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Abstract

We propose the following conjecture to generalize results of Pósa and Corrádi
- Hajnal. Let r, s be nonnegative integers and let G be a graph with |V (G)| ≥
3r + 4s and minimal degree δ(G) ≥ 2r + 3s. Then G contains a collection of
r + s vertex disjoint cycles, s of them with a chord. We prove the conjecture
for r = 0, s = 2 and for s = 1. The corresponding extremal problem, to find
the minimum number of edges in a graph on n vertices ensuring the existence
of two vertex disjoint chorded cycles is also settled.

1 Introduction

Pósa proved (see in [6], problem 10.2) that any graph with minimum degree at least
3 contains a chorded cycle, i.e. a cycle with at least one chord and the same is true
for any graph with n ≥ 4 vertices and at least 2n− 3 edges. Corrádi and Hajnal [3]
proved that minimum degree at least 2r ensures that any graph with n ≥ 3r vertices
contains r vertex disjoint cycles. For some related results see [1],[2],[5],[4].

We propose the following natural common generalization of the previous results.
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1



Conjecture 1. Let r, s be nonnegative integers and let G be a graph with |V (G)| ≥
3r+4s and minimal degree δ(G) ≥ 2r+3s. Then G contains a collection of r cycles
and s chorded cycles, all vertex disjoint.

Notice that K2r+3s−1,n−2r−3s+1 shows shows that the the minimum degree can not
be lowered if n − 2r − 3s + 1 ≥ 2r + 3s − 1, i.e. if n ≥ 4r + 6s − 2. In this paper
we prove the conjecture for r = 0, s = 2 and for s = 1 and every non-negative r.
Then we use these results to find the maximum number of edges in graphs that do
not contain r + s vertex disjoint cycles s of them chorded.

Theorem 1. Let G be a graph with |V (G)| ≥ 8 and minimum degree δ(G) ≥ 6. Then
G contains two vertex disjoint chorded cycles.

Proof. Let P be a maximal path in G. If |V (P )| < 8 then it is immediate that
|V (P )| = 7 and that |V (G)| > |V (P )| = 7. So G − P is nonempty. If d(v;P ) ≥ 4
for some v ∈ V (G−P ), then v either has two adjacent vertices of P as neighbors, or
has an endpoint of P as a neighbor. Since both of these contradicts the maximality
of P , we may assume d(v;P ) ≤ 3 for all v ∈ V (G − P ). Hence, both P and G − P
contain a chorded cycle.

Now assume that |V (P )| ≥ 8, and P = v1v2 . . . vk. We treat separately the cases
where v1vk is or is not an edge of G.

Case 1. v1vk is not an edge of G.
By hypothesis, d(v1; v3 . . . vk−1), d(vk; v2 . . . vk−2) ≥ 5. Let vi ∈ V (P ) be the vertex

such that d(v1; v3 . . . vi−1) = 2 and d(v1; v3 . . . vi) = 3. Similarly, let vj be such that
d(vk; vk−2 . . . vj+1) = 2 and d(vk; vk−2 . . . vj) = 3. Observe that each of the vertex sets
{v1, . . . , vi−1}, {v1, vi, . . . , vk−1}, {vk, vk−1, . . . , vj+1}, and {vk, v2, v3, . . . , vj} induces
a subgraph of G that contains a chorded cycle. If i ≤ j, this allows us to take the
disjoint subsets {v1, . . . , vi−1} and {vk, vk−1, . . . , vj+1} of V (P ), which immediately
gives two disjoint chorded cycles contained in the graph induced by V (P ). If j < i,
then {v1, vi, . . . , vk−1} and {vk, v2, v3, . . . , vj} are disjoint subset of V (P ), giving the
same result.

Case 2. v1vk is an edge of G.
In this case, V (P ) induces a cycle of length k, so no vertex of P may have a

neighbor outside V (P ), else the maximality of P is violated. So for all v ∈ V (P ) we
have d(v;P ) ≥ 6. We can assume that vlvl+2 is not an edge of G for some l, else
we immediately have two vertex disjoint chorded cycles contained in G. Relabel the
vertices of P so that vl = vk, vl+1 = v1, and vl+2 = v2. Let vi ∈ V (P ) be such that
d(v2; v4 . . . vi−1) = 1 and d(v2; v4 . . . vi) = 2. Note that d(v2; vi . . . vk−1) ≥ 3. Similarly,
let vj be such that d(vk; v3 . . . vj−1) = 2 and d(vk; v3 . . . vj) = 3. It is easy to see that if
j < i or i < j then we have two vertex disjoint chorded cycles contained in the graph
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induced by V (P ). Assume that i = j. Let vt ∈ V (P ) be such that d(v1; v3 . . . vt−1) = 1
and d(v1; v3 . . . vt) = 2. If t ≥ i the sets {v2, . . . , vi−1} and {v1, vk, . . . , vi} each induce
a subgraph containing a chorded cycle. If t < j then {vk, . . . , vj} and {v1, . . . , vj−1}
each induce a subgraph containing a chorded cycle. Hence, there are two vertex
disjoint chorded cycles in the subgraph induced by V (P ). 2

