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Abstract

We show that in every r-coloring of the edges of Kn there is a monochro-
matic double star with at least n(r+1)+r−1

r2 vertices. This result is sharp in
asymptotic for r = 2 and for r ≥ 3 improves a bound of Mubayi for the largest
monochromatic subgraph of diameter at most three. When r-colorings are
replaced by local r-colorings, our bound is n(r+1)+r−1

r2+1
.
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1 Introduction

An easy exercise - in fact a note of Erdős and Rado - is that in every 2-coloring of
the edges of Kn there is a monochromatic connected subgraph on n vertices. In other
words, there is a monochromatic spanning tree in every 2-coloring of the edges of
a complete graph. One can also require further properties, spanning trees of radius
two and spanning trees having only at most one vertex of degree at least three can
be found monochromatically in every 2-coloring of Kn as shown in [3]. Also, Burr
proved ([2]) that there is a monochromatic spanning broom (a path with a star at
one end) in every 2-coloring of Kn (see also [11]). Largest monochromatic subgraphs
with further properties have been also investigated, such as given diameter, [6], [15],
given connectivity, [4], [14]. For three colors the order of the largest monochromatic
subtree was determined in [9],[1]. The generalization for r colors have been proved
by the first author [13]:

Theorem 1. If the edges of Kn are colored with r colors then there is a monochro-
matic subtree with at least n

r−1
vertices.

Theorem 1 is sharp if r− 1 is a prime power and (r− 1)2 divides n. An important
generalization has been obtained by Füredi [7]. The proof of Theorem 1 in [13] was
based on the following lemma.

Lemma 1. In every r-coloring of a complete bipartite graph on n vertices there is a
monochromatic subtree with at least n

r
vertices.

A double star is the tree obtained from two vertex disjoint stars by connecting
their centers. The next lemma of Mubayi [15], found also independently by Liu,
Morris and Prince [14], generalizes Lemma 1.

Lemma 2. In every r-coloring of a complete bipartite graph on n vertices there is a
monochromatic double star with at least n

r
vertices.

A corollary of Lemma 2 is that in any r-coloring of Kn either all color classes
have just one component or there is a monochromatic double star with at least n

r−1

vertices. This naturally raises the question to find f(n, r), the maximum m such that
there is a monochromatic double star with m vertices in any r-coloring of Kn. We
shall use the proof method (averaging) of Lemma 2 to get our main result, Theorem
2. Note that finding f(n, r) is different from finding the Ramsey number of a fixed
double star, determined in [8].

Theorem 2. For r ≥ 2 there is a monochromatic double star with at least n(r+1)+r−1
r2

vertices in any r-coloring of the edges of Kn.
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The bound in Theorem 2 is close to best possible for r = 2: 2-colorings of Kn

where the size of the largest monochromatic double star is asymptotic to 3n
4

can be
obtained from random graphs or from Paley graphs. In [5] (Theorem 2) the existence
of such a 2-coloring is proved by the random method. (In fact, the proof of Theorem
2 for r = 2 is also implicitly in [5].) However, for r ≥ 3 the random method seems
to fail to provide good bounds for f(n, r) and it is conceivable that f(n, r) = n

r−1
, a

good test case would be r = 3.
Observing that a double star has diameter at most three, the bound in Theorem

2 provides an improvement (for r ≥ 3) of a result of Mubayi [15], who proved that
there is a monochromatic subgraph of diameter at most three with at least n

r−1+1/r

vertices in every r-coloring of Kn. (For r = 2 one can find a monochromatic subgraph
of diameter at most three spanning all the n vertices, see in [15].)

The size of the largest monochromatic connected subgraph for local r-colorings
(where the number of colors is arbitrary but the edge set incident to any vertex is r-
colored) is determined in [12]: it is rn

r2−r+1
and this bound is sharp if a finite projective

plane of order r − 1 exists and r2 − r + 1 divides n. Our second result, Theorem 3,
is the local variant of Theorem 2.

Theorem 3. For r ≥ 2 there is a monochromatic double star with at least n(r+1)+r−1
r2+1

vertices in any local r-coloring of the edges of Kn.

As in Theorem 2, we could not close the gap between the upper bound rn
r2−r+1

and the lower bound of Theorem 3, except for r = 2 when the upper bound gives the
right answer and it can be proved easily.

Theorem 4 In every local 2-coloring of Kn there is a monochromatic double star
with at least d2n

3
e vertices. This bound is sharp for every n.

2 Proofs

Proof of Theorem 2. We show the existence of a monochromatic double star with
M = n(r+1)+r−1

r2 vertices in an r-colored Kn. Let p be a vertex of Kn and let Ai denote
the set of vertices adjacent to p in color i (i ∈ [r]). We may assume that any vertex
a ∈ Ai sends less than M − |Ai| − 1 edges of color i to ∪j 6=iAj otherwise we have a
monochromatic double star in color i with M vertices. Consider the r-partite graph
G with partite classes Ai obtained by the removal of edges of color i going out of Ai

(for all i ∈ [r]). From the previous remark and from the Cauchy-Schwartz inequality
we get

2|E(G)| >
r∑

i=1

|Ai| (n− 1− |Ai|)− 2
r∑

i=1

|Ai| (M − 1− |Ai|) =
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=
r∑

i=1

|Ai|(n + |Ai|+ 1− 2M) =
r∑

i=1

|Ai|2 + (n− 1)(n + 1− 2M) ≥

≥ (n− 1)2

r
+ (n− 1)(n + 1− 2M) (1)

Notice that for r = 2 the last line of (1) is zero. This is a contradiction (since
|E(G)| = 0 for r = 2), proving the theorem for r = 2. Thus assume r ≥ 3.

