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Abstract

Let f(n,r) be the largest integer m with the following property: if the edges
of the complete 3-uniform hypergraph K32 are colored with r colors then there
is a monochromatic component with at least m vertices. Here we show that
f(n,5) > 57” and f(n,6) > %" Both results are sharp under suitable divisibility
conditions (namely if n is divisible by 7, or by 6 respectively).

1 Introduction

A first exercise in graph theory - in fact an old remark of Erdés and Rado - states that
for any graph G, either GG or its complement is connected. The following generalization
(and the solution for r = 3) was suggested in [3]: suppose that the edges of K, are
colored with r colors in any fashion, what is the order of the largest monochromatic
connected subgraph? The answer for general 7, [-"5], was given in [4] (it is sharp if
r—1is a prime power and n is divisible by (r —1)?). This also follows from a result of
Fiiredi [1] on fractional transversals of hypergraphs. The problem was generalized to
hypergraphs in [2]. In the generalization, connectivity and components of hypergraphs
are understood as follows. Let H be a hypergraph. We say that H is connected if
the shadow graph of H, with vertex set V(H) and edge set {zy : zy C e for some e €
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E(H)}, is connected. A component of H is a maximal connected subhypergraph.
The main result of [2] says that any r-coloring of the edges of the complete t-uniform
hypergraph on n vertices contains a connected monochromatic subhypergraph on at
least % vertices, where ¢ is the smallest integer satisfying r» < 320 ¢*. The result is
best possible if ¢ is a prime power and n is divisible by ¢*. The case t = 2 (with
g =r — 1) gives the graph case discussed above. This paper focuses on ¢t = 3.

Let f(n,r) be the largest integer m with the following property: if the edges
of the complete 3-uniform hypergraph K? are colored with r colors then there is a
monochromatic component with at least m vertices. Applying the result mentioned
above for t = 3 we get that f(n,r) = cifr = q* + ¢ + 1 with a prime power ¢ and
n is divisible by ¢*. The case ¢ = 2 solves r = 7 and the cases r < 4 are also solved
in 2] (f(n,3) =n and f(n,4) > 2* with equality if n is divisible by 4). The cases
r = 5,6 are left open and the purpose of this note is to fill this gap. We apply the
proof method of Fiiredi used first in [1] (see also in [2]) which connects f(n,r) to
fractional transversals of certain hypergraphs.

A hypergraph is r-partite if its vertices are partitioned into r classes and each edge
intersects each class in exactly one vertex. A hypergraph is 3-wise intersecting if any
three edges have nonempty intersection. A fractional transversal is a non-negative
weighting of the vertices such that the sum of the weights over any edge is at least
1. The walue of a fractional transversal is the sum of the weights over all vertices
of the hypergraph. Finally, 7(#) is the minimum of the values over all fractional
transversals of H. We use the following lemma from [2].

Lemma 1 Let 7"(r) be defined as the mazimum of 7*(H) over all r-partite 3-wise
intersecting hypergraphs H. Then f(n,r) > TL(T)

Theorem 1 f(n,5) > 57" and this is sharp if n is divisible by 7.

Proof. We start with a construction, showing that f(n,5) is not larger than the
claimed value if n is divisible by 7. Let n = 7k and partition [n] = {1,...,n} into
seven k-element sets, X;. We define five subsets I; C [7] as

Il - {174757677}712 = {27475767 7}713 = {37475a67 7}7

Iy ={1,2,3,6,7},Is = {1,2,3,4,5}.

Observe that every triple of [7] is covered by at least one /;. Thus every triple " C [n]
is covered by at least one of the five sets A; = {U;e;, X;}. Color T' with color j where

J is the smallest index such that T C A;. Clearly each triple of [n] is colored with one

of five colors and there is no monochromatic component of size larger than 5k = 57”



On the other hand, f(n,5) > 2 follows from Lemma 1 if we show that 7(H) < I
holds for every 5H-partite 3-wise intersecting hypergraph H. We shall define only the
nonzero weights w(x) for x € V(#H). Let A; denote the vertex classes of H, vertices
in A; will be indexed with i. Note that if there are two edges e, f € E(H) with
len f| = 1 then all edges of H intersect and 7*(H) = 1 follows. Thus we may assume
that any two edges of H intersect in at least two vertices.

