Highly connected monochromatic subgraphs

Béla Bollobása,b,1, András Gyárfásc,2

aDepartment of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA
bTrinity College, Cambridge, CB2 1TQ, UK
cComputer and Automation Research Institute of the Hungarian Academy of Sciences, P.O. Box 63, Budapest 1518, Hungary

Received 19 December 2003; received in revised form 29 December 2005; accepted 11 January 2006
Available online 22 April 2007

Abstract

We conjecture that for \(n > 4(k - 1) \) every 2-coloring of the edges of the complete graph \(K_n \) contains a \(k \)-connected monochromatic subgraph with at least \(n - 2(k - 1) \) vertices. This conjecture, if true, is best possible. Here we prove it for \(k = 2 \), and show how to reduce it to the case \(n < 7k - 6 \). We prove the following result as well: for \(n > 16k \) every 2-colored \(K_n \) contains a \(k \)-connected monochromatic subgraph with at least \(n - 12k \) vertices.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Edge coloring of complete graphs; \(k \)-connected monochromatic subgraphs

The following remark Paul Erdős made a long time ago is often used as a warm-up exercise (for example [5, Chapter VI, Ex. 1]): show that every 2-coloring of the edges of the complete graph \(K_n \) contains a connected monochromatic subgraph with \(n \) vertices, i.e., the graph contains a monochromatic spanning tree. Erdős’s remark has been generalized in several directions. In particular, we may require a certain type of monochromatic spanning tree. For example, it is easy to find a monochromatic rooted tree of height at most two, with the root at any vertex (see [3]). Solving a conjecture of Bialostocki et al. [1], Burr [6] proved that every 2-coloring of the edges of \(K_n \) contains a monochromatic spanning \textit{broom}, i.e., a path with a star at one end. Both results remain true if 2-colorings are replaced by colorings without multicolored triangles (conjectured in [2], proved in [12]).

For multicolorings, it is natural to ask the order of the largest monochromatic connected component. In fact, this question was posed in [10] and was rediscovered in [4]. For \(r \)-colorings of \(K_n \), the answer is approximately \(n/(r - 1) \), proved independently in [8,11]. For most general results and further references see [9]. As another variant of the remark of Erdős, we may ask for a partition of the vertex set of an \(r \)-colored \(K_n \) into as few sets as possible, with each set spanning a monochromatic tree (see [7,14]).

This note explores a natural new variant: we ask for \textit{large monochromatic subgraphs of high vertex connectivity} in 2-colored complete graphs.

1Research supported by NSF Grant ITR 0225610 and DARPA Grant F33615-01-C-1900.
2Research supported in part by OTKA Grant T029074.
Example. Let B be the 2-colored complete graph on $[6]$ with red edges 12, 23, 34, 25, 35 and with the other edges blue. (Both color classes form a “bull”.) Assuming that $n > 4(k - 1)$, $k \geq 2$, let $B(n, k)$ be a 2-colored complete graph with n vertices obtained by replacing vertices 1, 2, 3, 4 in B by arbitrary 2-colored complete graphs of $k - 1$ vertices and replacing vertex 5 in B by a 2-colored complete graph of $n - 4(k - 1)$ vertices. All edges between the replaced parts retain their original colors from B. Note that $B(n, k)$ denotes a member of a rather large family of graphs. The definition of $B(n, k)$ is used in the case $n = 4(k - 1)$ as well, but in this case vertices 1, 4 (2, 3) of B are replaced by red (blue) complete subgraphs (and vertex 5 is deleted). Thus in this case we have just one graph for each k, which we denote by $B(k)$. Observe that the color classes of $B(k)$ form isomorphic graphs and there is no monochromatic k-connected subgraph in $B(k)$.

It is easy to check that in $B(n, k)$ the maximal order of a k-connected monochromatic subgraph is $n - 2(k - 1)$. It is conceivable that each $B(n, k)$ is an optimal example for every k, i.e., the following assertion is true.

Conjecture 1. For $n > 4(k - 1)$, every 2-colored K_n contains a k-connected monochromatic subgraph with at least $n - 2(k - 1)$ vertices.

The conjecture does hold for $k = 1$ and 2: for $k = 1$ it follows from the warm-up exercise and the case $k = 2$ is not much more difficult to prove.

