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Abstract

We conjecture that for any fixed r and sufficiently large n, there is
a monochromatic Hamiltonian Berge-cycle in every (r − 1)-coloring of

the edges of K
(r)
n , the complete r-uniform hypergraph on n vertices. We

prove the conjecture for r = 3, n ≥ 5 and its asymptotic version for
r = 4. For general r we prove weaker forms of the conjecture: there is
a Hamiltonian Berge-cycle in b(r − 1)/2c-colorings of K

(r)
n for large n;

and a Berge-cycle of order (1− o(1))n in (r − blog2 rc)-colorings of K
(r)
n .

The asymptotic results are obtained with the Regularity Lemma via the
existence of monochromatic connected almost perfect matchings in the
multicolored shadow graph induced by the coloring of K

(r)
n .

1 Introduction

Let H be an r-uniform hypergraph (a family of some r-element subsets of a
set). For vertices x, y ∈ V (H) we say x is adjacent to y, if there exists an edge
e ∈ E(H) such that x, y ∈ e. Let K

(r)
n denote the complete r-uniform hypergraph

on n vertices. An r-uniform `-cycle, or Berge-cycle of length `, denoted C
(r)
` ,

is a sequence of distinct vertices v1, v2, . . . , v`, the core of the cycle , together
with a set of distinct edges e1, . . . , e` such that ei contains vi, vi+1 ( v`+1 ≡ v1).
When the uniformity is clearly understood we may simply write C` for C

(r)
` . A

Berge-cycle of length n in a hypergraph of n vertices is called a Hamiltonian
Berge-cycle.

Let Rk(C(r)
` ) denote the Ramsey number of the r-uniform ` cycle using k

colors, that is the smallest n such that every k–coloring of the edges of K
(r)
n

admits a monochromatic Berge-cycle of length `. It is important to keep in
mind that - in contrast to the case r = 2 - a Berge-cycle C

(r)
` is not determined

uniquely for r > 2; it is considered as an arbitrary choice from many possible
cycles with the same pair of parameters. It is worth mentioning two special
Berge-cycles, the loose and the tight cycles. In a loose cycle the edges of the
cycle intersect the core sequence in consecutive pairs and are pairwise disjoint
outside the core, while in a tight cycle the edges are the consecutive r-element
subsets of the core sequence. The asymptotic values of 2-color Ramsey numbers
for loose and tight cycles have been determined recently, see [16], [17].

In this paper we give a conjecture about the Ramsey number of a Hamil-
tonian Berge-cycle in hypergraphs. Thinking in terms of graphs, such an at-
tempt seems hopeless, since in many 2-colorings of Kn there are no monochro-
matic Hamiltonian cycles. For example, if each edge incident to a fixed vertex is
red and the other edges are blue, there is no monochromatic Hamiltonian cycle.
However, from the nature of Berge-cycles, this example does not extend to hy-
pergraphs. If K

(3)
n is colored in this way, there is a red Hamiltonian Berge-cycle

(for n ≥ 5).

Conjecture 1.1. Assume that r ≥ 2 is fixed and n is sufficiently large. Then
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every (r − 1)-coloring of K
(r)
n contains a monochromatic Hamiltonian Berge-

cycle.

It is worth noting that the number of colors, r − 1, cannot be increased in
the conjecture. A construction in [14] shows that for r colors the size of the
largest monochromatic Berge-cycle can be at most (2r − 2)n/(2r − 1).

In Section 2 we shall prove Conjecture 1.1 for r = 3 and a general but weaker
form for r ≥ 4 when the number of colors is b(r − 1)/2c.
Theorem 1.2. If K

(3)
n , n ≥ 5, is colored with two colors, then there exists a

monochromatic Hamiltonian Berge–cycle.

Theorem 1.3. If K
(r)
n , r ≥ 4, is colored with b(r − 1)/2c colors, and n is

sufficiently large, then there exists a monochromatic Hamiltonian Berge-cycle.

In Sections 3 and 4 we prove our main results, Conjecture 1.1 for r = 4 in
asymptotic form, and a weaker version for general r.

Theorem 1.4. For all η > 0 there exists n0 = n0(η) such that every coloring of
the edges of K

(4)
n , n > n0, with 3 colors contains a monochromatic Berge-cycle

of length at least (1− η)n.

Theorem 1.5. For all η > 0 and all integers r, k ≥ 2 with r ≥ k+blog2(k+1)c,
there exists n0 = n0(η, r, k) such that for every n > n0, every coloring of the
edges of K

(r)
n with k colors contains a monochromatic Berge-cycle of length at

least (1− η)n.

The proofs of Theorems 1.4 and 1.5 use the approach of [14]. Assume that
H is an r-uniform hypergraph. The shadow graph of H is defined as the graph
Γ(H) on the same vertex set, where two vertices are adjacent if they are covered
by at least one edge of H. A coloring of the edges of an r-uniform hypergraph
H, r ≥ 2, induces a multicoloring on the edges of the shadow graph Γ(H) in a
natural way; every edge e of Γ(H) receives the color of each hyperedge containing
e. A multi-coloring obtained in this way will be called an r-uniform coloring of
Γ(H).

We shall assume that n = |V (H)| tends to infinity and define an almost
Hamiltonian Berge-cycle of H as a Berge-cycle of length (1− o(1))n. Similarly,
a set of pairwise disjoint edges of the shadow graph saturating n− o(n) vertices
is called an almost perfect matching of Γ(H). An r-uniform hypergraph is
almost complete, if it has at least (1 − o(1))

(
n
r

)
edges. A matching in a graph

is connected if its edges are in the same connected component of the graph.
Following the method established in [24] and refined later in various papers,

see [6],[10],[11],[14], [16],[17], [19], the asymptotic version of Conjecture 1.1 can
be reduced to the following conjecture, which seems to have independent inter-
est.

Conjecture 1.6. Assume that r ≥ 2 is fixed, H is an almost complete r-uniform
hypergraph with n vertices, and its edges are colored with r− 1 colors. Then the
r-uniform coloring induced on its shadow graph Γ(H) contains a monochromatic
almost perfect connected matching.
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Here is the outline how to derive the asymptotic version of Conjecture 1.1.
If Conjecture 1.6 is true then for any given η > 0 there is a small enough ε such
that for every (r − 1)-coloring of an r-uniform (1 − ε)-complete hypergraph H
(missing at most ε

(
n
r

)
edges ), the induced coloring on Γ(H) has a monochro-

matic connected matching covering at least (1− η)|V (Γ(H))| vertices. Consider
an (r − 1)-coloring of H = K

(r)
n and take an ε-regular partition on its vertices

into clusters. (Here we apply a ”colored” hypergraph-version of the Regularity
Lemma.) Then Conjecture 1.6 is applicable to HR, the ”reduced hypergraph”
associated to the clusters and equipped with the standard majority coloring.
This gives a large monochromatic connected matching in the shadow graph of
HR. The final step is completed by Lemma 4.2 to appropriately connect the
vertices of the clusters associated with the matching, to form a monochromatic
Berge-cycle of length at least (1− 3ε)(1− η)n in H = K

(r)
n .

