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In February 2007 Fabricio Benevides [1] reported an easily correctable error in
the proof of our main result. We wrote ([2], p. 2, lines 18 − 22) that one type
of extremal colorings comes form an equal part blow up of a faktorization of K4.
In fact, this blow up must not be necessarily equal part. A similar coloring with
|A|, |B|, |C| ≥ (1− α1)

|V (G)|
4

, |D| ≥ α2|V (G)|, |A|+ |D| ≥ (1− α1)
|V (G)|

2
and coloring

all edges in A with color 2 gives an extremal coloring, too. The remedy is to relax
the condition in Extremal Coloring 1 (EC1) as follows, to allow one unbalanced pair
(A,D).

Extremal Coloring 1 (with parameters α1, α2, where α1 ≪ α2): There exists a
partition V (G) = A ∪B ∪ C ∪D such that

• |A|, |B|, |C| ≥ (1− α1)
|V (G)|

4
, |D| ≥ α2|V (G)|, |A|+ |D| ≥ (1− α1)

|V (G)|
2

,

• The bipartite graphs (A×B)∩G∗
1, (C ×D)∩G∗

1, (A×D)∩G∗
2, (B×C)∩G∗

2,
(A× C) ∩G∗

3 and (B ×D) ∩G∗
3 are all (1− α1)-dense.
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The proof of the fact that we can find the desired monochromatic path of length
n in case we have this relaxed Extremal Coloring 1 is similar to the proof for the
original EC1. For the sake of completeness we restate and prove Lemma 5 from our
paper here .

Lemma 1. For every 0 < α1 ≪ α2 ≪ 1 there exists a positive integer n0 = n0(α1, α2)
such that the following is true for n ≥ n0. If a 3-edge coloring (G1, G2, G3) of Kr(n) is
an Extremal Coloring 1 (EC1) with parameters α1, α2 then there is a monochromatic
path of length n.

Proof: First we will remove certain exceptional vertices (denote their set by E)
from the four sets A,B,C,D in EC1. A vertex v ∈ A is exceptional if one of the
following is true:

degG1(v,B) < (1−
√
α1)|B|, degG2(v,D) < (1−

√
α1)|D|,

or degG3(v, C) < (1−
√
α1)|C|.

From the density conditions in EC1 it follows that the number of these exceptional
vertices is at most 3

√
α1|A|. We remove these vertices from A and add them to E.

Similarly, for the other three sets we define exceptional vertices and add them to E.
Thus altogether (since we have at most 2n vertices)

|E| ≤ 24
√
α1n. (1)

Next we redistribute these vertices among the 4 sets in such a way that we are
not creating new exceptional vertices. Let us take the first exceptional vertex v from
E, the procedure will be similar for the other vertices. Consider the G1-neighbors of
v. We may assume that these neighbors are either all in A ∪ B, or in C ∪ D (say
they are in A ∪B). Indeed, otherwise we can connect A ∪B with C ∪D in color G1

through v and this would give a monochromatic path in G1 of length more than n
(applying Lemma 4 from [2] inside the bipartite graphs A×B and C ×D and using
α1 ≪ α2). Hence, all the edges between C ∪D and v are in colors G2 and G3. By a
similar reasoning, we may assume that v does not have G2 neighbors in both A ∪D
and B ∪C, and it does not have G3 neighbors in both A∪C and B ∪D. Thus either
all the edges in C × {v} are in G2, and all the edges in D × {v} are in G3, or the
other way around. Say we have the first case. Then all the edges in A × {v} are in
G1 and we may safely add v to B.

We repeat this procedure for all the exceptional vertices in E. Let us consider the
largest set (say A) of the four sets A,B,C and D.

Claim 1. If |B| ≥ ⌊n
2
⌋, then there is a monochromatic path of length n in color

G1 in the bipartite graph G1|A×B.
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Proof of Claim 1: If n is even, then take arbitrary subsets A′ ⊆ A, B′ ⊆ B
with |A′| = |B′| = n

2
. Applying Lemma 4 for G1|A′×B′ (the conditions of the lemma

are satisfied with much room to spare) we get a monochromatic path of length n in
color G1.

If n is odd, then we must have |A| ≥ n+1
2
, since we have 2n − 1 vertices. Then

take arbitrary subsets A′ ⊆ A, B′ ⊆ B with |A′| = n+1
2
, |B′| = n−1

2
. Again applying

Lemma 4 we can find a Hamiltonian path in G1|A′×B′ beginning and ending in A′.
This gives the desired monochromatic path of length n in color G1 and proves Claim
1.

Thus we may assume that

|B|, |C|, |D| < ⌊n
2
⌋. (2)

At this point we consider the colors of the edges inside A. If for the density of the
G1-edges inside A we have d(G1|A) ≥ 3

√
α1, then using α1 ≪ 1 we can clearly find a

path P1 in G1|A that has length

p = min(|A| − |B|, 2(⌈n/2⌉ − |B|)).

Remove this path from A except for one of the endpoints u. In case we have p <
|A|−|B| we remove some more vertices from A until we have exactly |B| vertices left.
Denote the resulting set in A by A′. Then in both cases |A′| = |B|. Again applying
Lemma 4 we can find a Hamiltonian path P2 in G1|A′×B starting with u. P1 together
with P2 gives us the desired path P in G1|A∪B. Indeed, in case p = 2(⌈n/2⌉ − |B|),
P trivially has length at least n. In case p = |A| − |B|, P is a Hamiltonian path in
G1|A∪B. By (2), in case n is even we get

|C|+ |D| = 2n− 2− |P | ≤ 2
(
n

2
− 1

)
= n− 2,

and in case n is odd we get

|C|+ |D| = 2n− 1− |P | ≤ 2
n− 1

2
= n− 1.

Thus in both cases
|P | ≥ n,

and thus P is a monochromatic path of length at least n.
Thus we may assume d(G1|A) < 3

√
α1. Similarly we may assume d(G3|A) < 3

√
α1,

otherwise we can find a path of length at least n in G3|A∪C . This implies that
d(G2|A) > (1 − 2 3

√
α1). From this and α1 ≪ α2 it easily follows that the monochro-

matic subgraph G2|A∪D satisfies the Pósa-condition (for nondecreasing degree se-

quence dk ≥ k + 1 for all k < |A∪B|
2

see [3]) and thus has a Hamiltonian path.
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Similarly as above, from (2) it follows that this path has length at least n, completing
the proof of the lemma. 2

The reason to relax EC1 is that in Subcase 1.2 the statement about the size of
the matching Ni ( at least mi −

√
ϵn) is valid only if the condition mi ≤ |X4| − 2|Mi|

holds. If this condition is not true for some i, say for i = 1 then we easily get
|X4| + m1 < (1

2
+ 4η)n which implies m2 + m3 > n

2
− 4ηn. Since we know that

m2,m3 ≤ n
4
+ 2ηn, this implies that we have the relaxed EC1. The authors thank F.

Benevides the careful reading of their manuscript.
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