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Abstract: The First-Fit (or Grundy) chromatic number of G, written as
χFF(G), is defined as the maximum number of classes in an ordered par-
tition of V(G) into independent sets so that each vertex has a neighbor in
each set earlier than its own. The well-known Nordhaus–Gaddum inequality
states that the sum of the ordinary chromatic numbers of an n-vertex graph
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and its complement is at most n + 1. Zaker suggested finding the analo-
gous inequality for the First-Fit chromatic number. We show for n ≥ 10 that
�(5n + 2)/4� is an upper bound, and this is sharp. We extend the problem
for multicolorings as well and prove asymptotic results for infinitely many
cases. We also show that the smallest order of C4-free bipartite graphs
with χFF(G) = k is asymptotically 2k2 (the upper bound answers a problem
of Zaker [9]). © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 75–88, 2008
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1. NORDHAUS–GADDUM FOR FIRST-FIT CHROMATIC NUMBER

A well-known inequality [7] relating the chromatic number of an n-vertex graph and
its complement is χ(G) + χ(Gc) ≤ n+ 1. In fact col(G) + col(Gc) ≤ n+ 1 also
holds (see for example the proof in [1]) giving a stronger inequality, since χ(G) ≤
col(G). (Here col(G) = 1 + max{δ(H) : H ⊆ G}, the coloring number, see [3].)
Zaker [8] suggested finding the analogous inequality for χFF(G), the Grundy or
First-Fit chromatic number of G, defined as the maximum number of classes in an
ordered partition of the vertex set of G into independent sets A1, . . . , Ap so that
for each 1 ≤ i < j ≤ p, and for each x ∈ Aj there exists a y ∈ Ai such that x, y are
adjacent. We shall refer to such an ordered partition A = {A1, . . . , Ap} of V (G)
as a First-Fit (or Grundy) partition. In case of p = χFF(G) we call A an optimal
partition. Clearly, χFF(G) and col(G) are both between χ(G) and �(G) + 1, but
they do not relate to each other.

It was conjectured in [8] that the Nordhaus–Gaddum inequality hardly changes
for χFF(G), namely χFF(G) + χFF(Gc) ≤ n+ 2. The conjecture was proved for
regular graphs and for certain bipartite graphs. We show that it holds for all bipartite
graphs (Theorem 1) and it is also true for small graphs with n ≤ 8 vertices. But it
fails in general. In fact, the maximum of χFF(G) + χFF(Gc) over graphs of n ≥ 10
vertices is

⌊ 5n+2
4

⌋
(Corollary 4).

Theorem 1. For bipartite graphs G = [X, Y ] with n vertices, χFF(G) +
χFF(Gc) ≤ n+ 2.

Proof. Assume that G = G[X, Y ] is a bipartite graph and A = {A1, . . . , Ap}
and B are optimal partitions of G and Gc, respectively. Each block of B spans a
complete subgraph in G, therefore its size is at most two. Let M = {B1, B2, . . . Bk}
be the matching defined by the edges in B, then χFF(Gc) = n− k. Observe that
Z = V (G) \ V (M) is an independent set in G.

We have to show thatχFF(G) + χFF(Gc) = χFF(G) + n− k ≤ n+ 2, that is, that
χFF(G) ≤ k + 2. Call a setAi ∈ A type 1 if it has points from both X and Y, moreover
it has a nonempty intersection with V (M).
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Claim. V (M) ∩X or V (M) ∩ Y intersects all type 1 Ai-s.

Indeed, if not, there are Ai ∩ V (M) ⊆ X and Aj ∩ V (M) ⊆ Y , say i < j. Since
Aj is type 1, it has a vertex x ∈ X, and x /∈ V (M) from the assumption. From
the property of the partition A, x must be adjacent to some vertex of Ai but it is
impossible (no edge from x ∈ X to Ai ∩ V (M) ⊆ X since G is bipartite, no edge
from x /∈ V (M) to Ai \ V (M) because Z is independent)—proving the claim.