We give an inductive argument in (Proposition 3.5) showing that it is enough
to prove Conjecture 1.6 in a weaker form, dropping the connectivity condition of
the required large monochromatic matching. This allows us to prove our results
inductively, starting from the case k = 1, r = 2. We prove Conjecture 1.6 in in
Section 3 for r = 2, 3, 4. In general we can prove only Theorem 3.9, a weaker
version of the conjecture, where the number of colors is the largest integer k
such that k + blog2(k + 1)c ≤ r ( k is at least r − blog2 rc). In Section 4 we
show how to use the Regularity Lemma to convert connected matchings into
Berge-cycles, i.e. how to finish the proof of Theorems 1.4 and 1.5.

2 Monochromatic Hamiltonian Berge-cycles

Proof of Theorem 1.2. If n = 5, let Hr and Hb be the hypergraphs formed by
the red and blue edges, respectively, in a 2-coloring of K

(3)
5 . Easy inspection

shows that a 3-uniform hypergraph H with five vertices and at least five edges
has a Berge-cycle C

(3)
5 unless H is isomorphic to K

(3)
4 extended with an edge

that intersects V (K(3)
4 ) in two vertices. Because one of Hr and Hb must be

different from this exceptional hypergraph, the theorem follows for n = 5.
For n > 5 we proceed by induction. Assume that the vertex set of a 2-

colored K
(3)
n is [n] and let P = (1, 2, . . . , n − 1) be a cyclic permutation of

[n− 1] representing the core sequence of a red Berge-cycle C
(3)
n−1 that exists by

induction. Color the consecutive pairs (i, i + 1) of P with the color of the edge
{n, i, i + 1} ∈ E(K(3)

n ). If the pairs (i, i + 1) and (i + 1, i + 2) are both red
then we have a red C

(3)
n with the core sequence obtained by inserting n between

i + 1 and i + 2 and using the red edges {i, i + 1, n} and {n, i + 1, i + 2} to cover
(i+1, n) and (n, i+2). Similarly, if (i, i+1) is red and at least one of the edges
{i, n, j} (j 6= i + 1) and {i + 1, n, j} (j 6= i) is red, we obtain a red Berge-cycle
C

(3)
n .

Therefore, if (ai, bi), i = 1, . . . , k are the red consecutive pairs of P following
the orientation on P , then we may assume that every {n, ai, x} (x 6= bi) and
every {n, bi, y} (y 6= ai) is blue. This allows us to easily find a blue Berge-cycle
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C
(3)
n as follows. If k = 1 then the blue core sequence Q is obtained from P by

including n in P between a1 and b1. To obtain the blue C
(3)
n , use the blue edges

{a1, n, b1+1} and {n, b1, a1−1} to cover the pairs (a1, n) and (n, b1), then use the
blue edges {n, i, i + 1} to cover all other consecutive pairs. Otherwise, Q is de-
fined by the cyclic order Q = (a1, a2,−, b1, a3,−, b2, a4,−, . . . ,−, bk−1, n, bk, +)
where the minuses indicate blue subpaths following P backwards and the plus
means a subpath following P forward. By the assumption, every consecutive
pair on Q which does not contain n can be extended to a blue triple by adding
n to it. The pairs (bk−1, n) and (n, bk) can be extended to a blue edge by bk

and ak−1, respectively, thus defining a blue Berge-cycle C
(3)
n . ¤

Proof of Theorem 1.3. It is enough to prove the theorem for odd r, r = 2t+1,
t ≥ 1. Indeed, since for r = 2t + 2 the same number of colors are used, one can
have a color transfer by any injection of the (2t + 1)-element subsets of [n] into
their 2t + 2-element supersets (n ≥ 4t + 2 will be ensured). Then the theorem
follows from the next proposition.

Proposition 2.1. If t ≥ 1, n ≥ 2t2 − 2t + 7, then Rt(C
(2t+1)
n ) = n.

We first prove the following lemma.

Lemma 2.2. Let c be a fixed positive integer and let n ≥ 3c + 4. Then a 3-
uniform hypergraph H of order n with at least

(
n
3

)− cn edges has a Hamiltonian
Berge-cycle.

Proof. By averaging, there exists a vertex x ∈ V (H) contained in at least(
n−1

2

)−3c triples of H. Each such triple {x, y, z} defines an edge yz in a graph G

with vertex set V (H)\{x}. The condition
(
n−1

2

)−3c ≥ (
n−2

2

)
+2 (which is equiv-

alent to n ≥ 3c + 4) implies that G contains a Hamiltonian cycle (x1, . . . , xn−1)
with a chord, say x1xj ∈ E(G) with j 6∈{2, n− 1}. This corresponds to the core
sequence of a Berge-cycle in H with edges {xi, xi+1, x}, i = 1, . . . , n− 1, where
xn ≡ x1. Then the vertex x can be inserted between x1 and x2 using the edges
{x1, x, xj} and {x, x2, x1}, thus yielding a Hamiltonian Berge-cycle in H. ¤

For S ⊆ V (K(r)
n ), |S| ≤ r, let ES = {e | e ∈ E(K(r)

n ) with S ⊆ e}. We shall
prove Proposition 2.1 in a stronger form as follows.

Lemma 2.3. For t ≥ 1, n ≥ 2t2 − 2t + 7, let S ⊆ V (K(2t+1)
n ) be a set of even

cardinality with 0 ≤ |S| ≤ 2t − 2, and color a subset of m edges in ES with
u = t − |S|/2 colors. If m ≥ (

n−|S|
2t+1−|S|

) − (t − u)n > 0, then ES contains a
monochromatic Hamiltonian Berge-cycle.

Proof. Let FS ⊆ ES , |FS | = m, be the set of colored edges in ES . Fix t ≥ 1.
The proof is by induction on u. If u = 1, then |S| = 2t−2 and since n ≥ 2t2−2t,
we obtain that

m ≥ (
n−|S|

2t+1−|S|
)− (t− 1)n =

(
n−2t+2

3

)− (t− 1)n

≥ (
n−2t+2

3

)− t(n− 2t + 2) .
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Define the 3-uniform hypergraphHS with V (HS) = V (K(2t+1)
n )\S and E(HS) =

{e \ S | e ∈ FS}. Clearly n− 2t + 2 ≥ 3t + 4, thus Lemma 2.2 implies that HS

contains a Hamiltonian Berge-cycle C
(3)
n−2t+2. Because the corresponding Berge-

cycle C
(2t+1)
n−2t+2 in ES uses only n− 2t + 2 edges of FS , it is easy to extend it by

including all vertices of S into a Hamiltonian Berge-cycle C
(2t+1)
n .