Theorem 2. Let G be a graph with |V (G)| ≥ 3r + 4 and minimum degree δ(G) ≥
2r + 3. Then G contains r + 1 vertex disjoint cycles, one with a chord.

Proof. Choose a vertex v ∈ V (G), and let G′ be the graph induced by V (G) − v.
Then δ(G′) ≥ 2r + 2 and |V (G′)| ≥ 3r + 3, so by the Corrádi - Hajnal result it
contains r+1 independent cycles, spanning a subgraph H in G. Let P be a maximal
path in G−H. If P has one vertex only then it sends 2r+3 > 2(r+1) vertices to H
thus at least three edges to some cycle of H and the proof is finished. If d(w;P ) ≥ 3
for an endpoint w of P then there is chorded cycle inside P and again the proof is
finished. Otherwise each endpoint of P sends at least 2r + 1 edges to H and we
conclude as before that some cycle C in H receives at least three edges which easily
gives a chorded cycle in C ∪ P . 2

Now we proceed to Turán type problems for two vertex disjoint cycles when one
or both are chorded. Let f(n) (g(n)) be the smallest number of edges in a graph
of n vertices that ensures two vertex disjoint cycles one of them (both of them)
chorded. The inductive step of the following result is easy, the difficulty is to prove
the anchoring cases which will be done in Theorem 4.

Theorem 3. For n ≥ 10, f(n) = 4n− 15 and for n ≥ 12, g(n) = 5n− 24.

Proof. Suppose the theorem were true for n < N , and take G with |V (G)| = N and
|E(G)| = 4N − 15. If G contains a vertex v with d(v) ≤ 4 then the graph G′ = G− v
contains two vertex disjoint cycles, one is chorded by the inductive hypothesis. If, on
the other hand, δ(G) ≥ 5 then G contains two vertex disjoint cycles, one is chorded
by Theorem 2.

Similarly, if G is a graph with |V (G)| = N and |E(G)| = 5N − 24 and it contains
a vertex v with d(v) ≤ 5 then the graph G′ = G − v contains two vertex disjoint
chorded cycles by the inductive hypothesis. If, on the other hand, δ(G) ≥ 6 then G
contains two vertex disjoint chorded cycles by Theorem 1.

To see that f(n) > 4n − 16, g(n) > 5n − 25 consider K4,n−4 and K5,n−5 respec-
tively. 2

Theorem 4. f(7) = 17, f(8) = 19, f(9) = 22, f(10) = 25; g(8) = 23, g(9) =
25, g(10) = 28, g(11) = 32, g(12) = 36.
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Proof. The values of f, g in the theorem can not be decreased. For f and 8 ≤ n ≤ 10
consider K3,n−3 with a triangle inside the 3-element partite class. Then f(7) > 16
and g(8) > 22 are demonstrated by K6 and K7 with a pendant edge. To see that
g(9) > 24, consider K4,5 with a K1,4 inside the 5-element partite class. Finally,
g(n) > 4n− 13 is shown by K4,n−4 with a K1,3 inside the 4-element partite class.

To see that the stated values are giving an upper bound, we proceed by induction.
The starting cases, f(7) = 17 and g(8) = 23, are easy since only very few edges ( 4
or 5 ) are missing from the complete graphs K7, K8.

Assume G is a graph with the given number of edges that does not contain two
vertex disjoint cycles, one of them chorded (in case of f) or both chorded (in case of
g) - we simply refer to them as forbidden configurations. If δ(G) is small, induction
applies. Otherwise, when f is considered we have

• δ(G) ≥ 3 if n = 8,

• δ(G) ≥ 4 if n = 9, 10.

When g is considered, we have

• δ(G) ≥ 3 if n = 9,

• δ(G) ≥ 4 if n = 10,

• δ(G) ≥ 5 if n = 11, 12.