Case (i): there exist e, f € E(H) with |e N f| = 2. Assume e = {z1, 22, Y3, Y4, Y5 },
[ =Ax1, 29, 23,24, 25}. Set Y = {ys,ys, Y5}, Z = {23, 24, 25}. Using that H is 3-wise
intersecting, it follows that the edge set of H can be partitioned into F;, Fs, E15 where

E12 = {h € E(H) T1,T2 < h},

Elz{hEE(H> A Eh,$2¢h},E2:{hEE(H)II2 Eh,xl ¢h}

We may assume that F;, 5 are both non-empty otherwise - as before - all edges
of H intersect and 7*(H) = 1.

Assume first that there is a pair of edges e; € E1, es € E5 such that eq, es intersect
on A3UA4U A5 in a 3-element set T' = {t3,14,t5}. Since e, ey and f, e; both intersect
in at least two vertices, T'NY,T N Z are nonempty sets, at least one of them, say
T N Z has exactly one element. We may suppose w.l.o.g. t3 = ys,t4 = 24.

If t5 # ys (t5 # 25 also holds by assumption on 7'N Z) then the existence of the
triple intersections

eNeiNbeNesNa,fNesNa, fNe Nb

for a € Fy,b € E5 imply that all edges of F; U Ey contain both t3 and ¢4. If there
exists an edge e;9 € Fqo such that neither t3 nor ¢4 is in eq5 then the existence of the
triple intersections ejo Ne; Nb,e1o Ney Na for a € Ey,b € Ey imply that all edges of
E, U E5 contain t5 as well. Moreover, then all edges of Ey5 must also contain t5. Now
every edge in E; U Fy intersects {x1, 25} in one and intersects T in three elements;
every edge of Fi intersects {z1,x2} in two and 7T in at least one element. Thus the
weight assignment w(z;) = w(zs) = 2, w(ts) = w(ts) = w(ts) = # is a fractional
transversal of H with value % If every ej5 € E5 intersects {t3, %4} then every edge in
Ey U EyU By, intersects S = {z1, xq, 13,4} in at least three elements thus assigning %
to each element of S gives a fractional transversal of value % < g finishing this part
of the proof.

If t5 = y5 then, as in the argument above, the existence of the triple intersections
fneNb, fNesNa fora € Fy,b € Ey imply that all edges of £ U Es contain t4. First
suppose that there exist by, by € Ey (not necessarily distinct) with ¢3 ¢ by and t5 ¢ bs.
Then the triple intersections eNaMNb; and eNaNby show that for each a € E; we have
t3 € a and t5 € a. Therefore we can conclude that all edges of E; or all edges of Ej