Let u ≥ 2, |S| = 2t − 2u, |FS | = m ≥ (
n−|S|

2t+1−|S|
) − (t − u)n > 0, and

assume that the theorem holds for (u − 1)-colorings. Let ` be the maximum
length of a monochromatic Berge-cycle of FS . Suppose ` < n, and C

(2t+1)
`

is a maximum Berge-cycle in color 1 with core sequence (z1, z2, . . . , z`). Let
z ∈ V (K(2t+1)

n ) \ V (C(2t+1
` )).

If there is a j, 1 ≤ j ≤ `, such that some e ∈ ES∪{z,zj} is in color 1, then by
the maximality of `, no edge in ES∪{z,zj−1} \ E(C(2t+1)

` + e) is colored with 1.
Therefore, all but at most (t− u)n + ` + 1 ≤ (t− u + 1)n edges of ES∪{z,zj−1}
are colored with u − 1 colors. In this case let S′ be any set of |S| + 2 vertices
containing S ∪ {z, zj−1}.

If the condition above fails, then for each j, 1 ≤ j ≤ `, all but possibly (t−u)n
uncolored edges in ES∪{z,zj} \E(C(2t+1)

` ) are in one of the colors 2, 3, . . . , u. In
this case let S′ be any set of |S|+ 2 vertices containing S ∪ {z, zj}.

In either case we have |S′| = 2t− 2(u− 1), furthermore,

m′ ≥ |ES′ | − (t− u + 1)n =
(

n− |S′|
2t + 1− |S′|

)
− (t− (u− 1))n > 0

edges of ES′ are colored with at most u−1 colors. By induction, ES′ contains a
monochromatic Hamiltonian Berge-cycle C

(2t+1)
n , contradicting the maximality

of `. ¤
The proof of Proposition 2.1 and thus Theorem 1.3 follow applying Lemma

2.3 with S = ∅. ¤

3 Almost perfect connected matchings in almost
complete hypergraphs

Throughout this section r ≥ 2 is a fixed integer, 0 < ε < 1 is a fixed and arbitrary
small real, and n approaches infinity (thus is arbitrarily large). Hypergraph H
is a (1 − ε)-complete r-uniform hypergraph on n vertices, i.e. is obtained from
K

(r)
n by deleting at most ε

(
n
r

)
edges. For easier computation we shall assume

that |E(H)| ≥ (1−ε)nr/r!. A coloring of the edges of H induces a multicoloring
on the shadow graph Γ(H) that will be called an almost complete r-uniform
coloring of Γ(H).

Different technical lemmas have been used earlier to handle almost complete
graphs and 3-uniform hypergraphs (see [10], [16]). We introduce here a tool, the
concept of sequential selection, that proves to be convenient for almost complete
hypergraphs in general when one needs to show that there exists at least one
edge at a prescribed spot or there are many edges where they need to be.
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For 0 < δ < 1 fixed, a sequence L ⊂ V (H) of k distinct vertices is called
a δ-bounded selection if its elements are chosen in k consecutive steps so that
in each step there are at most δn forbidden vertices that cannot be included as
the next element. Observe that a δ-bounded selection L is also a δ′-bounded
selection for any δ′ > δ.

In the subsequent applications when specifying a sequential selection of
length k, 0 ≤ k ≤ r, we would like to guarantee that at least (1−δ)nr−k/(r − k)!
edges of H contain the selection. We shall see that this is always possible in a
(1− ε)-complete hypergraph, because at each step there are at most δn forbid-
den vertices, where δ depends only on ε. For k = 0 we need that H has at least
(1− δ)nr/r! edges, which is obvious with ε = δ. For larger k our argument will
be based on the following recurrence lemma.

Lemma 3.1. Let L0 ⊂ V (H) be contained in at least (1 − δ0) nr−|L0|
(r−|L0|)! edges

of H. If |L0| < r and δ =
√

δ0, then there exists F0 ⊂ V (H), |F0| ≤ δn, such
that for every x ∈ V (H) \ (L0 ∪ F0) at least (1 − δ) nr−|L|

(r−|L|)! edges of H contain
L = L0 ∪ {x}.
Proof. Let |L0| = i. By the assumption, there are β ≤ δ0n

r−i/(r − i)! distinct
(r − i)-element “bad” subsets B ⊆ V (H) \ L0 with L0 ∪ B /∈ E(H). Let F0 ⊆
V (H) \L0 be the set of all vertices contained in more than δnr−i−1/(r − i− 1)!
distinct (r − i)-element bad sets. We clearly have β ≥ |F0|δnr−i−1/(r − i)!.

By comparing these two bounds on β, we obtain that |F0| ≤ δ0
δ n = δn and

the lemma follows. ¤

Lemma 3.1 immediately gives the following.

Lemma 3.2. Assume that H is a (1 − ε)-complete r-uniform hypergraph (r ≥
2) and set δ = ε2

−r

. There are forbidden sets such that for every δ-bounded
selection L ⊂ V (H) of length at most r, at least (1 − δ) nr−|L|

(r−|L|)! edges of H
contain L.

Proof. Let δ0 = ε and let δi+1 = δ
1/2
i , for i = 0, 1, . . . , r − 1. By applying

successively Lemma 3.1 as an arbitrary sequential selection process, we obtain
the forbidden sets Fi ⊂ V (H), i = 0, . . . , r, such that |Fi| ≤ δin. Because δ0 <
δ1 < · · · < δr, every δk-bounded selection of length k (0 ≤ k ≤ r) is contained
in at least (1− δk)nr−k/(n− k)! edges of H. Hence every δr-bounded selection
L ⊂ V (H) is contained in at least (1− δr)nr−|L|/(r − |L|)! edges of H and the
lemma follows by choosing δ = δr = ε2−r. ¤

When applying Lemma 3.2, a δ-bounded selection L with |L| = r will be
used most of the time, in which case L becomes an edge of H. Throughout this
paper we shall use δ = ε2

−r

as defined in Lemma 3.2.
A matching in a graph of order n saturating (1 − δ)n vertices is called a

(1 − δ)-perfect matching. In an r-uniform multicoloring of the edges of the
shadow graph Γ(H) = (V,E) the set of colors present on xy ∈ E is denoted
by c(xy). If χ ∈ c(xy) we say that xy is a χ-edge, or x and y are χ-neighbors.
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Let Eχ be the set of all χ-edges, and let Gχ = (V, Eχ). A matching of Gχ is
a connected matching, if every matching edge belongs to the same connected
component of Gχ. In particular, if Gχ is a connected graph on V , then every
matching is automatically a connected one.

Proposition 3.3. Assume H is an arbitrary hypergraph and 0 < δ < 1/3. It
is either possible to delete at most δn vertices from H so that the remaining
hypergraph H′ is connected or the connected components of H can be partitioned
into two groups so that each group contains more than δn vertices.

