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Abstract

In this paper we study multipartite Ramsey numbers for odd cycles. We
formulate the following conjecture: Let n ≥ 5 be an arbitrary positive odd
integer; then, in any two-coloring of the edges of the complete 5-partite graph
K((n − 1)/2, (n − 1)/2, (n − 1)/2, (n − 1)/2, 1) there is a monochromatic Cn,
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a cycle of length n. This roughly says that the Ramsey number for Cn (i.e.
2n−1) will not change (somewhat surprisingly) if four large “holes” are allowed.
Note that this would be best possible as the statement is not true if we delete
from K2n−1 the edges within a set of size (n+ 1)/2. We prove an approximate
version of the above conjecture.

1 Introduction

1.1 Ramsey numbers for odd cycles

If G1 and G2 are graphs, then the Ramsey number R(G1, G2) is the smallest positive
integer r such that if the edges of a complete graph Kr are partitioned into 2 disjoint
color classes giving graphs H1 and H2, then one of the subgraphs Hi (i = 1, 2) has a
subgraph isomorphic to Gi. The existence of such a positive integer is guaranteed by
Ramsey’s original paper [17]. The number R(G1, G2) is called the Ramsey number
for the graphs G1 and G2. The determination of these numbers has turned out to be
remarkably difficult in certain cases (see eg. [5] or [16] for results and problems). In
this paper we consider the case when each Gi is a cycle Cn on n vertices, where n
is odd. A theorem obtained independently by Rosta [18] and Faudree and Schelp [2]
(see also a new simple proof in [8]) states that for any n ≥ 5 odd positive integer

R(Cn, Cn) = 2n− 1. (1)

Recently there has been some interest to see what happens to the Ramsey numbers
when we allow fixed edge deletions from the complete graph Kr, in particular if we
delete complete subgraphs from Kr. One result of this type appeared in [7], where
we gave a tripartite version of the Gerencsér-Gyárfás Theorem, i.e. we showed that
the Ramsey number for a path is about the same when two-colorings of a complete
graph or a balanced complete tripartite graph are considered. Another result of this
type appeared in [15], where it was shown for any odd n ≥ 5 that if we delete the
edges of a complete subgraph of order (n − 1)/2 from the complete graph of order
2n− 1 and we two-color the rest, we can still guarantee a monochromatic Cn.

In this paper along these lines we consider a multipartite version of (1). We
formulate the following conjecture.

Conjecture 1. Let n ≥ 5 be an arbitrary positive odd integer; then, in any two-
coloring of the edges of the complete 5-partite graph K(n−1

2
, n−1

2
, n−1

2
, n−1

2
, 1), there is

a monochromatic Cn.

Again this roughly says that the Ramsey number for Cn will not change (somewhat
surprisingly) if four large “holes” are allowed. Note that this would be best possible
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as the statement is already not true if we have an independent set of size n+1
2

(so even
one hole of size n+1

2
is not allowed). Indeed, let us remove all the edges spanned by

the set A, where |A| = n+1
2

. Divide the vertices V \ A into two sets B and C with
|B| = n−1

2
and |C| = n − 1. Let the first color be all the edges within B, within C

and between A and B. The second color is the remaining edges. Then it is easy to
see that there is no monochromatic Cn.

Conjecture 1 holds for n = 5, but is open in general. It is the purpose of this
paper to give an approximate result which gives further evidence to the truth of this
conjecture. More precisely we prove the following theorem.

Theorem 1. For all 0 < η < 1/2 there exists an n0 = n0(η) with the following
properties. For any n ≥ n0 positive odd integer, in any two-coloring of the edges of
the complete 5-partite graph of order (2 +η)n with 5 parts of size g(1), g(2), g(3), g(4)
and g(5), where we have

n/2 ≥ g(1) ≥ g(2) ≥ g(3) ≥ g(4) ≥ g(5) ≥ ηn,

there is a monochromatic Cn.

We note that recently there has been some interest in multipartite versions of
classical results, see e.g. the result of Magyar and Martin [14], a tripartite version of
the Corrádi-Hajnal Theorem, or our result in [7], a tripartite version of the Gerencsér-
Gyárfás Theorem.

