Corrigendum to "Three-color Ramsey numbers for paths" [Combinatorica 27 (1) (2007), pp. 35-69.]

András Gyárfás, Miklós Ruszinkó

Computer and Automation Research Institute Hungarian Academy of Sciences Budapest, P.O. Box 63 Budapest, Hungary, H-1518

Gábor N. Sárközy

Computer Science Department Worcester Polytechnic Institute Worcester, MA, USA 01609 gsarkozy@cs.wpi.edu and Computer and Automation Research Institute

Hungarian Academy of Sciences Budapest, P.O. Box 63 Budapest, Hungary, H-1518 Endre Szemerédi

Computer Science Department Rutgers University New Brusnwick, NJ, USA 08903 szemered@cs.rutgers.edu

July 9, 2012

In February 2007 Fabricio Benevides [1] reported an easily correctable error in the proof of our main result. We wrote ([2], p. 2, lines 18 - 22) that one type of extremal colorings comes form an equal part blow up of a faktorization of K_4 . In fact, this blow up must not be necessarily equal part. A similar coloring with $|A|, |B|, |C| \ge (1 - \alpha_1) \frac{|V(G)|}{4}, |D| \ge \alpha_2 |V(G)|, |A| + |D| \ge (1 - \alpha_1) \frac{|V(G)|}{2}$ and coloring all edges in A with color 2 gives an extremal coloring, too. The remedy is to relax the condition in Extremal Coloring 1 (EC1) as follows, to allow one unbalanced pair (A, D).

Extremal Coloring 1 (with parameters α_1, α_2 , where $\alpha_1 \ll \alpha_2$): There exists a partition $V(G) = A \cup B \cup C \cup D$ such that

- $|A|, |B|, |C| \ge (1 \alpha_1) \frac{|V(G)|}{4}, |D| \ge \alpha_2 |V(G)|, |A| + |D| \ge (1 \alpha_1) \frac{|V(G)|}{2},$
- The bipartite graphs $(A \times B) \cap G_1^*$, $(C \times D) \cap G_1^*$, $(A \times D) \cap G_2^*$, $(B \times C) \cap G_2^*$, $(A \times C) \cap G_3^*$ and $(B \times D) \cap G_3^*$ are all $(1 \alpha_1)$ -dense.

The proof of the fact that we can find the desired monochromatic path of length n in case we have this relaxed Extremal Coloring 1 is similar to the proof for the original EC1. For the sake of completeness we restate and prove Lemma 5 from our paper here .

Lemma 1. For every $0 < \alpha_1 \ll \alpha_2 \ll 1$ there exists a positive integer $n_0 = n_0(\alpha_1, \alpha_2)$ such that the following is true for $n \ge n_0$. If a 3-edge coloring (G_1, G_2, G_3) of $K_{r(n)}$ is an Extremal Coloring 1 (EC1) with parameters α_1 , α_2 then there is a monochromatic path of length n.

Proof: First we will remove certain exceptional vertices (denote their set by E) from the four sets A, B, C, D in EC1. A vertex $v \in A$ is **exceptional** if one of the following is true:

$$deg_{G_1}(v, B) < (1 - \sqrt{\alpha_1})|B|, deg_{G_2}(v, D) < (1 - \sqrt{\alpha_1})|D|,$$

or $deg_{G_3}(v, C) < (1 - \sqrt{\alpha_1})|C|.$

From the density conditions in EC1 it follows that the number of these exceptional vertices is at most $3\sqrt{\alpha_1}|A|$. We remove these vertices from A and add them to E. Similarly, for the other three sets we define exceptional vertices and add them to E. Thus altogether (since we have at most 2n vertices)

$$|E| \le 24\sqrt{\alpha_1}n.\tag{1}$$

Next we redistribute these vertices among the 4 sets in such a way that we are not creating new exceptional vertices. Let us take the first exceptional vertex v from E, the procedure will be similar for the other vertices. Consider the G_1 -neighbors of v. We may assume that these neighbors are either all in $A \cup B$, or in $C \cup D$ (say they are in $A \cup B$). Indeed, otherwise we can connect $A \cup B$ with $C \cup D$ in color G_1 through v and this would give a monochromatic path in G_1 of length more than n(applying Lemma 4 from [2] inside the bipartite graphs $A \times B$ and $C \times D$ and using $\alpha_1 \ll \alpha_2$). Hence, all the edges between $C \cup D$ and v are in colors G_2 and G_3 . By a similar reasoning, we may assume that v does not have G_2 neighbors in both $A \cup D$ and $B \cup C$, and it does not have G_3 neighbors in both $A \cup C$ and $B \cup D$. Thus either all the edges in $C \times \{v\}$ are in G_2 , and all the edges in $D \times \{v\}$ are in G_3 , or the other way around. Say we have the first case. Then all the edges in $A \times \{v\}$ are in G_1 and we may safely add v to B.