Using these conditions, one can easily see that in each case we may assume that
our graph G is connected. Select a path P = {v1, . . . , vk} of maximum length in G.
Let A = {2 = a1 < . . . < ap} denote the set of indices i for which v1 is adjacent to vi.
Similarly, let B = {b1 < . . . < bq = k − 1} denote the set of indices j for which vk is
adjacent to vj. The maximality of P and the connectivity assumption on G implies
in each case that

• If v /∈ P, a ∈ A, b ∈ B then vva−1, vvb+1 /∈ E(G),

• If v /∈ P then v1vk /∈ E(G).

Moreover, from the assumption that G has no forbidden configuration, we get

• bq−1 ≤ a3, bq−2 ≤ a2 in case of f ,

• bq−2 ≤ a3 in case of g.
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It is not difficult to check that the conditions listed above imply that in each case
k = n and G has a Hamiltonian cycle C = {0, . . . , n − 1}. That brings in enough
symmetry to handle the cases. However, the arguments are still not easy, we show
them for f(n), n = 8, 9, 10 and for g(12). In fact, it would be of some interest to find
proofs with less case analysis.
Case 1. f(8) = 19 . Define X0 a the set of pairs 17, 27, 35, 36 and for i = 1, 2, 3 let
Xi be X0 + i in mod8 arithmetic. The condition on G implies that G has at most
two edges from each Xi, i = 0, 1, 2, 3. Therefore G has at least three edges not on
C and not on any Xi - i.e. has at least three of the four long diagonals of C. This
implies that we may assume that G contains two edges from both X0 and X2 and
two long diagonals 04, 26 (otherwise we have two edges from both X1, X3 and the two
long diagonals 15, 37). If the two edges of X0, X2 are 27, 36 and 41, 50 respectively
in G then we have two vertex disjoint chorded C4-s. Thus we may assume that from
X0 we have either 17, 27 or 35, 36 in G, by symmetry 17, 27. This gives two choices:
either 13, 14 or 50, 57 are in G. In both cases we have two disjoint cycles, the first
chorded: (1, 3, 4, 0), (2, 6, 7) (chord 14) or (1, 2, 6, 7), (0, 4, 5) (chord 27).
Case 2. f(9) = 22. Define X0 as the path with edges 81, 17, 72, 26, 63, 35, and for
i = 1, 2, 3 letXi beX0+i in mod 9 arithmetic. The condition on G implies that G has
at most three edges on any Xi therefore at least one of the edges of Y = {07, 16, 25}.
By symmetry this is true for all Y + i. Moreover no Y + i contains three edges of G
thus some (in fact five) of them contains precisely one edge. Thus w.l.o.g. Y contains
precisely one edge of G and all the Xi-s contain three. This is possible only if G
intersects Xi in a path P4. Assume 07 ∈ E(G). To avoid the forbidden configuration
in X0 ∪ C ∪ 07, 81, 17, 72 ∈ E(G) follows. Similarly we get 05, 06, 68 ∈ E(G) but
now (0, 5, 6, 8) with chord 06 and the triangle 7, 1, 2 gives contradiction. Assume
16 ∈ E(G). Now it is easy to check that all (16) choices of P4-s from X0 and X2

generate two disjoint cycles, one chorded. Finally, if 25 ∈ E(G) then 81, 17, 72 ∈ E(G)
or 17, 72, 26 ∈ E(G) generate the forbidden configuration and this happens also for
all (4) combinations of 72, 26, 63 and 26, 63, 35 with a P4 of X2.
Case 3. f(10) = 25. Define X0 as the set of edges 91, 18, 27, 36, 64. Then G − C is
partitioned into Xi = X0 + i for i = 0, 1, 2, 3, 4 and to the set Y of diagonals i, i + 4
(in mod10 arithmetic). It is clear that G can contain at most two edges from each
Xi thus must contain at least five edges from Y . We first look at the case when G
contains two parallel edges of Y , say 04, 59.

Clearly none of the five-cycles C1 = 0, 1, 2, 3, 4, C2 = 5, 5, 7, 8, 9 can contain diago-
nals so G has 13 edges from the bipartite graph B defined by removing 09, 45 from the
complete bipartite graph between the vertex sets of C1, C2. Partition B into five sub-
graphs Bi as follows. B1 = {07, 71, 62, 25, 39, 94, 48}, B2 = {47, 73, 82, 29, 15, 50, 06},
B3 = {91, 18, 27, 36, 64}, B4 = {08, 16, 35}, B5 = {38}. The ”geometry” of this par-
tition shows that G can contain at most 4, 4, 2, 2, 1 edges from these sets, implying
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that equality must hold since the sum of these numbers is 13. In particular, G must
contain the edge 38 and by symmetry the edge 16 as well. But then, since none of the
cycles 0, 4, 5, 9 and 1, 2, 3, 8, 7, 6 can be chorded, G must contain nine edges from the
union of the following two K2,3-s: [{0, 4}, {6, 7, 8}] and [{5, 9}, {1, 2, 3}]. It follows
easily that it is impossible without generating the forbidden configuration.