In the proof of Theorem 1 the notion of an odd connected matching plays
a central role; this is a matching M in a graph G such that all edges of M are in
the same non-bipartite connected component of G. Such a component is called an
odd component. This is related to the concept of a connected matching that was
introduced by  Luczak [13] and applied e.g. in [3], [6] and [7].

Sections 2 and 3 provide our main tools including the Regularity Lemma. Then in
Section 4 we prove our main lemma (Lemma 6) which states that in any two-coloring
of a (1−ε)-dense 5-partite graph with the right parameters there is a sufficiently large
monochromatic odd connected matching. Finally in Section 5 we show how Lemma
6 implies Theorem 1.

1.2 Notation and definitions

For basic graph concepts see the monograph of Bollobás [1]. Disjoint union of sets
will sometimes be denoted by +. Let V (G) and E(G) denote the vertex-set and the
edge-set of the graph G. Usually Gn is a graph with n vertices, and G(n1, . . . , nk) is
a k-partite graph with classes containing n1, . . . , nk vertices. Let (A,B,E) denote a
bipartite graph G = (V,E), where V = A + B, and E ⊂ A × B. Denote by Kn the
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complete graph on n vertices, K(n1, . . . , nk) the complete k-partite graph with classes
containing n1, . . . , nk vertices, and Pn (Cn) the path (cycle) with n vertices. For a
graph G and a subset U of its vertices, G|U is the restriction to U of G, and Γ(v) is
the set of neighbors of v ∈ V . Hence the size of Γ(v) is |Γ(v)| = deg(v) = degG(v),
the degree of v. Let δ(G) stand for the minimum, and ∆(G) for the maximum degree
in G. For a vertex v ∈ V and set U ⊂ V −{v}, we write deg(v, U) for the number of

edges from v to U . A graph Gn is γ-dense if it has at least γ
(
n
2

)
edges. The (A,B,E)

bipartite graph is γ-dense if it has at least γ|A||B| edges. The G(n1, . . . , nk) k-partite
graph is γ-dense if all the bipartite graphs between two classes are γ-dense. When
A,B are disjoint subsets of V (G), we denote by eG(A,B) the number of edges of G
with one endpoint in A and the other in B. For non-empty A and B,

dG(A,B) =
eG(A,B)

|A||B|

is the density of the graph between A and B.

Definition 1. The bipartite graph G = (A,B,E) is (ε,G)-regular if

X ⊂ A, Y ⊂ B, |X| > ε|A|, |Y | > ε|B| imply |dG(X,Y ) − dG(A,B)| < ε,

otherwise it is ε-irregular.

2 The Regularity Lemma

In the proof a two-color version of the Regularity Lemma plays a central role.

Lemma 1 (Regularity Lemma [19]). For every positive ε and positive integer m
there are positive integers M and n0 such that for n ≥ n0 the following holds. For all
graphs G1 and G2 with V (G1) = V (G2) = V , |V | = n, there is a partition of V into
l + 1 classes (clusters)

V = V0 + V1 + V2 + ... + Vl

such that

• m ≤ l ≤ M

• |V1| = |V2| = ... = |Vl|

• |V0| < εn

• apart from at most ε
(
l
2

)
exceptional pairs, the pairs {Vi, Vj} are (ε,Gs)-regular

for s = 1, 2.
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For an extensive survey on different variants of the Regularity Lemma see [11].
Note also that if we apply the Regularity Lemma for a multipartite graph G with
big enough partite classes we can guarantee that for each cluster that is not V0, all
vertices of the cluster belong to the same partite class of G (see eg. [14]).

We will also use the following simple property of (ε,G)-regular pairs.

Lemma 2. Let G be a bipartite graph with bipartition V (G) = V1 ∪ V2 such that
|V1| = |V2| = m ≥ 45. Furthermore, let eG(V1, V2) ≥ m2/4 and the pair {V1, V2} be
(ε,G)-regular for 0 < ε < 0.01. Then for every l, 1 ≤ l ≤ m − 5εm and for every
pair of vertices v′ ∈ V1, v

′′ ∈ V2, where deg(v′), deg(v′′) ≥ m/5, G contains a path of
length 2l + 1 connecting v′ and v′′.

This lemma is used by  Luczak in [13]. Lemma 2 (with somewhat weaker param-
eters) also follows from the much stronger Blow-up Lemma (see [9] and [10]).