There are at most three Ai-s not of type 1 (exceptional), at most one that does
not intersect V (M), and at most two that intersect V (M) but not both X, Y. If all the
three are present, then—from the claim—either V (M) ∩X or V (M) ∩ Y intersects
all type 1 Ai-s and one exceptional Ai. Thus k vertices intersect all but at most two
Ai-s proving that χFF(G) ≤ k + 2. �
Theorem 2. Let G be any graph on n ≥ 3 vertices, F (G) := χFF(G) + χFF(Gc).
Then F (G) ≤ ⌊ 5n+2

4

⌋
for n ≥ 10, F (G) ≤ n+ 2 for n ≤ 8 and F (G) ≤ n+ 3 for

n = 9.

Proof. In the first part of the proof we establish an upper bound 4F (G) ≤
5n+ 5. Then (using Lemma 2) we improve it to 5n+ 4. Then we show that either
we can improve it further to (5n+ 2) or F (G) ≤ n+ 3, finishing the case n ≥ 10.
Finally, we show that n ≤ 9 and F (G) = n+ 3 imply n = 9.

Let A = {A1, . . . , Ap} and B be optimal ordered partitions of G and Gc, re-
spectively. Suppose that A has a1 sets of size one, a2 sets of size two and a3

sets of size at least three. Similarly, B has b1 sets of size one, b2 sets of size two
and b3 sets of size at least three. From the assumption, χFF(G) = a1 + a2 + a3,
χFF(Gc) = b1 + b2 + b3. From the definitions of ai and bi we have

∑
iai ≤ n and∑

ibi ≤ n. To obtain precise upper bounds we write these inequalities in the fol-
lowing form, where εa, εb ≥ 0 are the excess.

a1 + 2a2 + 3a3 = n− εa, (1)

b1 + 2b2 + 3b3 = n− εb. (2)

Consider the singletons in the ordered partitions. We may suppose (eventually
reorder) that they come last in the orderings. Observe that K = {v ∈ Ai : |Ai| = 1}
spans a complete subgraph in G and I = {v ∈ Bj ∈ B : |Bj| = 1} spans an indepen-
dent set in G. Thus |K ∩ I| ≤ 1. Note that |K ∩ I| = 1 impliesχFF(G) + χFF(Gc) ≤
n+ 1. Indeed, if {x} = K ∩ I ∈ A ∩ B, then there is an edge from x to each other
member ofA, hence |A| ≤ degG(x) + 1, and similarly |B| ≤ degGc(x) + 1. So from
now on we may suppose that K ∩ I = ∅.

Let αi (i = 2, 3) be the number of two- and at least three-element blocks of A
contained entirely in I, α = ∑

αi, and define similarly βi and β for B. We have

α = α2 + α3 ≤ 1, β = β2 + β3 ≤ 1,

since I (respectively K) is an independent set in G (respectively in Gc). Classify
the 2-element blocks into three groups. There are a2t of them meeting I in exactly
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t elements. Define b2t analogously (i.e., the number of 2-blocks of B meeting K in
t points). We have

a22 = α2, a2 = a20 + a21 + a22, b22 = β2, b2 = b20 + b21 + b22.

All but α blocks of A have points outside I, and (at least) a20 of them have two (or
more). We obtain that |A| − α+ a20 ≤ n− |I|. Again write this (and its analogue
for B) in the following form

a1 + a2 + a3 + a20 + b1 = n+ α− εα, (3)

b1 + b2 + b3 + b20 + a1 = n+ β − εβ. (4)

Consider the a21 two-element A-sets {u, u′} that intersect I in exactly one vertex,
say u ∈ I and u′ �∈ I. Denote the set of these vertices u ∈ I by I1, and the set of
vertices u′ �∈ I by S. Similarly, K1 := {v ∈ K : ∃v′ /∈ K such that {v, v′} ∈ B}, and
T := {v′ /∈ K : ∃v ∈ K such that {v, v′} ∈ B}. We have

|S| = a21, S ∩ (K ∪ I) = ∅, |T | = b21, T ∩ (K ∪ I) = ∅.

Lemma 1. |S ∩ T | ≤ 1.