- say all edges of E; - contain both t3 and t5. Moreover, then the triple intersections
eNanNb show that each b € E5 contains either ¢35 or t5. Now if each e;o € EF» contains
ty or both t3,t5 then we can assign w(z2) = w(ty) = 2, w(21) = w(ts) = w(ts) = &
to get a fractional transversal of value I. Therefore we may assume (without loss of
generality) that the set E' = {ejs € Fi : {t4,t5} N ez = 0} is nonempty. For any
ez € E', since |eja Ney| > 2 we know 3 € ejs. We know each b € Fy contains t3
or t5, and if t5 € b then |e;o Nb| > 2 implies t3 € b also. Thus in this case t3 is in
every element of F1 U Fy U Epp. Now if E” = {e1s € E1 : {t3,t4} Nep =0} = () then
the weight function w(z1) = w(z2) = w(ts) = w(ty) = % is a fractional transversal of
value %. If E” # () then as above t5 is also in every element of E; U Ey U E15. Then
w(z) = w(we) = 2, w(ts) = w(ty) = w(ts) = £ is a fractional transversal of value I.
Now we may assume that any pair of edges e; € Fy,eo € E5 intersect on Az U
A; U As in a set of at most two elements. Fix e; € Ej,ey € E,. In fact - since the
triple intersections e; Ney Ne,e; Nes N f exist - e; and ey intersect on Az U Ay U Aj
in a two-element set 7' = {t3,%4}, say t3 = ys3,t4s = z4. Since ey, ez do not intersect
on As, wlo.g. ys ¢ e1,25 ¢ es. The triple intersections e; Ne Nb,ex N f N a imply
t3 € bty € a for a € E1,b € E,. Since each intersection a Nb for a € F1,b € Ey has
at least two elements, one of t3,%4, say t3 is in all edges of E; U Ey. Moreover each
e12 € E1o must intersect {t3, ¢4} because of the triple intersection ejo Ne; Ney. If ¢4 is
also in all edges of Ey U Ey then {xy, z9, 3,14} intersects every edge of Fy U Ey U Ej9
in at least three elements, implying a fractional transversal of value %. Otherwise
E ={b € Ey:ty ¢ b} # (. In this case, since [b N f| > 2 we see that each
b € E' contains z5. Looking at b Na for a € Ey, b € E’ tells us that z5 € a
as well. Finally b N e; N ejy shows us that if t3 ¢ ejo for some e € Ejp then
z5 € e1p (and we know that t3 ¢ e implies ¢4 € e12). Summing up, we find that
for each a € Ey, x1,t3,t4,25 € a, and for each b € Ey, x5,t3 € b and (t4 U 25) N'D
is nonempty. For each ejs € Fio, x1,29 € €19 and either t3 € e9 or {ty, 25} C ega.
Now the weighting w(ts) = w(xs) = 2, w(z1) = w(ty) = w(zs) =  gives the required
fractional transversal.
Case (ii): Any two distinct e, f € H intersect in at least three vertices . Assume first
that there is a pair e, f € H intersecting in three elements, e = {x1, x9, x3, 14,25}, f =
{1, 9,23, Y1,y5}. Observe then that every edge must intersect {x1, x5, x3} in at least
two elements. Again, if the set of edges E;; that intersect {x,xo,z3} in {x;, x;} is
empty for some pair i, j € [3] then, for £ = [3] \ {i, 7}, all edges of H contain z;, and
7*(H) = 1. Thus these sets E;; are non-empty. Selecting ejp € Eig, €15 € Ej3, €93 €
Es3, the assumptions on the intersection sizes imply that for each of the three pairs
of indices e;; N (A4 U A5) is the same pair, say {z4,ys}. Any edge e123 that contains all
of {x1,xs, 3} must also intersect {4, ys}, otherwise |eja3 N e12| < 2. Now assigning

w(z1) = w(zs) = w(zg) =+, w(zy) = w(ys) = 2 we have a fractional transversal of



‘H with value %

Finally, if each pair of edges of H intersect in at least four elements, we can assign
weight i to vertices of any fixed edge. This gives a fractional transversal of ‘H with
value 2 < % O

Theorem 2 f(n,6) > %” and this is sharp if n is divisible by 6.

Proof.
To show that f(n,6) is not larger than claimed value if n is divisible by 6, let
n = 6k and partition [n] into six k-element sets, X;. We define six subsets I; C [6] as

-[1 - {3747576}712 = {174a 5)6}713 = {2747576}a

I, ={1,2,3,6},1; ={1,2,3,4}, I = {1,2,3,5}

Observe that every triple of [6] is covered by at least one I;. Thus every triple T C [n]
is covered by at least one of the six sets A; = {U;e;, X;}. Color T with color j where
J is the smallest index such that T C A;. Clearly each triple of [n] is colored with one
of six colors and there is no monochromatic component of size larger than 4k = 2?"

As in the proof of Theorem 1, f(n,6) > %" follows from Lemma 1 if we show that
T"(H) < % holds for every 6-partite 3-wise intersecting hypergraph H. To see that,
let A; denote the vertex classes of H. Note that if there are two edges e, f € E(H)
with |e N f| = 1 then all edges of H intersect and 7*(H) = 1 follows. Thus we may
assume that any two edges of H intersect in at least two vertices. We basically follow
the argument of the proof of Theorem 1.

Case (i): There exist e, f € E(H) with |en f| =2. Set e f = {x1, 22} and define

E12 = {h € E(H) 1T, T € h},
Ei={heE(H):xz1€hxa¢ h},Ey={he€ E(H): 25 € h,x1 ¢ h}.

Then as before H = E1 U Ey U Eqs.

Let By = {ay,a9,...as}, By = {b1,ba,...,b;}. We may assume that F,, Fy are
both nonempty, otherwise - as before - all edges of H intersect and 7*(H) = 1. Notice
that a; N bj C U2:3Ak for any a; € Eq, bj € Fs.