We conclude that G does not contain two parallel edges from Y . Since Y is the
union of five pairs of parallel edges, it follows that G has precisely five edges from Y ,
one from each parallel pair. It also follows that G has precisely two edges from each
Xi. One of the two crossing pentagons of Y must contain at least three edges of G.
Two of these must form a path, w.l.o.g 04, 48. However, it is easy to check that C,
04, 48 and any two edges of X2 gives a forbidden configuration. 2

Case 4. g(12) = 36.
During the proof we count edges of G that are not on C. Define X0 as the path

1, 11, 2, 10, 3, 9, 4, 8, 5, 7. Then G−C is partitioned into Xi = X0 + i for i = 0, . . . , 5.
It is obvious that from each path Xi G has at most four edges, thus G can have at
most 6× 4+ 12 = 36 edges. Thus G contains precisely four edges from each Xi. It is
immediate that to avoid the forbidden configuration, some three of these four edges
must form a path Yi on Xi. The pair completing Yi to a four-cycle is denoted by zi.

Lemma 1. If at least five edges connect two vertex disjoint paths of a graph then
there is a chorded cycle in the graph.

Proof. Label the vertices of the two paths with increasing numbers. Define the
graph H with vertices representing the edges between the two paths as follows. Two
vertices i, j and k, l are adjacent if i, k and j, l are ordered in the same way or i = k or
j = l. Orient the edge from i, j to k, l if i ≤ k and j ≤ l. The orientation is obviously
transitive so H is a perfect graph. Five vertices in a perfect graph either have a clique
or independent set of size three and both represents a chorded cycle. 2

First we eliminate the case when some Yi, say Y0 is the middle of X0, i.e. Y0 =
{10, 3, 9, 4} and z0 = {4, 10}. Partition V (G) into four sets, A = {11, 0, 1, 2}, B =
{5, 6, 7, 8}, U1 = {9, 10}, U2 = {3, 4}. The lemma implies that at most 4 edges of G
are in [A,B] (since U1 ∪ U2 is a chorded cycle).

We claim that [U1, A] ∪ [U2, B] ∪ [U2, A] ∪ [U1, B] ∪ z0 contains at most 14 edges
of G \ C.

First we prove that [U1, A] ∪ [U2, B] ∪ z0 has at most seven edges. Notice that
[10, A]∪ [4, B] have at most one edge. Indeed, if both has at least one then 4, 5, . . . , 9
- 3, 10, 11, 0, 1, 2 is a forbidden pair and if one of them, say [10, A] has at least two
then 10, 11, . . . , 2 contains a chorded cycle disjoint from 3, 4, . . . , 9. Also, both [9, A]
and [3, B] can not contain at least two edges. If one of them, say [9, A] contains at
least three then [3, B] ∪ [4, B] ∪ z0 contains at most three giving the statement.
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Next we show that [U2, A] has at most five edges. Indeed, if [3, A] has three
edges (without the cycle edge 23) then we can have at most two edges from [4, A]
to avoid the forbidden configuration: in case of 4, 11 ∈ E(G) we have the chorded
cycles 4, 5, . . . , 9, 10, 11 - 0, 1, 2, 3; in case of 04, 14, 24 ∈ E(G) we have 0, 1, 2, 4 -
4, 9, 10, 11. If [3, A] has two edges then [4, A] can not have four: since 3, 11 is not
an edge (3, 11, 10, 9 - 4, 0, 1, 2) we have 30, 31 ∈ E(G) and 0, 1, 2, 3 - 4, 5, . . . , 11 give
contradiction.

Thus [U2, A] and (by symmetry) [U1, B] has at most five edges. But notice that
if [U2, A] contains at least three edges, there is a chorded cycle in 11, 0, 1, 2, 3, 4. The
same is true for [U1, B] so one of them has at most two edges and the other has at
most five, proving the claim.

Since G \ C has at most one edge within A (same is true for B) , and has three
edges in Y0, moreover C has 12 edges, we get with the previous estimates that G has
at most 1 + 1 + 3 + 12 + 4 + 14 = 35 edges - contradiction.

