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In February 2007 Fabricio Benevides [1] reported an easily correctable error in
the proof of our main result. We wrote ([2], p. 2, lines 18 — 22) that one type
of extremal colorings comes form an equal part blow up of a faktorization of Kj.
In fact, this blow up must not be necessarily equal part. A similar coloring with
AL IBLIC] = (1 - an) QL D] > ao|V(G)], |l + D] = (1 — )Y@ and coloring
all edges in A with color 2 gives an extremal coloring, too. The remedy is to relax
the condition in Extremal Coloring 1 (EC1) as follows, to allow one unbalanced pair
(A, D).

Eztremal Coloring 1 (with parameters oy, g, where ay < ag): There exists a
partition V(G) = AU BUC U D such that

o |A],|B,|C| > (1 — )X |D| > ay|V(G)],|A] + |D| > (1 — ay) X

2 Y

e The bipartite graphs (A x B)NG5, (Cx D)NGT, (Ax D)NGS, (B x C)NGS,
(Ax C)NG5 and (B x D) NG5 are all (1 — ay)-dense.
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The proof of the fact that we can find the desired monochromatic path of length
n in case we have this relaxed Extremal Coloring 1 is similar to the proof for the
original EC1. For the sake of completeness we restate and prove Lemma 5 from our
paper here .

Lemma 1. For every 0 < ay < ay < 1 there exists a positive integer ng = no(ay, )
such that the following is true for n > ng. If a 3-edge coloring (G, G2, Gs) of Ky is
an Extremal Coloring 1 (EC1) with parameters oy, as then there is a monochromatic
path of length n.

Proof: First we will remove certain exceptional vertices (denote their set by E)
from the four sets A, B,C, D in EC1. A vertex v € A is exceptional if one of the
following is true:

dege, (v, B) < (1 = y/a)| B, dega, (v, D) < (1 = Va1)| D],

or dege, (v,C) < (1 — y/ar)|C]|

From the density conditions in EC1 it follows that the number of these exceptional
vertices is at most 3,/ai|A|. We remove these vertices from A and add them to F.
Similarly, for the other three sets we define exceptional vertices and add them to F.
Thus altogether (since we have at most 2n vertices)

|E| < 24\/aqn. (1)

Next we redistribute these vertices among the 4 sets in such a way that we are
not creating new exceptional vertices. Let us take the first exceptional vertex v from
E, the procedure will be similar for the other vertices. Consider the G1-neighbors of
v. We may assume that these neighbors are either all in AU B, or in C' U D (say
they are in AU B). Indeed, otherwise we can connect AU B with C'U D in color G4
through v and this would give a monochromatic path in GGy of length more than n
(applying Lemma 4 from [2] inside the bipartite graphs A x B and C' x D and using
a; < ). Hence, all the edges between C'U D and v are in colors Gy and G3. By a
similar reasoning, we may assume that v does not have G5 neighbors in both AU D
and BUC, and it does not have G3 neighbors in both AUC and BU D. Thus either
all the edges in C' x {v} are in G, and all the edges in D x {v} are in G, or the
other way around. Say we have the first case. Then all the edges in A x {v} are in
(1 and we may safely add v to B.

We repeat this procedure for all the exceptional vertices in F. Let us consider the
largest set (say A) of the four sets A, B,C and D.

Claim 1. If |B| > [ 5], then there is a monochromatic path of length n in color
(1 in the bipartite graph G|axp.



Proof of Claim 1: If n is even, then take arbitrary subsets A’ C A, B’ C B

with |A'| = |B'| = §. Applying Lemma 4 for G |axp (the conditions of the lemma
are satisfied with much room to spare) we get a monochromatic path of length n in
color (7.

If n is odd, then we must have [A] > " since we have 2n — 1 vertices. Then
take arbitrary subsets A’ C A, B’ C B with |A'| = %*, |B'| = 2;1. Again applying
Lemma 4 we can find a Hamiltonian path in G|axp beginning and ending in A’.
This gives the desired monochromatic path of length n in color (G; and proves Claim
1.

Thus we may assume that
n
|BI,1C1, D] < [5]- (2)

At this point we consider the colors of the edges inside A. If for the density of the
G1-edges inside A we have d(G1|4) > ¥/aq, then using a; < 1 we can clearly find a
path P; in Gy|4 that has length

p =min([A| — |B[,2([n/2] — | B])).

Remove this path from A except for one of the endpoints u. In case we have p <
|A| — | B| we remove some more vertices from A until we have exactly |B| vertices left.
Denote the resulting set in A by A’. Then in both cases |A’| = |B|. Again applying
Lemma 4 we can find a Hamiltonian path P, in G| «p starting with u. P; together
with P, gives us the desired path P in Gi|sup. Indeed, in case p = 2([n/2] — |B|),
P trivially has length at least n. In case p = |A| — |B|, P is a Hamiltonian path in
G1laus- By (2), in case n is even we get

\O|+|D|:2n—2—|P|§2<Z—1>:n—2,

and in case n is odd we get

n—1

|IC|+|D|=2n—1—|P| <2 =n—1
Thus in both cases
|P| > n,

and thus P is a monochromatic path of length at least n.

Thus we may assume d(G1]a) < /a;i. Similarly we may assume d(Gs|a) < ¢/on,
otherwise we can find a path of length at least n in G3|auc. This implies that
d(Gala) > (1 — 2¥aq). From this and oy < oy it easily follows that the monochro-
matic subgraph Ga|aup satisfies the Pdsa-condition (for nondecreasing degree se-

quence dp > k + 1 for all k£ < % see [3]) and thus has a Hamiltonian path.



Similarly as above, from (2) it follows that this path has length at least n, completing
the proof of the lemma. O

The reason to relax EC1 is that in Subcase 1.2 the statement about the size of
the matching N; ( at least m; —/en) is valid only if the condition m; < |X4| — 2|M;]|
holds. If this condition is not true for some i, say for ¢ = 1 then we easily get
| X4 +m1 < (3 + 4n)n which implies ms + m3 > % — 4nn. Since we know that
mg, m3 < 7§ + 2nn, this implies that we have the relaxed EC1. The authors thank F.

Benevides the careful reading of their manuscript.
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