Proof. Mark the connected components of H until the union of them has at
most δn vertices. If one unmarked component remains, let it be H′. Otherwise,
we form two groups from the unmarked components. The larger group has
order at least (n− δn)/2 > δn, and the smaller one together with the marked
components have a union containing more than δn vertices as well. ¤

Proposition 3.4. An almost complete r-uniform hypergraph has a connected
component that admits an almost perfect connected matching in its shadow
graph.

Proof. Choose an ε such that δ = ε2
−r

< 1/3. Let H be a (1 − ε)-complete
r-uniform hypergraph (r ≥ 2).

Proposition 3.3 is applied to H, it gives two possibilities, we show that the
second can not hold. Indeed, suppose that there is a partition X ∪ Y = V (H)
of the components of H such that |X|, |Y | > δn. Apply Lemma 3.2 and let us
consider a δ-bounded selection L = (x, y) such that x ∈ X, y ∈ Y . Since there is
an edge e ∈ E(H) containing L, we obtain e∩X 6= ∅, e∩Y 6= ∅, a contradiction.

Thus the first possibility holds, so we can delete at most δn vertices from
H so that the remaining hypergraph H′ is connected, so a maximum matching
M in Γ(H′) is connected. Moreover, M saturates all but at most δn vertices in
Γ(H′). Indeed, otherwise let U ⊂ V (H′) be the set of vertices unsaturated by M .
Apply Lemma 3.2 with a δ-bounded selection L = (x1, x2) ⊂ U. Then there is an
edge e ∈ E(H) with x1, x2 ∈ e, thus x1x2 is an edge of Γ(H), contradicting the
maximality of M . Hence Γ(H) has a (1− 2δ)-perfect connected matching. ¤

In Section 4 we shall discuss how connected matchings of the shadow graph
can be be converted into Hamiltonian Berge-cycles. Here we show how to remove
the connectivity requirement imposed on the matchings in Conjecture 1.6 by an
inductive argument. For a compact formulation, let S(k, r) denote the state-
ment of Conjecture 1.6 with parameters k, r: any r-uniform k-coloring induced
on the shadow graph of an almost complete r-uniform hypergraph contains a
monochromatic almost perfect connected matching. The statement S−(k, r)
is the weakening of S(k, r) by dropping the connectivity requirement from its
conclusion.

Proposition 3.5. Assume that 1 ≤ k < r and S(k, r), S−(k +1, r +1) are both
true. Then S(k + 1, r + 1) is also true.
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Proof. To prove S(k + 1, r + 1), let H be an almost complete (r + 1)-uniform
hypergraph colored with colors 1, 2, . . . , k + 1. By the assumption that S−(k +
1, r + 1) is true, this coloring admits a monochromatic almost perfect matching
M , say in color k +1. Let H(k +1) be the hypergraph determined by the edges
of color k + 1 and apply Proposition 3.3 to it. If the first possibility holds, i.e.
H(k + 1) has a connected component C containing all but at most δn vertices,
we are done by deleting from M the edges outside C.

If the second possibility holds, the vertex set of H(k + 1) has a partition
X ∪ Y such that |X|, |Y | > δn and every edge e ∈ E(H) with e ∩ X 6= ∅ and
e ∩ Y 6= ∅ has a color different from k + 1.

Apply Lemma 3.2 to H, and consider the r-uniform hypergraph H∗ defined
by the vertex sets of the sequences obtained by δ-bounded selections of r vertices.
By Lemma 3.2, each edge f of H∗ is contained in at least (1 − δ)nr+1−r/(r +
1−r)! = (1−δ)n edges of H. Therefore (using also that |X|, |Y | are both larger
than δn), there exists e ∈ H, f ⊂ e such that e intersect both X and Y . Use
the color χ 6= k + 1 of e to color f . Since H∗ has at least (1− δ)rnr/r! edges,
k-colored and r-uniform, S(k, r) applies to it, giving a monochromatic almost
perfect connected matching M in Γ(H∗). To conclude the proof, observe that
M is a connected matching in Γ(H) as well. ¤

Due to Proposition 3.5, when looking for almost perfect connected matchings
of Γ(H) in some color, it is enough to find arbitrary (not necessarily connected)
matchings. Next we introduce the concept of a strong transversal that proves
to be helpful in the forthcoming investigation.

Assume that Γ(H) is colored with 1, 2, . . . , k, let Mi ⊆ V be the vertex
set saturated by a maximum monochromatic matching Mi in color i, and set
Ci = V \Mi, for i = 1, . . . , k. A vertex x ∈ Mi with at least two i-neighbors
in Ci is called exposed, otherwise it is unexposed . Observe that every edge of
Mi has at least one unexposed vertex otherwise there is an augmenting path of
three edges, contradicting the maximality of Mi.

Let Wi ⊆ Mi be the set of all exposed vertices in color i. In the set Si =
Mi \Wi of the unexposed vertices every vertex u has at most one i-neighbor in
Ci. If such an i-neighbor v ∈ Ci of u ∈ Si exists, we say that the ordered pair
(u, v) is exceptional in color i. From the nature of r-uniform colorings, the same
ordered pair can be exceptional in many colors. Also, it is quite conceivable
that both (u, v) and (v, u) are exceptional (in different colors). Let D be the
digraph whose vertex set is V and whose arc set is the set of exceptional ordered
pairs. Notice that every vertex of D has outdegree at most k.

The k partitions V = Ci∪Si∪Wi, i = 1, . . . , k, decompose V into 3k atoms,
the atom A(x) of a vertex x ∈ V is obtained by specifying for each i which
element of {Ci, Si,Wi} contains x. We shall assume that each of these atoms
is either empty or has cardinality proportional to n. Otherwise, removing all
vertices of a ‘small’ atom from the shadow graph would reduce its order by o(n),
an immaterial change in size when seeking almost perfect matchings.

A set T ⊂ V is a strong transversal (with respect to a k-coloring and a fixed
selection of maximum matchings in each color) if for every i = 1, . . . , k, either

9



|T ∩ Ci| ≥ 2 or both T ∩ Ci and T ∩ Si are non-empty sets. Observe that for
n > 1 strong transversals exist if (and only if) each Ci is non-empty. Indeed, to
define a strong transversal with at most 2k elements, simply pick one element
from each Ci and from each Si with |Si| > 0. If |Si| = 0, i.e. color i is not
present at all, pick two elements from Ci. The reason for interest in strong
transversals is the following lemma.

Lemma 3.6. Let T be a strong transversal in a k-coloring of an almost complete
r-uniform hypergraph H with n vertices. If each non-empty atom of the coloring
has more than u = r(2k + δn) vertices, then |T | > r.

Proof. Assume to the contrary that there is a strong transversal T with t =
|T | ≤ r. Apply Lemma 3.2 considering a δ-bounded selections to define another
strong transversal L = (x1, x2, . . . , xt) containing no arcs from D. The vertices
of L will be selected from Z1 ⊇ Z2 · · · ⊇ Zt defined as follows.