Proof. Assume, on the contrary, that x1, x2 ∈ S ∩ T . This means that there are
u1, u2 ∈ I such that the two-element blocks {u1, x1} and {u2, x2} belong to A, and
there are v1, v2 ∈ K such that {v1, x1} and {v2, x2} ∈ B. By definition we already
know the status of six pairs from {x1, x2, u1, u2, v1, v2}, namely x1v1, x2v2 and
v1v2 are edges and x1u1, x2u2 and u1u2 are non-edges (see Fig. 1). Without loss
of generality we may suppose that x1x2 is a non-edge (if it is, then replace G with
Gc). By symmetry (between {u1, x1} and {u2, x2}), we may suppose that the order
of these blocks is

{u1, x1} <A {u2, x2} <A {v1} <A {v2}.
Then the First-Fit requirements on G between {u1, x1} and u2 implies x1u2 ∈ E(G),
and {u1, x1} <A x2 implies x2u1 ∈ E(G). Considering Gc the block {v1, x1} pre-
cedes {u2} implying u2v1 ∈ E(Gc) and the block {v2, x2} precedes {u1} implying
u1v2 ∈ E(Gc). Then {u1, x1} <A {v2} implies x1v2 ∈ E(G), and {u2, x2} <A {v1}
implies x2v1 ∈ E(G). Then there are three edges joining {v1, x1} to {v2, x2}, so no
matter how they are ordered in B, either {v1, x1} and v2 or {v2, x2} and v1 violate

FIGURE 1. The proof of Lemma 1.
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the First-Fit requirement in B. Thus |S ∩ T | ≥ 2 is impossible, finishing the proof
of the lemma. �

This lemma is crucial, it shows that the sets K, I, S, T are almost disjoint. Let
γ := |S ∩ T |, and denote by n− εγ the size of the union of these four sets. We
obtain

|I ∪K| + |S ∪ T | = a1 + b1 + a21 + b21 − γ = n− εγ . (5)

Adding the five equalities (1)–(5) and denoting ε = εa + εb + εα + εβ + εγ we get

4(a1 + a2 + a3 + b1 + b2 + b3) = 5n+ (α+ β + γ) + (α2 + β2) − ε

= 5n+ s

with some integer s. Notice that s ≤ 5 follows immediately from our assumptions.
The rest of the proof is devoted to improve this upper bound.

Improvements.

Lemma 2. If α > 0 then

(i) there is no block B ∈ B with B ⊂ S;
(ii) there is no block B ∈ B, B ⊂ K ∪ S with |B ∩ S| = |B| − 1;

(iii) there is no block Ai ∈ A, Ai ⊂ T ∪ I with |Ai ∩ T | = 1.

Especially, α > 0 implies γ = 0.

Proof. Indeed, α > 0 gives anAj ⊂ I belonging to A. The first two statements
are based on the fact thatG[S,Aj] is a complete bipartite graph. Indeed, letw ∈ Aj,
y ∈ S. Then there is a u ∈ I such that {y, u} ∈ A. Since I is independent, the First-
Fit requirement between u and Aj implies that u (and its block {y, u}) precedes Aj

in A. Then there is an edge between w and the block {y, u}, it should be wy, and
thus indeed G[S,Aj] is a complete bipartite graph.

Now to prove (i) suppose, on the contrary, thatB ⊂ S forB ∈ B. Take any element
w ∈ Aj. This implies w ∈ I which by the definition of I gives {w} ∈ B, too, and
thus there must be a non-edge between w and B, a contradiction.

To prove (ii) suppose, on the contrary, thatB ∈ B,B ⊂ K ∪ S, andB ∩K = {v}.
Since {w} ∈ B for all w ∈ Aj, there is a non-edge from w to B, it should be vw.
Consider {v} ∈ A and Aj. There should be an edge vw, w ∈ Aj, a contradiction.

To prove (iii) suppose Ai ∩ T = {x}, (Ai \ {x}) ⊂ I. Notice that i < j otherwise
u ∈ Ai ∩ I would violate the First-Fit requirement between u and Aj in A. Then
there is an edge from w ∈ Aj to the block Ai, from this wx ∈ E(G) follows. By
definition of T there is a v ∈ K such that {v, x} ∈ B. Consider {w} and {v, x} in
B, vw ∈ E(Gc) follows (for every w ∈ Aj). Then the First-Fit requirement on G is
violated between the blocks Aj and {v} ∈ A. �
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Similar lemma is true for the caseβ > 0, it also implies γ = 0. Conversely, γ = 1
implies α = β = 0, hence s ≤ 1, and we are done. From now on, we suppose that
γ = 0, that is, S ∩ T = ∅, and s ≤ 4.