If all edges of F; U E5 have a common vertex v then assigning weight % to the
vertices in {z1,x9,v} we have a fractional transversal of value % and the proof is
finished. Thus we may suppose that

ﬂaiﬂﬂbj:(ﬁ. (1)

1€[s] JEt]



Lemma 2 Suppose there exist distinct edges aq,as € Ey, by, by € FEy such that aq N
as NbyNby=0. Then 7*(H) < %

Proof. Observe that the four triple intersections among these edges are all disjoint
(and nonempty). Let U denote the union over all four triple intersections, so |U| > 4.
Note that if x,2’ € U then one of (in fact, at least two of) ay, as, b1, bs contain both
x and 2’. Thus we cannot have distinct x, 2’ in the same partite class A;. Therefore
U = {x3, 24, 5,26} for some z; € A; for i = 3,4,5,6, and we may assume without
loss of generality that

T3 € (alﬂblﬂbg)\ag,x4 € (agﬂblﬂbg)\al,

x5 € (alﬂagﬂbl)\bg,x@- € (alm(lgﬂbg)\bl. (2)

We observe that - apart from the exceptional case when a; N U = {z3, 24} - each
edge a; € F; intersects U in at least three vertices. Indeed, if a; N U C {x3, 25} then
the triple intersection a; N ag N by is missing. If a; NU C {z4, 26} then a; Na; Nby
is missing. Similarly, a; N U C {z3,z6}, {4, 25}, {5, 26} in turn imply the missing
intersections a; N as N by, a; N ay; N by, a; N by Nby. (The argument in the exceptional
case would require missing a; N a; N ay but that intersection is present at x;.)

Similarly, apart from the exceptional case when b; N U = {z3, 26}, each edge of
b; € Ly intersects U in at least three vertices. Finally, observe that any e;o € Ei
intersects U in at least two vertices. Indeed, e;o NU C {x;} for some [ € {3,4,5,6}
would contradict the existence of the triple intersection ejs N a; N b; where 4,5 € [2]
such that one of a;, b; does not contain ;. Consider ej5 € Ej5 exceptional if ejoNU =
{3,224} or 1o NU = {5,264}

Based on the above observations we can define the required fractional transversal
as follows. If no edge in Ey U B, is exceptional, w(z;) = § for i = 1,2,...6 is suitable.
If there exists an exceptional edge in FyUF,, say a;, then no b; € F, can be exceptional
(otherwise a;Nb; cannot exist) - in fact the following stronger statement is true for any
b;j: if {x5,26} C b; then U C b;. Indeed, U Nb; = {xy, x5, 26} (UNb; = {x3,25,26})
contradicts the existence of a;Nb;Nay (a;Nb;jNas). Moreover no ej5 € Ej9 is exceptional
with e;o MU = {x5, 26} otherwise e N a; N by cannot exist. These properties ensure
that w(z1) = w(ws) = w(zs) = 3, w(w2) = w(xs) = w(xe) = § is a suitable fractional
transversal. O

By Lemma 2, from now on we may suppose that

a;Naj; Nb,Nb # 0

for every choice of the indices (if i = j or k = [ the 3-wise intersecting property
ensures it).



Because of (1) we can select a minimal nonintersecting subfamily of E; U E,
that is S C [s],T C [t] such that Ncsa; N Njerb; = 0 but for any proper subset
S;UuTycsSuT

ﬂaiﬂﬂbjsé@. (3)
1€S1 JjeTy

Since A = Nie[sas, B = Njeb; are both nonempty (1 € A, 2, € B), it follows
that S, T are nonempty. Moreover |S U T| > 4 because H is 3-wise intersecting. Set
u = |SUT|. Then by choice of SUT, all (u—1)-wise intersections of elements of SUT
are disjoint and nonempty, so their union U has size at least u, and as in the proof of
Lemma 2 no two vertices in U are in the same partite class A;. Thus if |S|, |T| > 2
then U C US_; Ay, implying that u = 4. But then the assumptions of Lemma 2 hold,
so the proof is done in this case.