Proposition 1. For $n > 4$, every 2-coloring of the edges of K_n contains a 2-connected monochromatic subgraph with at least $n - 2$ vertices.

Proof. Every 2-coloring of K_5 contains a monochromatic cycle. Proceeding by induction, let (w.l.o.g.) H be a 2-connected red subgraph with $n - 3$ vertices in a 2-coloring of K_n. If some vertex of $W = V(K_n) \setminus V(H)$ sends at least two red edges to H then we have a 2-connected red subgraph with $n - 2$ vertices. Otherwise the blue edges between $V(H)$ and W determine a 2-connected blue subgraph of at least $n - 2$ vertices (either a blue $K_{2,n-4}$ or a blue $K_{3,n-3}$ from which three pairwise disjoint edges are removed). □

The induction argument of Proposition 1 works for every fixed k and large n and implies that it is enough to prove Conjecture 1 for a relatively small range of vertices. (The case $k = 3$ can probably be settled by checking $n = 9, 10$.)

Proposition 2. Conjecture 1 holds if the assertion holds for all n with $4(k - 1) < n < 7k - 5$.

Proof. Assume that a 2-colored K_n is a minimal counterexample to Conjecture 1 with $n \geq 7k - 5$. Without loss of generality, there is a k-connected red subgraph H with $n - 2(k - 1) - 1$ vertices. Set $U = V(H)$, $W = V(K_n) \setminus U$ and observe that any vertex of W sends at most $k - 1$ red edges to U, consequently each vertex of W sends at least $|U| - (k - 1) = n - 3k + 2$ blue edges to U.

Let $B = [U, W]$ be the bipartite subgraph determined by the blue edges. Let U_1 denote the set of vertices in U with degree less than k in B. It follows easily that $|U_1| \leq (2k - 1)(k - 1)/k < 2k - 1$. We claim that the subgraph $B_1 = [U \setminus U_1, W]$ of B is k-connected, contradicting the choice of K_n.

Indeed, assume that B_1 has a disconnecting set S with at most $k - 1$ vertices and write C_1, \ldots, C_p for the components of $B_1 \setminus S$, $p > 1$. Each component C_i intersects W, since otherwise a vertex of C_i could send at most $|S \cap W| < k - 1$ blue edges to W. Furthermore, each component C_i intersects $U \setminus U_1$ as well, since otherwise a vertex of C_i could send at most $2k - 2 + (k - 1) < n - 3k + 2$ blue edges to U. As

\[
|U \setminus (U_1 \cup (S \cap U))| \geq n - 2k + 1 - (2k - 2) - (k - 1)
= n - 5k + 4 \geq (7k - 5) - 5k + 4 = 2k - 1,
\]

selecting an index j such that $|C_j \cap U| (1 \leq j \leq p)$ is smallest, we have that $|U \setminus (S \cup C_j)| \geq k$. But this implies that any vertex of $C_j \cap W$ is nonadjacent to at least k vertices of U in B, which is a contradiction. □

For general k we prove only a simple result with constants weaker than in Conjecture 1.
Theorem 1. For \(n \geq 16k - 22, k \geq 2 \), every 2-colored \(K_n \) contains a \(k \)-connected monochromatic subgraph with at least \(n - 6(2k - 3) \) vertices.

Corollary 1. Every 2-colored \(K_n \) contains a \(\lceil n/16 \rceil \)-connected subgraph with at least \(n/4 \) vertices.

It is natural to define
\[
f(n) = \max\{k : \text{every 2-coloring of } K_n \text{ contains a } k\text{-connected monochromatic subgraph}\}.
\]

Corollary 1 and the graphs \(B(k) \) show that
\[
\left\lfloor \frac{n}{16} \right\rfloor \leq f(n) \leq \left\lfloor \frac{n}{4} \right\rfloor.
\]

An affirmative answer to Conjecture 1 would show that the second inequality in (1) is, in fact, an equality.

Conjecture 2. Every 2-colored \(K_n \) contains an \(\lceil n/4 \rceil \)-connected monochromatic subgraph.