Set T1 = T, Z1 = ∪x∈T1A(x) \ U1 where U1 is the set of forbidden vertices
for x1 (|U1| ≤ δn). Let x1 be a vertex of minimum indegree (at most k) in
D[Z1] . Assume that Ti, Zi, xi are already defined for some 1 ≤ i < t. Let
Ti+1 = Ti \ {y}, where y ∈ Ti ∩A(xi), and

Zi+1 = Zi ∩
(∪x∈Ti+1A(x)

) \ (N+
Zi

(xi) ∪N−
Zi

(xi) ∪ Ui+1)

where Ui+1 is the set of forbidden vertices for xi+1 (|Ui+1| ≤ δn) and N−
Zi

, N+
Zi

are the set of endpoints of incoming and outgoing arcs of xi in the subgraph
D[Zi]. Let xi+1 be a vertex of minimum indegree (at most k) in D[Zi+1].

For each i, i = 0, 1, . . . , i, the outdegree of vertex xi+1 is at most k in D[Zi+1]
(at most one in each color) and its indegree is also at most k in D[Zi+1] since a
vertex of minimum indegree was selected. Hence in each step, before selecting
the next element into L, at most 2k + δn vertices are removed from any atom.
The number of steps is |L| = t ≤ r and initially each atom has more than
u = r(2k + δn) vertices. Thus Zt is non-empty so L is well defined.

Observe that no arc of D is contained in L. Indeed, consider xj , xi ∈ L,
1 ≤ j < i ≤ t and notice that no vertex of N+

Zj
(xj) ∪N−

Zj
(xj) is in Zj+1 so not

in Zi ⊆ Zj+1.
The set L is a strong transversal because its vertices are selected from the

same set of atoms (with the same multiplicity) as the set of atoms containing
T .

Notice that L ⊆ e for some e ∈ E(H) such that L ⊆ e. If χ is the color of
e, then each pair x, y ∈ L is a χ-edge of Γ(H). Since L is a strong transversal,
either |L ∩Cχ| ≥ 2 or both L ∩Cχ and L ∩ Sχ are non-empty. In the first case
if x, y ∈ L ∩ Cχ, then the χ-edge xy extends Mχ contradicting the maximality
of Mχ. In the second case let x ∈ Sχ and y ∈ Cχ. Because there is at most one
χ-edge from the unexposed vertex x ∈ Sχ to Cχ, the arc xy must belong to D.
However, no ordered pair of L appears in D, a contradiction. ¤

We prove Conjecture 1.6 next for r = 3. Although a direct simpler proof is
possible, we prove it with the method that will be applied for the case r = 4.
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Theorem 3.7. Every 2-coloring of an almost complete 3-uniform hypergraph
H admits a monochromatic almost perfect connected matching in Γ(H).

Proof. Using Proposition 3.4 with r = 2 and Proposition 3.5, it is enough to
find an almost perfect monochromatic matching. To be able to apply Lemma
3.6, we first delete all (non-empty) atoms of size at most 3(4+δn) from V (Γ(H))
- for convenience, we keep all notations for the remaining set of vertices. We
may assume that the sets Ci, i = 1, 2, are non-empty - consequently large, say
|Ci| > δn - since otherwise, there is an almost perfect matching in some color.
Notice that the existence of a strong transversal T with at most three vertices
contradicts Lemma 3.6 finishing the proof.

We may also assume that no Si, i = 1, 2, is empty (consequently each is
large). Assume not, say S1 is empty. This means that no edge of Γ(H) is
colored by color 1, so C1 contains all vertices (but at most one). Therefore
picking two vertices from C2 we have a strong transversal - contradiction.

Observe that |Ci ∪Si| ≥ |Ci|+ |Mi|/2 = |Ci|+ |V \Ci|/2 > n/2. Thus there
exists a vertex x ∈ (C1∪S1)∩(C2∪S2). Then for distinct vertices y ∈ C1, z ∈ C2

different from x, T = {x, y, z} is a strong transversal, contradiction. ¤

Theorem 3.8. Every 3-coloring of an almost complete 4-uniform hypergraph
H admits a monochromatic almost perfect connected matching in Γ(H).

Proof. We use notation already introduced above. We shall follow the argument
used in the proof of Theorem 3.7. By Theorem 3.7 and Proposition 3.5, it is
enough to find an almost perfect (not necessarily connected) monochromatic
matching. To be able to apply Lemma 3.6, we first delete all (non-empty)
atoms of size at most 4(6 + δn) from V (Γ(H)) - for convenience, we keep all
notation for the remaining set of vertices. We may assume that the sets Ci,
i = 1, 2, 3 are non-empty - consequently large, say |Ci| > δn - since otherwise,
there is an almost perfect matching in some color. Notice that the existence of a
strong transversal T with at most four vertices contradicts Lemma 3.6 finishing
the proof.

We may also assume that no Si, i = 1, 2, 3 is empty (consequently each is
large). Assume not, say S1 is empty. This means that no edge of Γ(H) is colored
by color 1, so C1 contains all vertices (but at most one). Therefore picking two
vertices from C2 and two vertices from C3 we have a strong transversal, a
contradiction.

Observe that |Ci ∪Si| ≥ |Ci|+ |Mi|/2 = |Ci|+ |V \Ci|/2 > n/2. As a corol-
lary we obtain that any two sets among Ci∪Si, i = 1, 2, 3, have a common vertex.

Case 1: Ci ∩ Cj 6= ∅, for some 1 ≤ i < j ≤ 3. Let k be the third index
different from i and j. If x, y ∈ Ci ∩ Cj , and v, w ∈ Ck, then T = {x, y, v, w} is
a strong transversal, a contradiction.

Case 2: Ci∩Sj 6= ∅ and Cj ∩Sk 6= ∅ for {i, j, k} = {1, 2, 3}. If y, z ∈ Ci∩Sj ,
x ∈ Cj ∩ Sk, and w ∈ Ck, then T = {x, y, z, w} is a strong transversal, a con-
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tradiction.

Case 3: Ci ∩ Sj 6= ∅, for some 1 ≤ i < j ≤ 3, and none of the previous cases
applies. Let k be the third index different from i and j. Then there is a vertex
y ∈ Si ∩ Sk or a vertex y ∈ Ci ∩ Sk. Then let x ∈ Ci ∩ Sj , v ∈ Cj and w ∈ Ck.
In both cases T = {x, y, v, w} is a strong transversal, a contradiction.

Case 4: Si ∩ Sj 6= ∅, for all 1 ≤ i, j ≤ 3. Assume in addition that none of
the previous cases applies, in particular, Ci ∩ Cj = ∅ and Ci ∩ Sj = ∅, for all
1 ≤ i, j ≤ 3.

For every i, j, 1 ≤ i < j ≤ 3, define Uij = Si ∩ Sj , and for the third index
k, let Uk = Sk \ (Si ∪ Sj). Observe that S1 ∩ S2 ∩ S3 = ∅, since otherwise, if
x ∈ S1 ∩ S2 ∩ S3 and yi ∈ Ci, then T = {x, y1, y2, y3} is a strong transversal.
Then it follows that

S1 = U12 ∪ U13 ∪ U1,
S2 = U12 ∪ U23 ∪ U2,
S3 = U13 ∪ U23 ∪ U3 .