We have s ≤ 2(α+ β) − ε. Hence s ≤ 2 if α+ β ≤ 1 or ε ≥ 2, and we are done.
From now on, we suppose thatα = 1,β = 1 and ε ≤ 1. There exists a blockA′ ∈ A,
A′ ⊂ I (naturally, it is disjoint from I1), and there exists a block B′ ∈ B, B′ ⊂ K

(and B′ ∩K1 = ∅). Let E := V (G) \ (K ∪ I ∪ S ∪ T ), |E| = εγ .
We claim that there is no block A ∈ A contained in I ∪ T , other than A′. (Simi-

larly, there is no second B-block in K ∪ S.) Indeed, Lemma 2 (and its analogue for
β > 0) imply that such a block A meets both I and T, and it meets them in at least
two vertices. If such an A exists then εa ≥ 1 in (1). Also, A should be counted twice
on the left-hand-side of (3), implying εα ≥ 1. These contradict ε ≤ 1.

Consider the case E = ∅. Then there is no A-block covering the points of T, so
T should be empty. Similarly, S = ∅ follows. Then V (G) = K ∪ I, hence F (G) =
n+ 2, and we are done.

The last case is when E �= ∅, |E| = 1 and εa = εb = εα = εβ = 0. Let A′′ be
the A-block covering E. There are no more A-blocks in T ∪ (I \ I1) ∪ E so |A| =
|K| + |S| + 2. Similarly, E ∈ B′′ ∈ B and |B| = |I| + |T | + 2 giving F (G) = n+
3. Since n+ 3 ≤ (5n+ 2)/4 we are done for n ≥ 10.

Suppose that n ≤ 9 and F (G) = n+ 3. We claim that n = 9 follows, finishing
the proof of the Theorem. Taking the following seven pairwise disjoint sets we get

n ≥ |A′| + |B′| + |A′′ \ E| + |K1| + |B′′ \ E| + |I1| + |E|.
Here |A′| ≥ 2, |B′| ≥ 2, |E| = 1. It is easy to see that |A′′ \ E| + |K1| ≥ 2 and
|B′′ \ E| + |I1| ≥ 2. Indeed, K1 = ∅ implies T = ∅ and A′′ ⊂ I ∪ E. Since E /∈ S

we get |A′′| ≥ 3. �

Lemma 3. There is graph G9 with vertex set {1, 2, . . . , 9} such that χFF(G9) =
χFF(Gc

9) = 6 (see Fig. 2).

FIGURE 2. The proof of Lemma 3.
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FIGURE 3. The graph G4k+2 with χFF(G) = 2k + 2 and χFF(Gc ) = 3k + 1.

The edges form a complete graph on {6, 7, 8, 9}, the further edges are 14, 15, 18, 19,
27, 36, 38, 47, 49, 56, and 58. Then 123|45|6|7|8|9 and 198|76|5|4|3|2 are Grundy
partitions for G and its complement, respectively.

Theorem 3. For all k ≥ 1 there is a graph G = G4k+2 with 4k + 2 vertices such
that χFF(G) + χFF(Gc) ≥ 5k + 3.

Proof. The vertex set of G consists of four disjoint sets P, Q, R,
and S, such that |P | = |Q| = k + 1, |R| = |S| = k. Label their elements as
P = {p1, p2, . . . , pk+1}, Q = {q1, q2, . . . , qk+1}, R = {r1, r2, . . . , rk}, and S =
{s1, s2, . . . , sk}. The ordered partition A on V (G) is composed from k triples
Ai = {qi, ri, si} (1 ≤ i ≤ k) and singletons Ak+j := {pj}, (1 ≤ j ≤ k + 1) and fi-
nally A2k+2 = {qk+1}. The ordered partition B on V (Gc) is composed from k + 1
pairs Bi = {pi, qi} (1 ≤ i ≤ k + 1) and 2k singletons of R ∪ S (in arbitrary order).