We repeat this procedure for all the exceptional vertices in E. Let us consider the largest set (say A) of the four sets A, B, C and D.

Claim 1. If $|B| \ge \lfloor \frac{n}{2} \rfloor$, then there is a monochromatic path of length n in color G_1 in the bipartite graph $G_1|_{A \times B}$.

Proof of Claim 1: If *n* is even, then take arbitrary subsets $A' \subseteq A$, $B' \subseteq B$ with $|A'| = |B'| = \frac{n}{2}$. Applying Lemma 4 for $G_1|_{A' \times B'}$ (the conditions of the lemma are satisfied with much room to spare) we get a monochromatic path of length *n* in color G_1 .

If *n* is odd, then we must have $|A| \ge \frac{n+1}{2}$, since we have 2n - 1 vertices. Then take arbitrary subsets $A' \subseteq A$, $B' \subseteq B$ with $|A'| = \frac{n+1}{2}$, $|B'| = \frac{n-1}{2}$. Again applying Lemma 4 we can find a Hamiltonian path in $G_1|_{A'\times B'}$ beginning and ending in A'. This gives the desired monochromatic path of length *n* in color G_1 and proves Claim 1.

Thus we may assume that

$$|B|, |C|, |D| < \lfloor \frac{n}{2} \rfloor.$$
⁽²⁾

At this point we consider the colors of the edges inside A. If for the density of the G_1 -edges inside A we have $d(G_1|_A) \geq \sqrt[3]{\alpha_1}$, then using $\alpha_1 \ll 1$ we can clearly find a path P_1 in $G_1|_A$ that has length

$$p = \min(|A| - |B|, 2(\lceil n/2 \rceil - |B|)).$$

Remove this path from A except for one of the endpoints u. In case we have p < |A| - |B| we remove some more vertices from A until we have exactly |B| vertices left. Denote the resulting set in A by A'. Then in both cases |A'| = |B|. Again applying Lemma 4 we can find a Hamiltonian path P_2 in $G_1|_{A'\times B}$ starting with u. P_1 together with P_2 gives us the desired path P in $G_1|_{A\cup B}$. Indeed, in case $p = 2(\lceil n/2 \rceil - |B|)$, P trivially has length at least n. In case p = |A| - |B|, P is a Hamiltonian path in $G_1|_{A\cup B}$. By (2), in case n is even we get

$$|C| + |D| = 2n - 2 - |P| \le 2\left(\frac{n}{2} - 1\right) = n - 2,$$

and in case n is odd we get

$$|C| + |D| = 2n - 1 - |P| \le 2\frac{n-1}{2} = n - 1.$$

Thus in both cases

$$|P| \ge n,$$

and thus P is a monochromatic path of length at least n.

Thus we may assume $d(G_1|_A) < \sqrt[3]{\alpha_1}$. Similarly we may assume $d(G_3|_A) < \sqrt[3]{\alpha_1}$, otherwise we can find a path of length at least n in $G_3|_{A\cup C}$. This implies that $d(G_2|_A) > (1 - 2\sqrt[3]{\alpha_1})$. From this and $\alpha_1 \ll \alpha_2$ it easily follows that the monochromatic subgraph $G_2|_{A\cup D}$ satisfies the Pósa-condition (for nondecreasing degree sequence $d_k \ge k + 1$ for all $k < \frac{|A\cup B|}{2}$ see [3]) and thus has a Hamiltonian path.

Similarly as above, from (2) it follows that this path has length at least n, completing the proof of the lemma. \Box

The reason to relax EC1 is that in Subcase 1.2 the statement about the size of the matching N_i (at least $m_i - \sqrt{\epsilon n}$) is valid only if the condition $m_i \leq |X_4| - 2|M_i|$ holds. If this condition is not true for some i, say for i = 1 then we easily get $|X_4| + m_1 < (\frac{1}{2} + 4\eta)n$ which implies $m_2 + m_3 > \frac{n}{2} - 4\eta n$. Since we know that $m_2, m_3 \leq \frac{n}{4} + 2\eta n$, this implies that we have the relaxed EC1. The authors thank F. Benevides the careful reading of their manuscript.

References

- [1] F. Benevides, private communication.
- [2] A. Gyárfás, M. Ruszinkó, G. N. Sárközy and E. Szemerédi, Three-color Ramsey number for paths, Combinatorica 27 (1) (2007), pp. 35-69.
- [3] L. Pósa, A theorem concerning Hamilton lines, Publ. Math. Inst. Hung. Acad. Sci. 7 (1962) 225-226.