thus each edge in E1 contains x1 and at least one vertex of {x3, x6}. Every edge
in E2 contains both x3, x6 and every e12 ∈ E12 contains x1 and also at least one
vertex of {x3, x6} because the triple intersection e12 ∩ ai ∩ b1 is nonempty. Therefore
w(x1) = w(x3) = w(x6) =

1
2
is a required fractional transversal. 2

By Lemma 3 we may suppose from now on that every edge ai ∈ E1 meets X in
at least two elements.

Claim: Either X ⊂ B or B ∩ A6 ̸= ∅. Indeed, if an element of X, say x3 /∈ bi for
some i ∈ [t] then the quadruple intersection a1 ∩ a2 ∩ bi ∩ bm is in A6 for all m ∈ [t].
This implies that B∩A6 ̸= ∅. The argument works similarly if x4 or x5 plays the role
of x3 (considering a1 ∩ a3 ∩ bi ∩ bm or a2 ∩ a3 ∩ bi ∩ bm), proving the claim.
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We look at the two cases of the claim. If X ⊂ B holds then w(x1) =
1
2
, w(x2) =

w(x3) = w(x4) = w(x5) =
1
4
is a required fractional transversal. Indeed, each ai ∈ E1

contains x1 and at least two elements of X, each bi ∈ E2 contains x2 and all elements
of X. Each e12 ∈ E12 contains x1, x2 and at least one element of X otherwise -
considering the triple intersections e12 ∩ ai ∩ bj - all ai, bj should intersect in A6,
contradicting (1). Thus we may assume that X ⊂ B does not hold.

Select x6 ∈ A6∩B. By definition of S, at least one aj with j ∈ S does not contain
x6, say x6 /∈ a3. We show that {x4, x5} ⊂ B. Indeed, if x4 /∈ bj (x5 /∈ bj)then the
quadruple intersection a1 ∩ a3 ∩ b1 ∩ bj (a2 ∩ a3 ∩ b1 ∩ bj) does not exist.

Therefore since X ⊂ B does not hold, we know x3 /∈ bj for some j ∈ [t]. Define
K = {k ∈ [s]|x6 /∈ ak} as before. We show that for each k ∈ K, {x4, x5} ⊂ ak.
Indeed, if x4 /∈ ak (x5 /∈ ak) for some k ∈ K then a1∩ak∩ b1∩ bj (a2∩ak∩ b1∩ bj)does
not exist.

Now we finish the proof by showing that w(x1) = 1
2
, w(x2) = w(x4) = w(x5) =

w(x6) =
1
4
is a required fractional transversal. Notice that for every ai ∈ E1 either

x6 ∈ ai or i ∈ K and {x4, x5} ⊂ ai. This property and that every ai contains at least
one of x4, x5 ensures that the weight of ai is at least one. The weighting is also good
for every bj ∈ E2 since {x2, x4, x5, x6} ⊂ B. Finally, each e12 ∈ E12 contains x1, x2

and at least one vertex of {x4, x5, x6} because e12 ∩ a3 ∩ b1 ̸= ∅. Thus the weighting
is a required fractional transversal. 2

Case (ii): |e ∩ f | ≥ 3 for each e, f ∈ E(H). In this case let us first suppose that
there exist e and f such that e ∩ f = M where |M | = 3. Then we define a fractional
transversal by giving weight 1

2
to each vertex in M . This is valid because every other

edge g must intersect M in at least two vertices - otherwise either |g ∩ e| ≤ 2 or
|g ∩ f | ≤ 2, contradicting the assumption for Case (ii). Thus we have a fractional
transversal of value 3

2
. Thus we may suppose that every pair of edges intersects in at

least four vertices. Let e and f be an arbitrary pair and let M ⊆ e ∩ f be a set of
size four. Define a fractional transversal by weighting each vertex of M with 1

3
. Now

every other edge g intersects M in at least three vertices - otherwise either |g∩ e| ≤ 3
or |g ∩ f | ≤ 3, contradicting our assumption. Now we get a fractional transversal of
value 4

3
< 3

2
. 2
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