We define edges and non-edges of G. Pairs within Ai-s are non-edges, pairs
within Bi-s are edges. The pairs within P are edges, the pairs within R ∪ S are
non-edges. Notice that so far the choices were forced, it is not so in the sequel.

The set {pi, qi, ri, si} spans only a single edge, piqi. The set P spans a complete
graph, Q and R ∪ S are independent sets.

The spanned bipartite graph G[P,Q] is a so-called half-graph (half complete
bipartite) with edge-set {piqj : i ≤ j}. G[P,R] is another half-graph, edges go-
ing into the another direction, its edge-set is {pirj : j < i}. G[P, S] has no edge,
E(G[Q,R]) := {qirj : i < j}, finally G[Q,S] is a complete bipartite graph minus
an almost perfect matching, E(G[Q,S]) := {qisj : i �= j} (see Fig. 3).

It is easy to check that the partition A and B are first fit partitions of the graphs
G and Gc implying the lower bound stated in the theorem. �

Observe that if a graph H is extended to Hnew by adding a new vertex adjacent
to all vertices of H, then χFF(Hnew) = χFF(H) + 1 and χFF(Hc

new) = χFF(Hc). Ap-
plying this to G4k+2 three times, we get the graphs G4k+i of 4k + i vertices (i = 2,
3, 4, 5) with

χFF(G4k+i) + χFF(Gc
4k+i) ≥ 5k + 1 + i.

Journal of Graph Theory DOI 10.1002/jgt
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The path on four vertices shows F (4) ≥ 6, using Lemma 3, Theorem 3 and com-
bining them with Theorem 2 one obtains

Corollary 4. Let F (n) = max{χFF(G) + χFF(Gc)} over all n-vertex graphs. Then

F (n) =


n+ 2 for 4 ≤ n ≤ 8

12 for n = 9

�(5n+ 2)/4� for n ≥ 10.

2. NORDHAUS–GADDUM FOR MANY COLORS

The analogue of the Nordhaus–Gaddum inequality for multicolored graphs have
been studied recently for many graph parameters in [2]. One of them, the Wilf-
Szekeres number, or coloring number, has been investigated earlier in [4]. Here we
give bounds on

h(n, k) := max {χFF(G1) + · · · + χFF(Gk)}
where the maximum is taken over all partitions of Kn into k edge disjoint graphs
Gi. In Section 1, h(n, 2) is determined exactly, but for the next case we know only
that h(n, 3) ≥ 3n

2 . Nevertheless, we determine h(n, k) asymptotically for infinitely
many fixed k’s and give bounds for every n and k.

Theorem 5. For every n and k,

h(n, k) ≤
(

1 + √
2k − 1

2

)
n+

(
k

2

)
+ k. (6)

Proof. Consider an optimal decomposition ofKn, that is, assume that h(n, k) =∑k
i=1 χFF(Gi) (where the Gi-s decompose Kn). Set pi = χFF(Gi) and let ai denote

the number of one-element classes in the First-Fit partition of Gi into χFF(Gi)
classes. Since one-element classes in Gi must span a complete subgraph of color i,
it follows that

0 ≤ ai ≤ pi,

k∑
i=1

ai ≤ n+
(
k

2

)
. (7)

Using the First-Fit property one can easily obtain that for each i,

|E(Gi)| ≥ 2(1 + 2 + · · · + pi − ai − 1) + (pi − ai) + · · · + (pi − 1)

=
(
pi

2

)
+
(
pi − ai

2

)
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and summing that for 1 ≤ i ≤ k we obtain

(
n

2

)
≥

k∑
i=1

((
pi

2

)
+
(
pi − ai

2

))
. (8)

Use the notations P := ∑k
i=1 pi, A := ∑k

i=1 ai, B := n+ (k
2

)
and assume P ≥

B + k (otherwise (6) trivially holds). Apply Jensen’s inequality for the convex
polynomial

(x
2

)
:= x(x− 1)/2 and use the fact that (P − A)/k + (P − B)/k ≥ 1.

We get(
n

2

)
≥ k

(
P/k

2

)
+ k

(
(P − A)/k

2

)
≥ k

(
P/k

2

)
+ k

(
(P − B)/k

2

)
.