Similar - but slightly more complicated - argument works for the case when Y0

is ”next to the middle”, Y0 = {2, 10, 3, 9}. The partition of V (G) into four sets is
similar, A = {11, 0, 1}, B = {4, 5, 6, 7, 8}, U1 = {9, 10}, U2 = {2, 3}. First we show
that A,B, [A,B] altogether contain at most 5 edges. Notice that B can contain at
most two edges with equality in two ways: 47, 58 or 46, 68. If A has one edge then the
triangle 0, 1, 11 sends at most two edges to B. If A has no edge and B has one, we
are done by the lemma. If B has two edges then we have one of the two graphs on B
described before. With one exception, any two distinct vertices x, y of B is connected
by a chorded path in B implying that x and y cannot send an edge to A at the same
time. The exceptional case is when x = 5, y = 7 and 47, 58 are edges. It is easy to
check that {x, y} sends at most three edges to A.

First we prove that [U2, A] ∪ [U1, B] ∪ z0 has at most 7 edges. Like before,
[9, B] ∪ [2, A] has at most one edge. Also, both [10, B] and [3, A] can not contain
at least two edges. If [3, A] contains three edges then [10, B] contains at most two
and the statement follows immediately. If [10, B] contains at least three then [3, A]∪z0
contains at most one edge. Indeed, if z0, 3i are in G then 9, 2, . . . , i, 3 is a chorded
cycle, if there are two edges of G in [3, A] then these edges with the path 11, . . . , 2, 3
define a chorded cycle. In both cases the three edges of [10, B] span a disjoint chorded
cycle and the inequalities imply the statement.

Next we claim that [U1, A] ∪ [U2, B] has at most 8 edges. Indeed, if [U1, A] has
at least three edges then U1 ∪ A has a chorded cycle, thus [U2, B] has at most two
edges. The claim follows since [U1, A] contains at most 5 edges. If [U1, A] has two
edges and U1 ∪ A has a chorded cycle, the claim follows as before, otherwise 1, 10
and 0, 9 are edges. Now 0, 1, 2, 10, 11 is chorded implying that [3, B] has no edges
(otherwise 3, 4, . . . , 9 is chorded). The same argument works also if [10, A] has an
edge. Thus [U2, B] has at most 5 edges and the claim follows. If [U1, A] has one edge,

7



9i, then the cycle 3, 10, 11, . . . , i, 9 is chorded so [2, B] contains at most two edges.
Finally, if [U1, A] has no edge and [U2, B] has 9 then we get two disjoint chorded
cycles: 2, 8, 9, . . . , 1 and 3, 4, 5, 6, 7.

Putting together the previous estimates, G has at most 3 + 5 + 7 + 8 + 12 = 35
edges - contradiction.

Thus we may assume that no Yi is in middle or near middle position. Thus
all of them must be selected at ”peripheral” position (the shifts of 1, 11, 2, 10 and
11, 2, 10, 3).

We eliminate the case when some Yi, say Y0 contains two P4-s. Apart from sym-
metry this can happen only if Y0 is the path 1, 11, 2, 10, 3.

Observe that 0, 1, 2, 11 spans a chorded cycle so the cycle 3, 4, . . . , 10 has no diag-
onal. Since G has minimum degree at least five, 3 is adjacent to at least two vertices
in {11, 0, 1} and 10 is adjacent to at least one vertex in {0, 1}. This ensures that
A = {0, 1, 2, 3, 10, 11} spans a subgraph G[A] in G such that the deletion of any ver-
tex of A leaves a chorded cycle in G[A]. This implies that v ∈ {0, 1, 2, 11} sends at
most two edges to {4, 5, 6, 7, 8, 9}, altogether at most eight edges go between those
sets. There are 12 edges on C and at most ten further edges within A. Thus G has
at most 8 + 12 + 10 edges - contradiction.

We conclude that G must contain precisely one peripheral Yi from each Xi. There
are 6 × 4 choices for these positions. Define a graph H with vertices as positions
(four for each Xi) and with edges if two positions are excluded because they define
two vertex disjoint chorded cycles (with the edges of C). The graph obtained has two
12-cycles, an outer ring A and an inner ring B. The outer ring contains diagonals
(i, i + 2), (i, i + 3) and (i, i + 6). The inner ring has diagonals (i, i + 4). Vertex i on
the inner ring is adjacent to vertices i− 1, i, i+1, i+4 on the outer ring. A moments
reflection shows that there is no independent set of size six in H and this concludes
the proof. 2
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