Define G(i, j) as the bipartite subgraph of G spanned by [Ai, Aj]. Let dk(v, H)
denote the degree of v in color k in the graph H. For any edge e = xy of color k,
x ∈ Ai, y ∈ Aj, we define

sijk(x, y) = dk(x,G) + dk(y, G(i, j)), tijk(x, y) = dk(x,G(i, j)) + dk(y,G).

Notice that this definition ensures that there are two double stars, Sijk(x, y), resp.
Tijk(x, y) of color k in G with sijk(x, y), resp. tijk(x, y) vertices. We estimate the sum
of sijk(x, y)+ tijk(x, y) over all edges of G. Using the Cauchy-Schwartz inequality and
(1) we get : ∑

1≤i<j≤r

∑

k 6=i,j

∑

xy∈E(G(i,j))

sijk(x, y) + tijk(x, y) =

=
r∑

i=1

∑

x∈Ai

∑

k 6=i

d2
k(x,G) +

r∑

i=1

∑

j 6=i

∑

k 6=i,k 6=j

∑

x∈Ai

d2
k(x,G(i, j)) ≥

≥
(∑r

i=1

∑
x∈Ai

∑
k 6=i dk(x,G)

)2

(r − 1)
∑r

i=1 |Ai| +

(∑r
i=1

∑
j 6=i

∑
k 6=i,k 6=j

∑
x∈Ai

dk(x,G(i, j))
)2

(r − 1)(r − 2)
∑r

i=1 |Ai| =

=
(2|E(G)|)2(r − 2) + (2|E(G)|)2

(r − 1)(r − 2)(n− 1)
=

(2|E(G)|)2

(r − 2)(n− 1)
>

2|E(G)|( (n−1)2

r
+ (n− 1)(n + 1− 2M))

(r − 2)(n− 1)
= 2|E(G)|M.

Since altogether we summed the cardinalities of the vertex sets of 2|E(G)|monochro-
matic double stars (Sijk(x, y) and Tijk(x, y)), for some k ∈ [r], x ∈ Ai, y ∈ Aj, either
|V (Sijk(x, y))| or |V (Tijk(x, y))| is at least M , proving the theorem. 2

Proof of Theorem 3. The proof follows the proof of Theorem 2 with obvious
modifications, now M = n(r+1)+r−1

r2+1
. We use the same notation. Inequality (1) remains

the same. Using I(x) for the set of colors appearing on the edges incident to vertex
x, the argument of the proof of Theorem 2 is followed. A difference worth noting is
that in a local r-coloring an edge xy, x ∈ Ai, y ∈ Aj of color k with k ∈ I(x) \ {i, j}

4



implies that k can have r − 1 distinct values (in contrast to the ordinary r-coloring,
where k can have only r − 2 values). Now the ”local” variant of the argument is as
follows.

∑

1≤i<j≤r

∑

k 6=i,j

∑

xy∈E(G(i,j))

sijk(x, y) + tijk(x, y) =

=
r∑

i=1

∑

x∈Ai

∑

k∈I(x)\{i}
d2

k(x,G) +
r∑

i=1

∑

j 6=i

∑

k∈I(x)\{i,j}

∑

x∈Ai

d2
k(x, G(i, j)) ≥

≥
(∑r

i=1

∑
x∈Ai

∑
k∈{I(x)\i} dk(x,G)

)2

(r − 1)
∑r

i=1 |Ai| +

(∑r
i=1

∑
j 6=i

∑
k∈{I(x)\{i,j}}

∑
x∈Ai

dk(x,G(i, j))
)2

(r − 1)2
∑r

i=1 |Ai| =

=
(r − 1)(2|E(G)|)2 + (2|E(G)|)2

(r − 1)2(n− 1)
=

r(2|E(G)|)2

(r − 1)2(n− 1)
>

>
2|E(G)|r

(
(n−1)2

r
+ (n− 1)(n + 1− 2M)

)

(r − 1)2(n− 1)
= 2|E(G)|M.

As before, we summed the cardinalities of the vertex sets of 2|E(G)| monochro-
matic double stars, (Sijk(x, y) and Tijk(x, y)), thus for some k ∈ [r], x ∈ Ai, y ∈ Aj,
either |V (Sijk(x, y))| or |V (Tijk(x, y))| is at least M . 2

Proof of Theorem 4. It is easy to see ([10]) that a local 2-coloring of Kn is one
of three types: case A. a 2-coloring; case B. the vertices of Kn are partitioned into
m ≥ 3 parts A12, . . . , A1m all edges within A1i are colored with color 1 or color i, edges
between A1i, A1j are colored with color 1; case C. the vertices of Kn are partitioned
into three parts A12, A13, A23, edges within Aij are colored with i or j and cross edges
are colored with the color of the intersection of their index pairs. In case A. there
is monochromatic double star with at least 3n

4
≥ d2n

3
e vertices. In case B. there is a

monochromatic double star in color 1 spanning all vertices. In case C. the two largest
sets, say A12, A13 span a double star of the required size in color 1. This proves the
lower bound, and any local 2-coloring according to case C. with evenly distributed
sets shows that equality is possible. 2
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[11] A. Gyárfás, G. Simonyi, Edge colorings of complete graphs without tricolored
triangles, Journal of Graph Theory 46 (2004) 211-216.
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