3 Further graph theory tools

A set M of pairwise disjoint edges of a graph G is called a matching. The size |M | of
a maximum matching is the matching number, ν(G). A key notion in our approach
is the notion of an odd connected matching. A matching M is an odd connected
matching in G if all edges of M are in the same non-bipartite connected component
of G. Such a component is called an odd component. For a multipartite graph G, we
shall work with its multipartite complement, G, defined as the graph we obtain from
the usual complement after deleting all edges within the partite classes. The next
lemmas collect some simple properties of multipartite graphs of high density.

Lemma 3. Assume that m < n is a positive integer, ∆(Gn) < m and H = [A,B] is
a bipartite subgraph of Gn with 2m < |A| ≤ |B|. Then H is a connected subgraph of
Gn and contains a matching of size at least |A| −m. Moreover, if only 2m < |B| and
A ̸= ∅ is assumed then there is a subgraph H ′ which is connected and covers A and
all but at most m vertices of B.

Proof: Two vertices in A (B) have a common neighbor in B (A). Also if a ∈ A, b ∈ B
then any neighbor of a and b have a common neighbor in A. Thus H is a connected
subgraph. Moreover any maximum matching M misses fewer than m vertices of A.
The statement about H ′ follows by fixing a vertex a ∈ A and H ′ is obtained by
deleting from B the vertices nonadjacent to A. 2

Lemma 4. Assume that G is an r-partite graph with N vertices such that r ≥ 3,
N ≥ 2r(r−1)

r−2
, and ∆(G) < ρN where ρ < 1

2r(r−1)
. Suppose that the largest partite class

of G has at most as many vertices as the sum of the orders of the other color classes.
Then G has a matching covering at least (1 − 2ρ)N vertices of G.
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Proof: Assume that V1, . . . Vr are the vertex classes of G in nondecreasing order.
Continue with the following procedure until the set U of uncovered vertices in V1 ∪
. . .∪Vr−1 satisfies |U | < |Vr|. Note that by the assumption of the lemma, the stopping
condition is not present at the beginning, when U = V1 ∪ . . . ∪ Vr−1.

Take the edges of a largest matching from V1 to V2, one by one. Take the edges
of a largest matching from the unmatched vertices of V2 to V3, one by one, etc. The
last step is to take a largest matching from the unmatched vertices of Vr−2 to Vr−1,
one by one.

This procedure covers two vertices at a time and by Lemma 3 (applied with
n = N,m = ρN) leaves at most 2ρN vertices uncovered in each of the first r − 1
partite classes. If the stopping condition never occurs then

2(r − 1)ρN ≥ |Vr| ≥
N

r
,

contradicting the assumption of the lemma. Thus the procedure eventually stops.
Notice that we have at least |Vr| − 2 uncovered vertices at this time because before
the last matching edge was added, the stopping condition was not present and so we
have |U |+ 2 ≥ |Vr|. Now we finish by taking a largest matching from the set U to Vr.
At this point by Lemma 3 (applied again with n = N,m = ρN) we leave at most ρN
uncovered points in Vr and also in V (G) \ Vr. Indeed, the lemma can be applied as

|U | ≥ |Vr| − 2 ≥ N

r
− 2 > 2ρN

holds using N ≥ 2r(r−1)
r−2

and ρ < 1
2r(r−1)

. This proves the lemma. 2

Lemma 5. Let 0 < ε, η < 1/2. Assume that G = G(g(1), g(2), g(3), g(4), g(5)) is a
(1 − ε)-dense 5-partite graph on (2 + η)n = g(1) + g(2) + g(3) + g(4) + g(5) vertices,
where we have

n/2 ≥ g(1) ≥ g(2) ≥ g(3) ≥ g(4) ≥ g(5) ≥ ηn.

Then G has a 5-partite subgraph H = H(h(1), h(2), h(3), h(4), h(5)) with h(i) ≥
(1 − 5

√
ε

8η2
)g(i) for all 1 ≤ i ≤ 5 such that ∆(H) < 4

√
εg(1).