Consequently, 0 ≥ 2P2 − 2(B + k)P + (kB + kn+ B2 − kn2), and thus

P ≤ B + k

2
+ 1

2

√
(2k − 1)n2 − 2kn+ k2 − (B + n)(B − n)

and this easily gives the theorem. �
The following two theorems give lower bounds for special values of k.

Theorem 6. Assume k = 2q2 + 2q + 1, k divides n and q = 1 or a power of a
prime. Then (

1 + √
2k − 1

2

)
n = (q + 1)n ≤ h(n, k).

Proof. Let m := n/k and consider the disjoint m-sets V0, V1, . . . , Vk−1, their
union is V, the vertex set of an n-vertex complete graph Kn.

Define a graph G as follows. Its vertex set is V (G) := (A0 ∪ A1 ∪ · · · ∪ Aq) ∪
(B1 ∪ · · · ∪ Bq), |Ai| = |Bj| = m, |V (G)| = (2q + 1)m and its edge set consists of
a complete graph on A0 and

(q+1
2

)
complete bipartite graphs K(Ai, Aj) and

(q
2

)
complete bipartite graphs of K(Bi, Aj) for 1 ≤ i < j ≤ q, finally G[Ai, Bi] is a
complete bipartite graph minus a matching (of size m). We clearly have χFF(G) =
(q + 1)m. Indeed, let us denote the vertices in these sets by Ai = {ai1, . . . , aim}
and Bi = {bi1, . . . , bim}, where the missing matching is ai1bi1, . . . , aimbim. Then
the following is a Grundy partition of size (q + 1)m:

aq1bq1| · · · |aqmbqm| · · · |a11b11| · · · |a1mb1m|a01| · · · |a0m.

We are going to decomposeE(Kn) into graphsG0, . . . ,Gk−1 such thatχFF(Gi) =
(q + 1)m, and each Gi is isomorphic to G (apart from an uninteresting matching of
size qm), and the defining sets A0, . . . , Bq are selected from the Vi’s.

Consider the graph H, the host graph of G, with vertex set {a0, a1, . . . , aq} ∪
{b1, . . . , bq} with a complete graph of size q + 1 on {a0, a1, . . . , aq} and addi-
tional edges biaj for i ≤ j. The vertex a0 is called the special vertex of H. H

Journal of Graph Theory DOI 10.1002/jgt
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FIGURE 4. Cyclic k-colorings for k = 5 (q = 1) and k = 13 (q = 2).

has q2 + q = (k − 1)/2 edges. We claim that the complete graph Kk with ver-
tex set {v0, v1, . . . , vk−1} can be decomposed into k edge-disjoint copies of H,
G = H0 ∪H1 ∪ · · · ∪Hk−1, such that their special vertices are all distinct. Then
replacing vi with Vi the t-th copy Ht naturally extends to Gt , a graph isomorphic to
G. Finally, the qmmatching edges deleted in the definition ofGt can get color t + 1
(modulo k), (it is easy to see that adding this matching to Ht+1 does not decrease
its χFF-value) and we obtain the coloring of Kn showing the lower bound in the
Theorem.

We identify the vertices ofKk with a vertex set of a regular k-gon (in cyclic order),
or rather with the elements of the cyclic groupZk, and call min{|i− j|, k − |i− j|}
the length of the edge vivj. Since k is odd, the lengths are 1, 2, . . . , (k − 1)/2.
One can get the desired H-decomposition of Kk if there exists an embedding of H
into Kk such that all edges of H has different lengths. The further k − 1 copies of
H are obtained by rotations (see Fig. 4). We finish the proof by showing such an
embedding of H.

Singer proved in 1938 (see, e.g., in the textbook [5]) that a (q2 + q + 1, q + 1, 1)
difference set exists if and only if q = 1 or it is a power of a prime. It means that
there exists a set D ⊂ {0, 1, 2, . . . , q2 + q}, D = {d1, d2, . . . , dq+1} such that all
the differences di − dj for i �= j are non-zero and are different modulo q2 + q +
1. Suppose d1 < d2 < · · · < dq+1. Let ai := di+1 (0 ≤ i ≤ q) and bi := (q2 + q +
1) + di (1 ≤ i ≤ q). Then the lengths between the a’s are {dj − di : j > i} and the
length of biaj (i ≤ j) is (q2 + q + 1 + di) − dj+1 (now i < j + 1). These lengths
are all distinct, since they are distinct modulo q2 + q + 1. �

Corollary 7. h(n, 5) = 2n+O(1), h(n, 13) = 3n+O(1), and for every prime
power q

h(n, 2q2 + 2q + 1) = (q + 1)n+O(q4).