Notice that distinct sets in the right hand side are pairwise disjoint, and also
disjoint from each of C1, C2, C3. Let U0 = V \⋃3

i=1(Ci ∪ Si).
In terms of the atoms introduced above the sets of exposed vertices are

partitioned as follows:

W1 = M1 \ S1 = C2 ∪ C3 ∪ U23 ∪ U2 ∪ U3 ∪ U0,
W2 = M2 \ S2 = C1 ∪ C3 ∪ U13 ∪ U1 ∪ U3 ∪ U0,
W3 = M3 \ S3 = C1 ∪ C2 ∪ U12 ∪ U1 ∪ U2 ∪ U0 .

Let wx be an edge of M1 with w ∈ W1. Then x ∈ S1, therefore |S1| =
|U12|+ |U13|+ |U1| ≥ |W1|. We strengthen this inequality as follows. Let A12 ⊆
U12, A13 ⊆ U13 denote the set of vertices matched from W1 by M1. We claim
that at least one of the sets A12, A13 is small, has at most δn vertices. Suppose
this is not the case. Then we can apply Lemma 3.2 with a δ-bounded selection
of vertices, (x2, x3, y2, y3), such that x2 ∈ A12, x3 ∈ A13, y2 ∈ C2, y3 ∈ C3 and yj

is not the exceptional j-neighbor of xj in Cj . Since Q = {x2, x3, y2, y3} ∈ E(H),
Q has some color. But 2 /∈ c(x2y2) and 3 /∈ c(x3y3), so Q is colored with color 1,
consequently 1 ∈ c(x1x2). Let z1, z2 be the other endpoints of the edges of M1

containing x1, x2, respectively. Now there is an augmenting path of length five
in color 1: by the definition of W1, one can select two vertices, p, q ∈ C1 such
that 1 ∈ c(pz1), 1 ∈ c(qz2). Thus replacing {z1x1, z2x2} by {pz1, x1x2, qz2} we
contradict to the maximality of M1. A similar argument holds for each color.

This implies that for color 1, either

(1) |U13|+ |U1|+ δn ≥ |W1| = |C2|+ |C3|+ |U23|+ |U2|+ |U3|+ |U0|

or

(2) |U12|+ |U1|+ δn ≥ |C2|+ |C3|+ |U23|+ |U2|+ |U3|+ |U0| .
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Similarly, for color 2 , either

(3) |U12|+ |U2|+ δn ≥ |C1|+ |C3|+ |U13|+ |U1|+ |U3|+ |U0|

or

(4) |U23|+ |U2|+ δn ≥ |C1|+ |C3|+ |U13|+ |U1|+ |U3|+ |U0|.

Furthermore, for color 3 either

(5) |U23|+ |U3|+ δn ≥ |C1|+ |C2|+ |U12|+ |U1|+ |U2|+ |U0|

or

(6) |U13|+ |U3|+ δn ≥ |C1|+ |C2|+ |U12|+ |U1|+ |U2|+ |U0| .

Without loss of generality we may assume that (1) is true. This inequality
contradicts inequality (4), because their combination results in

|U13|+ |U1|+ δn ≥ |C2|+ |C3|+ (|U23|+ |U2|) + |U3|+ |U0|
≥ |C2|+ |C3|+ (|C1|+ |C3|+ |U13|+ |U1|+ |U3|+ |U0|) + |U3|+ |U0| − δn
≥ |U13|+ |U1|+ |C1|+ |C2|+ 2|C3| − δn > |U13|+ |U1|+ 3δn .

Thus (3) must be true (the last inequality follows from |Ci| > δn). A similar
argument excludes (6) and implies that (5) is true. Then the sum of the in-
equalities (1), (3), and (5) leads to an obvious contradiction. This concludes
Case 4 and the proof of the theorem. ¤

Theorem 3.9. Let k be the largest integer such that k + blog2(k + 1)c ≤ r.
Then every k-coloring of an almost complete r-uniform hypergraph H admits a
monochromatic almost perfect connected matching in its shadow graph.

Proof. We use notation already introduced. Again, by Proposition 3.5, we do
not have to prove the connectivity of the matching. (Notice that the inequality
k + blog2(k +1)c ≤ r is trivially inherited from the pair (k +1, r +1) to the pair
(k, r) and one can start the induction from Theorem 3.8 with (3, 5) or trivially
with (1, 3).) We may delete vertices of atoms of order at most u = r(2k+δn) and
can assume that in the remaining atoms all sets Ci are represented - otherwise
we have the required almost perfect matching. We show that there is a strong
transversal of at most k + blog2(k + 1)c ≤ r vertices, contradicting Lemma 3.6.

Observe that |Ci ∪ Si| > n/2, 1 ≤ i ≤ k (if |Ci ∪ Si| = n/2, we have nothing
to prove, Mi spans all vertices). Therefore

∑k
i=1 |Ci ∪ Si| > nk/2 showing that

some vertex v1 ∈ V is in more than k/2 of the sets Vi = Ci ∪ Si. Repeating the
argument with the sets Vi that do not contain v1, one can eventually obtain a
set T = {v1, v2, . . . , vl} such that l ≤ blog2(k + 1)c and T ∩ Vi 6= ∅, 1 ≤ i ≤ k.
Then T can be extended to a strong transversal T ∗ by adding at most k vertices
to T ; for every i, add a vertex of Ci or Si to T selecting the one that has empty
intersection with T (if both intersect T we do not select anything). ¤
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One easy consequence of Theorem 3.9 is the following.

Corollary 3.10. If k = r − blog2 rc then every k-coloring of an almost com-
plete r-uniform hypergraph H admits a monochromatic almost perfect connected
matching in its shadow graph.

4 From connected matchings to Berge-cycles

Here we show how to transform our asymptotic results on monochromatic con-
nected matchings to asymptotic results on monochromatic Hamiltonian Berge-
cycles with the use of the Regularity Lemma of Szemerédi [28]. Since this
approach is already used in [14], [16], we try to avoid presenting all the details.
We shall assume throughout the rest of the paper that n is sufficiently large and
k and r are fixed.

There are several generalizations of the Regularity Lemma for hypergraphs
due to various authors (see [4], [7], [9], [27] and [29]). Here we will use the
simplest one due to Chung [4]. First we need to define the notion of ε-regularity.
Let ε > 0 and let V1, V2, . . . , Vr be disjoint vertex sets of order m, and let H
be an r-uniform hypergraph such that every edge of H contains exactly one
vertex from each Vi for i = 1, 2, . . . , r. The density of H is dH = |E(H)|

mr . The
r-tuple {V1, V2, . . . , Vr} is called an (ε,H)-regular r-tuple of density dH if for
every choice of Xi ⊂ Vi, |Xi| > ε|Vi|, i = 1, 2, . . . , r we have

∣∣∣∣
|E(H[X1, . . . , Xr])|

|X1| . . . |Xr| − dH

∣∣∣∣ < ε.