Proof: If G has p(i) vertices in the same partite class of g(i) vertices with degree at
least 4

√
εg(i) in G, then G has at least p(i)4

√
εg(i) edges. Therefore p(i)4

√
εg(i) ≤

10εg(1)2, implying p(i) ≤ 5
2

√
εg(1)2

g(i)
. Remove these p(i) vertices from the partite class

with g(i) vertices for each 1 ≤ i ≤ 5, and let the remaining vertices induce the
subgraph H. Clearly ∆(H) < 4

√
εg(1). We also have

h(i) ≥ g(i) − 5

2

√
ε
g(1)2

g(i)
=

(
1 − 5

2

√
ε
g(1)2

g(i)2

)
g(i) ≥

(
1 − 5

√
ε

8η2

)
g(i). 2

6



4 Large monochromatic odd connected matchings

in dense 5-partite graphs

In our main lemma we show that we can find large monochromatic odd connected
matchings in dense 5-partite graphs.

Lemma 6. For all 0 < ε ≤ η6

1002
, 0 < η < 1

2
, there exists an n0 = n0(ε, η) with the fol-

lowing properties. For any n ≥ n0 positive integer, assume that G = G(g(1), g(2), g(3),
g(4), g(5)) is a (1−ε)-dense 5-partite graph on (2+η)n = g(1)+g(2)+g(3)+g(4)+g(5)
vertices, where we have

n/2 ≥ g(1) ≥ g(2) ≥ g(3) ≥ g(4) ≥ g(5) ≥ ηn.

Then for each two-coloring of G there is a monochromatic odd connected matching
covering at least n vertices.

Proof: Let us first apply Lemma 5 for the 5-partite graph G to find a 5-partite
subgraph H = H(h(1), h(2), h(3), h(4), h(5)) of G with h(i) ≥ (1 − 5

√
ε

8η2
)g(i) for all

1 ≤ i ≤ 5 such that ∆(H) < 4
√
εg(1) ≤ 2

√
εn. Thus each vertex in any partite

set of H is adjacent to almost all (all but 2
√
εn) vertices in the remaining four

partite sets of H. This is used throughout without special mention and observe that
with ρ = 2

√
ε any subgraph F of H with at least n vertices satisfies the condition

∆(F ) < ρn ≤ ρ|V (F )| in Lemma 4. Here we use the assumption ρ = 2
√
ε < 1

5×4
= 1

20
.

We consider only the two-coloring (red/blue) of E(H) induced by the coloring of
E(G). In this two-coloring of H select a maximal monochromatic (say red) connected
odd component C. In fact we need only that the component we select is not proper
part of another odd component in the other color. It is easy to check that there exist
monochromatic odd components since H is a 5-chromatic graph.

For 1 ≤ i ≤ 5, let Vi denote the partite sets of H, so |Vi| = h(i), let Xi =
Vi \ V (C), Yi = V (C) ∩ Vi. Call an Xi large if |Xi| > 4

√
εn.

We will distinguish two cases:
Case 1: At least two of the Xi-s are large.
By Lemma 3 applied with m = 2

√
εn (since all edges of H from a large Xi to C

are blue) the blue subgraph of H is a spanning connected subgraph. Moreover, any
blue edge between two Yi-s would make the blue subgraph odd - this contradicts the
choice of C. Similarly, any blue edge between a pair of large Xi-s would contradict
the choice of C. Thus C and the union of the large Xi-s both are almost complete
red partite graphs. The larger, denote it by F , has at least

1

2

(
2 + η − (2 + η)

5
√
ε

8η2
− 12

√
ε

)
n = (1 + α)n
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vertices. The condition ε ≤ η6

1002
ensures that

(1 − 2ρ)(1 + α) ≥ 1, (2)

and in particular α is positive here. Since each partite class of F has at most n
2

vertices, the assumption of Lemma 4 about the size of the largest partite class holds
and it is also ensured that F is r-partite with r ≥ 3. Thus the red matching M
obtained by Lemma 4 is odd and M covers at least (1 − 2ρ)(1 + α)n ≥ n vertices
because of (2).

Case 2: At most one Xi - say X1 (if there is one) - is large.
If there is no blue edge in the subgraph induced by S = V (C)\V1 then we can apply

Lemma 4 to the red subgraph of H induced by S and we have a red odd matching in
C covering almost all points of S. This is much larger than we need since |S| > 3n

2
.