Theorem 8. Assume k = 2(q2 + q + 1), (q2 + q + 1) divides n and a projective
plane of order q exists. Then(

1 + √
2k − 3

2

)
n = (q + 1)n ≤ h(n, k).
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It seems that Theorem 8 is weaker than Theorem 6, it gives the same lower bound
using one more color and it is indeed so if q is a power of a prime; however, although
widely believed otherwise, there might exist some projective plane of order q that
is not a power of a prime.

Proof. For an arbitrary positive integer m set n = m(q2 + q + 1) and de-
fine a k-colored complete graph Kn as follows. Consider disjoint m-sets
V1, V2, . . . , Vq2+q+1, their union is the vertex set of Kn. Consider a finite plane
of order q with point set V1, V2, . . . , Vq2+q+1 and line set L1, L2, . . . , Lq2+q+1. The
König–Hall condition is satisfied for the projective plane, there exists a system of
distinct representatives, that is, we may suppose that Vt ∈ Lt .

Take a fixed line Lt and denote its points by A1, A2, . . . , Aq+1. These Ai’s are
actually m-sets, and suppose that Aq+1 = Vt . We associate two colors to Lt , colors
2t − 1 and 2t and color some edges of Kn contained in Lt with these colors. For
any odd i < q + 1 color all edges except a one-factor of [Ai, Ai+1] with color
2t − 1. The m edges of the one-factor are colored with color 2t. For all j such that
i+ 1 < j ≤ q + 1, color also with color 2t − 1 all edges of [Ai, Aj]. Similarly, for
any even i < q + 1, color all edges except a one-factor of [Ai, Ai+1] with color 2t.
The m edges of the one-factor can be colored with color 2t − 1. For all j such that
i+ 1 < j ≤ q + 1, color also with color 2t all edges of [Ai, Aj]. Finally, the edges
withinAq+1 also colored by 2t − 1 if q is even and they are colored by 2t if q is odd.
It is easy to check that for the graphs G2t−1, G2t with edges colored with 2t − 1, 2t
respectively, we have

χFF(G2t−1) + χFF(G2t) = �(q + 1)/2�m+ �q/2�m = (q + 1)m.

This gives a k-coloring of Kn and

k∑
j=1

χFF(Gj) = k

2
(q + 1)m = (q + 1)n

and the result follows by expressing q as a function of k. �
Combining our results above and using the existence of primes between m and

m+ cm2/3, one can easily get

Corollary 9. There exists a c > 0 such that for every n and k

√
k

2
n− ck1/3n− k2 < h(n, k) <

(
1 + √

2k − 1

2

)
n+

(
k

2

)
+ k. (9)

3. THE SMALLEST C4-FREE BIPARTITE GRAPH WITH χFF(G) = k

It is well known that for every k there are bipartite graphs satisfyingχFF(G) = k, the
standard example is obtained fromKk,k by removing a perfect matching from it. It is
also possible that such a graph has arbitrary large girth, since there are trees with that
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property, the smallest well-known example is the rooted tree Tk defined recursively
by joining the roots of two distinct copies of Tk−1 and keeping one of the two roots
as the new root. Clearly, Tk has 2k−1 vertices. In the light of these two extreme
examples, it is natural to ask about c4(k), the smallest order of a C4-free bipartite
graph G with χFF(G) = k. It is easy to obtain that c4(k) ≥ (k − 1)(k − 2) + 2 and
some experience with small graphs show that this is sharp for 2 ≤ k ≤ 7 (the proof
of this is left to the reader). However, the next theorem shows that the coefficient of
k2 in c4(k) is two. The upper bound of Theorem 10 answers positively the following
problem posed by Zaker in [9]: is it true that ρ(n) = :(

√
n), where

ρ(n) = max
{
χFF(G)

χ(G)
: |V (G)| = n, girth(G) ≥ 5

}
.