Here we denote by H[X1, . . . , Xr] the subhypergraph of H induced by the vertex
set X1∪. . .∪Xr. In this setting the k-color version of the Hypergraph Regularity
Lemma from [4] can be stated as follows.

Lemma 4.1 (k-color Weak Hypergraph Regularity Lemma). For every positive
ε and positive integers t, r, k there are positive integers M and n0 such that for
n ≥ n0 the following holds. For all r-uniform hypergraphs H1, H2, . . . ,Hk with
V (H1) = V (H2) = . . . = V (Hk) = V , |V | = n, there is a partition of V into
l + 1 classes (clusters)

V = V0 + V1 + V2 + ... + Vl

such that

• t ≤ l ≤ M

• |V1| = |V2| = ... = |Vl|
• |V0| < εn

• apart from at most ε
(

l
r

)
exceptional r-tuples, the r-tuples {Vi1 , Vi2 , . . . ,

Vir} are (ε,Hs)-regular for s = 1, 2, . . . , k.
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For an extensive survey on different variants of the Regularity Lemma see
[22].

Consider a k-edge coloring (H1,H2, . . . ,Hk) of the r-uniform complete hy-
pergraph K

(r)
n , i.e. H1 is the subhypergraph induced by the first color, H2 is

the subhypergraph induced by the second color, etc. Hk is the subhypergraph
induced by the k-th color.

We apply the above k-color Weak Hypergraph Regularity Lemma with t = r

and with a small enough ε to obtain a partition of V (K(r)
n ) = V = ∪0≤i≤lVi,

where |Vi| = n−|V0|
l = m, 1 ≤ i ≤ l. We define the following reduced hy-

pergraph HR: The vertices of HR are p1, . . . , pl, and we have an r-edge on
vertices pi1 , pi2 , . . . , pir if the r-tuple {Vi1 , Vi2 , . . . , Vir} is (ε,Hs)-regular for
s = 1, 2, . . . , k. Thus we have a one-to-one correspondence f : pi → Vi be-
tween the vertices of HR and the clusters of the partition. Then,

|E(HR)| ≥ (1− ε)
(

l

r

)
,

and thus HR is a (1 − ε)-complete r-uniform hypergraph on l vertices. Define
a k-edge coloring (HR

1 ,HR
2 , . . . ,HR

k ) of HR with the majority color, i.e. the
r-tuple {pi1 , pi2 , . . . , pir} ∈ E(HR

s ) if s is the most frequent color in the r-tuple
{Vi1 , Vi2 , . . . , Vir} ∈ E(Hs). Note then that the density of this color is ≥ 1/k in
this r-tuple. Finally we consider the multicolored shadow graph Γ(HR). The
vertices are V (HR) = {p1, . . . , pl} and we join vertices x and y by an edge of
color s, s = 1, 2, . . . , k if x and y are contained in an edge of HR that is colored
with color s.

The main lemma that allows us to convert monochromatic connected match-
ings into monochromatic Berge-cycles is the following one.

Lemma 4.2. Assume that for some positive constant c we can find a mono-
chromatic connected matching M saturating at least cl vertices in Γ(HR). Then
in the original k-edge colored K

(r)
n we can find a monochromatic Berge-cycle of

length at least c(1− 3ε)n.

We here again note that the use of a connected matching in this type of
proof (first suggested by [24]) has become somewhat standard by now (see [6],
[10], [11], [12], [13]).

Proof. We may assume that M is in Γ(HR
1 ). Denote the edges of M by M =

{e1, e2, . . . , el1} and thus 2l1 ≥ cl. Furthermore, write f(ei) = (V i
1 , V i

2 ) for
1 ≤ i ≤ l1 where V i

1 , V i
2 are the clusters assigned to the end points of ei.

Next we define good vertices for an arbitrary edge e in Γ(HR
1 ). Let f(e)

be denoted by (V 1, V 2). Since e is an edge in Γ(HR
1 ), the endpoints of e are

contained in an r-edge E in HR
1 . By definition this r-edge corresponds to an

(ε,H1)-regular r-tuple f(E) (containing clusters V 1, V 2 and r−2 more clusters)
that has density ≥ 1/k. We say that a vertex x ∈ V j , j = 1, 2 is good for
V j′ , j′ = 1, 2, j′ 6= j if for at least m/2k vertices y ∈ V j′ , there are at least
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mr−2/2k r-edges in H1[f(E)] containing x and y. The next claim shows that
most vertices are good in each V j .

Claim 1. In each V j , j = 1, 2 the number of vertices that are good for V j′ , j′ =
1, 2, j′ 6= j is at least (1− ε)m.

Indeed, let X ⊂ V j denote the set of vertices in V j that are not good for
V j′ . Assume indirectly that |X| > εm. The total number of r-edges inH1[f(E)]
that contain a vertex from X is smaller than

|X|
(

m

2k
mr−2 + (1− 1

2k
)m

mr−2

2k

)
=

(
1
k
− 1

4k2

)
|X|mr−1, (1)

which contradicts the fact that f(E) is (ε,H1)-regular with density at least 1/k
when ε is small. Thus the claim is true.

The good vertices determine an auxiliary bipartite graph G(V 1, V 2) in the
following natural way. In V j , j = 1, 2 we keep only the vertices that are good
for V j′ , j′ = 1, 2, j′ 6= j. For simplicity we keep the V 1, V 2 notation. For a
vertex x ∈ V j that is good for V j′ we connect it in G(V 1, V 2) to the

≥ (1/2k − ε)m > m/4k (2)

vertices y ∈ V j′ such that there are at least mr−2/2k r-edges in H1[f(E)]
containing x and y.

At this point we introduce a one-sided notion of regularity. A bipartite
graph G(A,B) is (ε, δ,G)-super-regular if for every X ⊂ A and Y ⊂ B satisfying
|X| > ε|A|, |Y | > ε|B| we have

|EG(X,Y )| > δ|X||Y |,

and furthermore,

degG(a) > δ|B| for all a ∈ A, and degG(b) > δ|A| for all b ∈ B.

Then it is not difficult to see that the following is true.

Claim 2. G(V 1, V 2) is a (2ε, 1/4k, G)-super-regular bipartite graph.

Indeed, the second condition of super-regularity follows from (2). For the
first condition let X ⊂ V 1, Y ⊂ V 2 with |X| > 2ε|V 1|(> εm), |Y | > 2ε|V 2|(>
εm). Assume indirectly that EG(X, Y ) ≤ |X||Y |/4k. The total number of r-
edges in H1[f(E)] that contain a vertex from X and a vertex from Y is smaller
than

|X||Y |
(

mr−2

4k
+ (1− 1

4k
)
mr−2

2k

)
<

3
4k
|X||Y |mr−2, (3)

which again contradicts the fact that f(E) is (ε,H1)-regular with density at
least 1/k. Thus the claim is true.