Thus we may assume that there is at least one blue edge in S. If X1 is large then this
ensures, since all edges of H from X1 to S are blue, a blue odd component C1 of H
covering X1 and all vertices of S. Let Z denote the part of V1 that is not covered by
C1. Since all edges of H from Z to V (H) \ V1 are red (from the definition of C1) we
can cover Z by a red matching MR. Similarly we can cover X1 with a blue matching
MB that is disjoint from MR. One can easily complete the matching MR ∪MB to a
matching M covering almost all vertices of V (H) (here we can apply Lemma 4 again
for the 2-colored partite graph spanned by V (H) \ (V (MR) ∪ V (MB)). Selecting the
majority color from the edges of M we have the required monochromatic large odd
matching.

If X1 is not large then C covers almost all vertices of H. Select the largest red
matching M in C. If M covers less than n vertices, then, since all edges of H in the
subgraph induced by T = V (C) \ V (M) are blue, Lemma 4 ensures again that we
have a blue matching covering almost all vertices of the odd component induced by
T . This matching is large enough. 2

5 Proof of Theorem 1

We will assume that n is a sufficiently large odd natural number. Let 0 < η < 1/2 be
arbitrary and choose

ε =
(η
2
)6

1002
. (3)

Let G be the complete 5-partite graph of order (2 + η)n with 5 parts of size
g(1), g(2), g(3), g(4) and g(5), where we have

n/2 ≥ g(1) ≥ g(2) ≥ g(3) ≥ g(4) ≥ g(5) ≥ ηn.
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We need to show that each 2-edge coloring of G leads to a monochromatic Cn. Con-
sider a 2-edge coloring (G1, G2) of G. Let Vi denote the partite classes, so |Vi| = g(i).
Apply the two-color 5-partite version of the Regularity Lemma (Lemma 1), with ε as
in (3) and (by using the remark after the lemma) we can get a partition for i = 1, . . . , 5
of Vi = V 0

i + V 1
i + . . . + V li

i , where |V j
i | = m, 1 ≤ j ≤ li, 1 ≤ i ≤ 5 and |V 0

i | < εn,
1 ≤ i ≤ 5. We define the following reduced graph Gr: The vertices of Gr are pji ,
1 ≤ j ≤ li, 1 ≤ i ≤ 5, and we have an edge between vertices pj1i1 and pj2i2 , 1 ≤ j1 ≤ li1 ,

1 ≤ j2 ≤ li2 , 1 ≤ i1, i2 ≤ 5, i1 ̸= i2, if the pair {V j1
i1 , V

j2
i2 } is (ε,Gs)-regular for s = 1, 2.

Thus we have a one-to-one correspondence f : pji → V j
i between the vertices of Gr

and the non-exceptional clusters of the partition. Then Gr is a (1−ε)-dense 5-partite
graph on l = l1 + . . . + l5 vertices, where note again that l is a constant (it does not
depend on n). Define a 2-edge coloring (Gr

1, G
r
2) of Gr in the following way. The

color of the edge between the clusters V j1
i1 and V j2

i2 is the majority color in the pair

{V j1
i1 , V

j2
i2 }. Let

l′ =
l

4 + η
(4)

(assume for simplicity that this is an integer).
Using (3), (4) and Lemma 6 with η/2 instead of η implies that in such a 2-coloring

of Gr we can find a monochromatic odd connected matching M = {e1, e2, . . . , el′}
covering 2l′ vertices of Gr. Assume that M is in Gr

1. Thus we have

∣∣∣∪l′

i=1 ∪p∈ei f(p)
∣∣∣ ≥ 2 + η

2 + η
2

(1 − ε)n ≥ (1 +
η

8
)n, (5)

i.e. the total number of vertices of G in the clusters covered by M is significantly
more than n, a fact that will be important later. Furthermore, define f(ei) = (Ci

1, C
i
2)

for 1 ≤ i ≤ l′ where Ci
1, C

i
2 are the clusters assigned to the end points of ei. In the

remainder from this odd connected matching M in Gr
1 we will construct a cycle Cn

in G1.
Since M is a connected matching in Gr

1 we can find a connecting path P r
i in Gr

1

from f−1(Ci
2) to f−1(Ci+1

1 ) for every 1 ≤ i ≤ l′ − 1. Note that these paths in Gr
1 may

not be internally vertex disjoint. The last connecting path P r
l′ in Gr

1 from f−1(C l′
2 )

to f−1(C1
1) will be used to guarantee the right parity. Since M is an odd connected

matching in Gr
1 we can find an odd cycle C in the component of Gr

1 containing M .
For the construction of the last connecting path P r

l′ let us take first an arbitrary
connecting path P ′ in Gr

1 from f−1(C l′
2 ) to an arbitrary cluster C ′ on the cycle C, and

then another connecting path P ′′ in Gr
1 from another cluster C ′′ on the cycle C to

f−1(C1
1). On the cycle C there are two paths, Q′ and Q′′, of different parity connecting