Thus we may assume that one of S, T has one element only, say 7" = {1}. In this
case z1 € U and x5 ¢ U, so U C {z;} UUS_, A, implying that u = 4 or u = 5. In
both cases, without loss of generality we may select three vertices X = {3, x4, 5}
from U with z; € A; for i = 3,4,5 as follows:

T3 € ((ll N as ﬂbl)\a3,$4 < (a1 ﬂagﬂbl)\ag,mg) c (CLQ ﬁagﬂbl) \al. (4)

Lemma 3 Suppose there exists a; € FEy such that |a; N X| < 1. Then 7*(H) <

N

Proof. Suppose without loss of generality that a; N {z4, 25} = (0. Then, for each
b; € E,, the (nonempty) quadruple intersection as Na; N by Nb; must be in Ag. This
is possible only if all b;-s intersect on Ag, say in a vertex xg € azMa; N B. Because of
(1) the set K = {k € [s]|ze & ax} is nonempty. For every k € K, j € [t] the quadruple
intersection ay N a; N by Nb; contains x3. This implies 3 € B N (Nkexar). Reversing
the argument, L = {l € [s]|z3 ¢ a;} is nonempty implying that for every [ € L, j € [t]
the quadruple intersection a; N a; Nby; N b; contains xg, implying x¢ € B N (Mierar).
Thus each edge in E; contains z; and at least one vertex of {x3,24}. Every edge
in Ey contains both x3,x¢ and every e;s € FEjo contains x; and also at least one
vertex of {x3, 2z} because the triple intersection ejs N a; N by is nonempty. Therefore
w(z1) = w(xs) = w(ze) = 3 is a required fractional transversal. O

By Lemma 3 we may suppose from now on that every edge a; € E; meets X in
at least two elements.

Claim: Either X C B or BN Ag # (. Indeed, if an element of X, say x3 ¢ b; for
some ¢ € [t] then the quadruple intersection a; N ag N b; N by, is in Ag for all m € [t].
This implies that BN Ag # (). The argument works similarly if x, or x5 plays the role
of z3 (considering a; N ag N b; Nb,, or as Nag N b; Nby,,), proving the claim.



We look at the two cases of the claim. If X C B holds then w(z1) = 3, w(zs) =
w(zs3) = w(zy) = w(zs) = 1 is a required fractional transversal. Indeed, each a; € F)
contains x; and at least two elements of X, each b; € E5 contains x5 and all elements
of X. Each e;5 € Ejs contains xq,xr, and at least one element of X otherwise -
considering the triple intersections e M a; N b; - all a;,b; should intersect in Ag,
contradicting (1). Thus we may assume that X C B does not hold.

Select x4 € A¢N B. By definition of S, at least one a; with j € S does not contain
zg, say T ¢ az. We show that {xy, x5} C B. Indeed, if x4 ¢ b; (x5 ¢ b;)then the
quadruple intersection a; Nas N by Nb; (az Nas N by Nb;) does not exist.

Therefore since X C B does not hold, we know z3 ¢ b; for some j € [t]. Define
K = {k € [s]lzs ¢ ai} as before. We show that for each k € K, {x4,25} C ay.
Indeed, if x4 ¢ ay (25 ¢ ai) for some k € K then a; NaxNby Nb; (azNa,MNby Nb;)does
not exist.

Now we finish the proof by showing that w(z1) = 1, w(22) = w(zs) = w(zs) =
w(wg) = i is a required fractional transversal. Notice that for every a; € F; either
xg € a; or i € K and {xy4, 25} C a;. This property and that every a; contains at least
one of x4, x5 ensures that the weight of a; is at least one. The weighting is also good
for every b; € Es since {z2, 4,75, 26} C B. Finally, each €5 € Ejo contains xy, o
and at least one vertex of {xy, x5, 26} because e;s Nag N by # (. Thus the weighting
is a required fractional transversal. O
Case (ii): |en f| > 3 for each e, f € F(H). In this case let us first suppose that
there exist e and f such that e f = M where |M| = 3. Then we define a fractional
transversal by giving weight % to each vertex in M. This is valid because every other
edge g must intersect M in at least two vertices - otherwise either |g Ne| < 2 or
lg N f] < 2, contradicting the assumption for Case (ii). Thus we have a fractional
transversal of value % Thus we may suppose that every pair of edges intersects in at
least four vertices. Let e and f be an arbitrary pair and let M C eN f be a set of
size four. Define a fractional transversal by weighting each vertex of M with % Now
every other edge g intersects M in at least three vertices - otherwise either [gNe| < 3
or |g N f| < 3, contradicting our assumption. Now we get a fractional transversal of
value % < % O
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