Since M is a connected matching in Γ(HR
1 ) we can find a connecting path

PR
i in Γ(HR

1 ) from f−1(V i
2 ) to f−1(V i+1

1 ) for every 1 ≤ i ≤ l1 (for i = l1 set
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i+1 = 1). Note that these paths in Γ(HR
1 ) may not be internally vertex disjoint.

From these paths PR
i in Γ(HR

1 ) we can construct vertex disjoint connecting paths
Pi in Γ(H1) connecting a vertex vi

2 of V i
2 that is good for V i

1 to a vertex vi+1
1 of

V i+1
1 that is good for V i+1

2 . More precisely we construct P1 with the following
simple greedy strategy. Let PR

1 = (p1, . . . , pt), 2 ≤ t ≤ l, where according to
the definition f(p1) = V 1

2 and f(pt) = V 2
1 . Let the first vertex u1 (= v1

2)
of P1 be a vertex u1 ∈ V 1

2 that is good for both V 1
2 and f(p2). By Claim 1

most of the vertices satisfy this in V 1
2 . The second vertex u2 of P1 is a vertex

u2 ∈ (f(p2) ∩ NG(f(p1),f(p2))(u1)) (using the above defined bipartite graph G)
that is good for f(p3). Again using Claim 1 and the fact that ε is sufficiently
small, most vertices satisfy this in f(p2) ∩NG(f(p1),f(p2))(u1). The third vertex
u3 of P1 is a vertex u3 ∈ (f(p3) ∩ NG(f(p2),f(p3))(u2)) that is good for f(p4).
We continue in this fashion, finally the last vertex ut (= v2

1) of P1 is a vertex
ut ∈ (f(pt) ∩NG(f(pt−1),f(pt))(ut−1)) that is good for V 2

2 .
Then we move on to the next connecting path P2. Here we follow the same

greedy procedure, we pick the next vertex from the next cluster in PR
2 . However,

if the cluster has already occurred on the path PR
1 , then we just have to make

sure that we pick a vertex that has not been used on P1.
We continue in this fashion and construct the vertex disjoint connecting

paths Pi in Γ(H1), 1 ≤ i ≤ l1. Next we have to make these connecting paths
Berge-paths. By the construction, since every edge on every path Pi, 1 ≤ i ≤ l1
came from an appropriate bipartite graph G, the two endpoints of every edge
are contained in at least mr−2/2k r-edges in H1[f(E)]. Since the total number
of edges on the paths Pi is a constant (≤ l2) and n (and thus m) is sufficiently
large, we can clearly “assign” an r-edge from H1 for each edge on the paths
such that the assigned r-edge contains the corresponding edge and the assigned
r-edges of H1 are distinct for distinct edges on the paths Pi.

We remove the internal vertices of these paths Pi from f(M). We also remove
the r-edges from H1 that are assigned to the edges of the paths Pi, since these
r-edges cannot be used again on the Berge-cycle. Note again that the number of
vertices and edges that we remove this way is a constant. Furthermore, in a pair
(V i

1 , V i
2 ) in V i

1 we keep only the vertices that are good for V i
2 , and in V i

2 we keep
only the vertices that are good for V i

1 , all other vertices are removed. By these
removals we may create some discrepancies in the cardinalities of the clusters of
this connected matching. We remove an additional at most 2εm vertices from
each cluster V i

j of the matching to assure that now we have the same number
of vertices left in each cluster of the matching. For simplicity we still keep the
notation V i

j . Note that by Claim 2 the remaining bipartite graph G(V i
1 , V i

2 ) is
clearly still (4ε, 1/8k,G)-super-regular for every 1 ≤ i ≤ l1 and now we have
|V i

1 | = |V i
2 |.

We will use the following property of (ε, δ,G)-super-regular pairs.

Lemma 4.3. For every δ > 0 there exist an ε > 0 and m0 such that the
following holds. Let G be a bipartite graph with bipartition V (G) = V1∪V2 such
that |V1| = |V2| = m ≥ m0, and let the pair (V1, V2) be (ε, δ,G)-super-regular.
Then for every pair of vertices v1 ∈ V1, v2 ∈ V2, G contains a Hamiltonian path
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connecting v1 and v2.

A lemma somewhat similar to Lemma 4.3 is used by ÃLuczak in [24]. Lemma
4.3 is a special case of the much stronger Blow-up Lemma (see [20] and [21]).
Note that an easier approximate version of this lemma would suffice as well, but
for simplicity we use this lemma.

Applying Lemma 4.3 inside each G(V i
1 , V i

2 ), 1 ≤ i ≤ l1 together with the
connecting paths Pi we get a cycle C in Γ(H1) that has length at least

cl(1− 2ε)m ≥ c(1− ε)(1− 2ε)n ≥ c(1− 3ε)n.

We only have to make this cycle the core of a Berge-cycle. For the edges on
the connecting paths Pi we already have assigned distinct r-edges of H1. The
other edges came from the bipartite graphs G(V i

1 , V i
2 ), 1 ≤ i ≤ l1, and thus

the two endpoints of every edge are contained in at least mr−2/4k (we already
removed some r-edges) r-edges in H1[f(Ei)] (here Ei denotes the r-edge in HR

1

containing the endpoints of the edge ei). For r = 2 we are done. For r = 3
note that the triples Ei must be distinct for each i, 1 ≤ i ≤ l1 and furthermore
the triples containing two distinct edges from G(V i

1 , V i
2 ) are distinct. Hence for

r = 3 we can clearly assign distinct triples to each edge on C. For r > 3 note
that an r-edge Ei can be the same only for at most br/2c values of i. At most
br/2c2m ≤ rm edges of C come from these values of i. Furthermore, for r > 3
the two endpoints of every edge in G(V i

1 , V i
2 ) are contained in at least m2/4k

r-edges in H1[f(Ei)]. Thus if m is sufficiently large (and thus rm ¿ m2/4k) we
can clearly assign distinct r-edges to each edge on C and this makes the cycle
C the core of a Berge-cycle, completing the proof of Lemma 4.2. ¤

Lemma 4.2 together with the asymptotic results of the previous section on
monochromatic connected matchings give the results on monochromatic Berge-
cycles stated as Theorems 1.4 and 1.5. For example, to prove Theorem 1.4,
observe that by Theorem 3.8, for any given η > 0 there is a small enough ε such
that every 3-coloring of a 4-uniform (1 − ε)-complete H admits a monochro-
matic connected matching in Γ(H) covering at least (1− η)|V (Γ(H))| vertices.
Applying this to H = HR, i.e. to the reduced hypergraph of K

(4)
n , we get a

monochromatic connected matching covering at least (1−η)l vertices of Γ(HR).
Then Lemma 4.2 gives a Berge-cycle of length at least (1− 3ε)(1− η)n in K

(4)
n .
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