C ′ and C ′′. As a first try construct the last connecting path P r
l′ as (P ′, Q′, P ′′). Now

compute the parity of the length of the closed trail that consists of all the connecting
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paths P r
i , 1 ≤ i ≤ l′ and where we connect each Ci

1 and Ci
2 with an arbitrary path

of odd length. If this parity is even, then we change the construction (and thus the
parity) of the last connecting path P r

l′ to (P ′, Q′′, P ′′). Thus we may assume that
this parity is always odd and note that it remains odd in the remainder when we
“blow-up” parts of the path.

From these paths P r
i in Gr

1 we can construct vertex disjoint connecting paths Pi

in G1 connecting a typical vertex vi2 of Ci
2 to a typical vertex vi+1

1 of Ci+1
1 . More

precisely we construct P1 with the following simple greedy strategy. Denote P r
1 =

(p1, . . . , pt), 2 ≤ t ≤ l, where according to the definition f(p1) = C1
2 and f(pt) = C2

1 .
Let the first vertex u1 (= v12) of P1 be a vertex u1 ∈ C1

2 for which degG1(u1, f(p2)) ≥
m/4 and degG1(u1, C

1
1) ≥ m/4. By ε-regularity most of the vertices satisfy this

in C1
2 . The second vertex u2 of P1 is a vertex u2 ∈ (f(p2) ∩ NG1(u1)) for which

degG1(u2, f(p3)) ≥ m/4. Again by regularity most vertices satisfy this in f(p2) ∩
NG1(u1). The third vertex u3 of P1 is a vertex u3 ∈ (f(p3) ∩ NG1(u2)) for which
degG1(u3, f(p4)) ≥ m/4. We continue in this fashion, finally the last vertex ut (= v21)
of P1 is a vertex ut ∈ (f(pt) ∩NG1(ut−1)) for which degG1(ut, C

2
2) ≥ m/4.

Then we move on to the next connecting path P2. Here we follow the same greedy
procedure, we pick the next vertex from the next cluster in P r

2 . However, if the cluster
has occurred already on the paths P r

1 or P r
2 , then we just have to make sure that we

pick a vertex that has not been used on P1 or P2.
We continue in this fashion and construct the vertex disjoint connecting paths

Pi in G1, 1 ≤ i ≤ l′. These will be parts of the final cycle Cn in G1. We remove
the internal vertices of these paths from G1. Note that the total number of removed
vertices, denoted by C, is still a constant of size at most l2 ≪ n, if n is sufficiently
large. By doing this we may create some discrepancies in the cardinalities of the
clusters of this odd connected matching. We remove at most l2 vertices from each
cluster of the matching to assure that now we have the same number of vertices left
in each cluster of the matching. Assume without loss of generality that ⌊n−C

l′
⌋ is odd

(otherwise take ⌊n−C
l′

⌋ − 1). By applying Lemma 2 for 1 ≤ i ≤ l′ − 1, find a path
of length ⌊n−C

l′
⌋ in G1|f(ei) connecting vi1 and vi2. Indeed, (3) and (5) imply that the

conditions of Lemma 2 are satisfied, since in each f(ei) we still have (1 + η
9
)n
l′

vertices
available after the removals if n is sufficiently large. Finally apply Lemma 2 one more
time to find a path of the right length in G1|f(el′ ) connecting vi1 and vi2 so that the
overall length of the cycle is exactly n. This completes the proof of Theorem 1. 2
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numbers for paths, Combinatorica, 27 (2007), pp. 35-69.
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up Lemma, Random Structures and Algorithms 12 (1998), pp. 297-312.
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graph theory, in Combinatorics, Paul Erdős is Eighty (D. Miklós, V.T. Sós, and
T. Szőnyi, Eds.), Bolyai Society Math. Studies, Vol.2, pp. 295-352, Budapest,
1996.

[12] L. Lovász, M. D. Plummer, Matching Theory, Joint edition of North-Holland
and Akadémiai Kiadó, 1986.
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