Theorem 10.

(i) c4(k) ≤ 2k2 if there exists a projective plane of order k,
(ii) c4(k) ≤ 2k2 − 2k3/2 + 2k if

√
k is a prime power,

(iii) 2k2 − 8k5/3 ≤ c4(k).

Proof. To prove the upper bound (i), let G = [P,L] be the bipartite graph
defined by the incidences of the points and lines of an affine plane of order k. Let
Li denote the ith parallel class of lines, i = 0, 1, . . . , k. The lines of L0 partition
P into Pi, i = 1, 2, . . . , k, |Pi| = k. Set Ai = Pi ∪ Li for i = 1, 2, . . . , k. Consider
the bipartite graphG∗ obtained from G by removing the vertices ofL0 and all edges
within each Ai. Then G∗ is a bipartite graph with k2 vertices in its color classes, G∗

is C4-free and each Ai spans an independent set in G∗. Moreover, for every i �= j

and for every v ∈ Aj there is (exactly) one vertex of Ai adjacent to v. Thus the sets
Ai give a First-Fit partition on G∗.

To prove the upper bound (ii) we note that a somewhat smaller graph can be ob-
tained by selecting initially only one vertex vk fromAk. We are going to use the fact
that a Desarguesian affine plane of square order k contains a Baer subplane (see,
e.g., in [5]). It means, that there exists a subset of vertices B, |B| = k, and

√
k + 1

special parallel classes such that (1) every line not in a special class meets B in ex-
actly one point, (2) every line in a special class meets B in either

√
k points or avoids

it. Suppose that the special parallel classes are L0 and Lk−√
k+1, . . . , Lk−1, Lk, and

the lines of L0 are also ordered such a way that |Pi ∩ B| = √
k for i > k − √

k.
The bipartite graph showing the upper bound (ii) is obtained from G∗ defined in
section (i), such that for i > k − √

k one keeps only the lines meeting B, and the
points Pi ∩ B.

To prove the lower bound (iii), let G be aC4-free bipartite graph withχFF(G) = k.
Consider a First-Fit coloring of G with k colors and let f (x) denote the color of
x ∈ V = V (G). Using the First-Fit rule and that G is bipartite withoutC4, it follows
easily that the following procedure builds an induced two-level tree T in G. The root
of T is a vertex x ∈ V with f (x) = k. Level one of T is defined by selecting vertices
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y1, . . . , yk−1 where each yi is adjacent to the root and f (yi) = i. Level two of G
is defined by selecting for each i, i = 2, 3, . . . , k − 1 vertices zi,1, zi,2, . . . , zi,i−1

adjacent to yi such that f (zi,j) = j (for 1 ≤ j ≤ i− 1). Note that |V (T )| = (k
2

)+ 1
and that T is indeed a tree because there is no C4.

For a suitable r defined later, an r-uniform hypergraph Hr is defined
as follows. For each i, j such that k − 2 ≥ i− 1 ≥ j ≥ r + 1 a hyperedge
Eij = {vij1, vij2, . . . , vijr} is defined by selecting vijl ∈ V \ V (T ) adjacent to zi,j
and f (vijl) = l for 1 ≤ l ≤ r. These vertices exist by the First-Fit property and any
two distinct hyperedges intersect in at most one vertex since G has no C4. There
are m = 1 + 2 + · · · + (k − r − 2) = (k−r−1

2

)
edges in Hr. It is known that any

hypergraph of m edges of sizes at least r and pairwise intersections at most one has
at least r2m

r+m−1 vertices (Exercise 13.13 in [6]). Therefore W, the vertex set covered
by the hyperedges satisfies

|W | ≥ r2m

r +m− 1
. (10)

Taking r = k − k2/3 one gets a lower bound k2 − 4k5/3 for |W |. Notice that if x,
the root of T is in the first partite class of the bipartite graph G then any vertex in W
covered by an edge ofHr is in the second partite class of G. This observation allows
to select yk−1 in the role of x and repeat the same argument to get a k2 − 4k5/3

lower bound for the first partite class of G. This gives the claimed lower bound on
c4(k). �
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