Lemma 1. Assume that \(G \) is a graph with \(n \) vertices and has minimal degree at least \(2(k - 1) \). Then either \(G \) is \(k \)-connected or \(\overline{G} \) has a \(k \)-connected subgraph with at least \(n - k + 1 \) vertices.

Proof. If \(G \) is not \(k \)-connected then for some set \(W \) of \(k - 1 \) vertices the graph \(F = G \setminus W \) is disconnected. Since each component of \(F \) has at least \(k \) vertices, \(F \subseteq \overline{G} \) is \(k \)-connected. \(\square \)

Lemma 1 (which will be also used in the proof of Theorem 1) combined with a result of Tuza and the second author [13] improves the first inequality in (1).

Theorem 2. For all \(n \geq 1 \), we have \(f(n) \geq n/(4 + 2\sqrt{2}) \).

Proof. An easy calculation shows that any 2-colored \(K_n \) has a monochromatic subgraph with minimal degree at least \(n/(2 + \sqrt{2}) \) (see [13], where it is also mentioned that this estimate is sharp up to a constant error term). Now the theorem follows from Lemma 1. \(\square \)

Proof of Theorem 1. Select sets of vertices \(X = \{x_1, \ldots, x_p\} \) and \(Y = \{y_1, \ldots, y_q\} \) so that (i) for every \(i = 1, \ldots, p \) the degree of \(x_i \) in the red subgraph spanned by \(V \setminus \{x_1, \ldots, x_{i-1}\} \) is less than \(2(k - 1) \); (ii) for every \(j = 1, \ldots, q \) the degree of \(y_j \) in the blue subgraph spanned by \(V \setminus \{y_1, \ldots, y_{j-1}\} \) is less than \(2(k - 1) \); (iii) \(p + q \) is maximal with respect to the first two conditions. The existence of the required sets \(X, Y \) follows immediately from an application of the obvious greedy algorithm: build \(X, Y \) by adding new vertices until the first two conditions hold. To start the algorithm, notice that the red (blue) subgraph has a vertex \(x_i \) (\(y_j \)) of degree less than \(2(k - 1) \) otherwise Theorem 1 follows from Lemma 1. Thus \(X = \{x_i\}, Y = \{y_j\} \) is a good initial choice.

We claim that \(\min\{p, q\} \leq 6(2k - 3) \). Set \(|X \cap Y| = r, |X \setminus Y| = u, |Y \setminus X| = v \). Observe that (i) and (ii) imply the following edge-count inequalities:
\[
uv \leq (u + v)(2k - 3), \quad \binom{r}{2} + ur \leq (r + u)(4k - 6) \quad \text{and} \quad \binom{r}{2} + vr \leq (r + v)(4k - 6).
\]

Assume that \(u \leq v \), so that \(\min\{p, q\} = u + r \). The first inequality gives \(u \leq 2(2k - 3) \) and the second yields
\[
r \leq \frac{r + u}{(r - 1)/2 + u} \leq 6(2k - 3),
\]

proving the claim.

Without loss of generality, assume that \(|X| \leq 6(2k - 3) \). By conditions (i) and (iii), the red subgraph \(G_R \) on \(V \setminus X \) has minimal degree \(2(k - 1) \). By Lemma 1, either \(G_R \) is \(k \)-connected or has a \(k \)-connected blue subgraph \(G_B \) with at least \(|G_R| - k + 1 \) vertices. In the first case \(|G_R| \geq n - p \geq n - 6(2k - 3) \), so \(G_R \) satisfies our requirements.
In the second case every vertex of X sends to G_B at least $|G_B| - (2k - 3) \geq n - 6(2k - 3) - (k - 1) - (2k - 3) \geq k$ blue edges, with the last inequality coming from the assumption $n \geq 16k - 22$. Therefore the subgraph $G_B \cup X$ is k-connected in blue and has at least $n - k + 1$ vertices, so $G_B \cup X$ has the required properties. □

Acknowledgment

Thanks for an unknown referee for pointing out an inaccuracy in the original version of the paper.

References

[3] A. Bialostocki, W. Voxman, P. Dierker, Either a graph or its complement is connected: a continuing saga, manuscript.
[6] S.A. Burr, Either a graph or its complement contains a spanning broom, manuscript.