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András Gyárfás, Miklós Ruszinkó†
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Abstract

Assume that the edges of a complete bipartite graph K(A,B) are col-
ored with r colors. In this paper we study coverings of B by vertex disjoint
monochromatic cycles, connected matchings, and connected subgraphs. These
problems occur in several applications.

1 Introduction

Some problems for edge colored complete graphs naturally lead to edge colored com-
plete bipartite graphs. For example, in [?] it was proved that in every r-coloring of

∗2000 Mathematics Subject Classification: 05C55, 05C38.
†Research supported in part by OTKA Grants T038198, T046234 and
‡by the National Science Foundation under Grant No. DMS-0456401.

1



the edges of Kn there is a connected monochromatic subgraph of order at least n
r−1

.
The proof was based on the result that in every (r − 1)-coloring of the edges of a
complete bipartite graph of order n there is a connected monochromatic subgraph
of order at least n

r−1
. (We remark here that later Füredi [?] obtained an important

result on fractional matchings of hypergraphs which also implies the cited result.)
As another example, in [?] it was proved that the vertex set of an r-colored com-
plete graph can be covered by at most cr2 log r vertex disjoint monochromatic cycles.
The proof used the following ”one-sided” covering lemma for bipartite graphs. If
G = K(A,B) is an r-colored complete bipartite graph with |A| ≥ r3|B| then B can
be covered by the vertices of at most r2 vertex disjoint monochromatic cycles. This
lemma was strengthened in [?] by showing that at most (6rdlog re+2r) vertex disjoint
monochromatic cycles suffice to cover B if |A| ≥ r2|B|. This result has been used
to improve the result cited above as follows: the vertex set of an r-colored complete
graph can be covered by at most 100r log r vertex disjoint monochromatic cycles. In
these improvements, as in this paper, the Regularity Lemma played a major role.

In this paper one-sided coverings of colored complete bipartite graphs are explored
further. The main result is the following improved form of the one-sided covering
lemma for cycles.

Theorem 1. For every fixed r there exists n0 = n0(r) such that the following is true.
Assume that the edges of a complete bipartite graph K(A,B) are colored with r colors,
where |A| ≥ n0. If |A| ≥ 2r|B|, then B can be covered by at most 3r vertex disjoint
monochromatic cycles.

Note that this is a significant improvement over the above cited result from [?],
where the statement is proved with (6rdlog re + 2r) cycles instead of 3r cycles for
|A| ≥ r2|B|.

One tool of the proof, interesting in its own, is Theorem ?? which has an easy
elementary proof. It says that the condition |A| ≥ r|B| ensures that in an r-colored
complete bipartite graph K(A,B), B can be covered by at most r vertex disjoint
monochromatic connected matchings, in fact one can require that each matching has
a distinct color. Here a monochromatic (say red) connected matching is a matching
that lies in the same red connected component. Note that monochromatic connected
matchings also played an important role in [?], [?]. Luczak [?] realized (through the
Regularity Lemma) that the Ramsey numbers of monochromatic connected match-
ings and paths are about the same. Using this method the same set of authors [?]
determined exactly the three color Ramsey numbers for paths which was an open
problem for more then twenty years.

Theorem ?? is close to best possible: there are infinitely many r-colored complete
bipartite graphs K(Am, Bm) such that |A| = |B|(r−1− r−1

mr!
) and B can not be covered
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by the vertices of at most r vertex disjoint connected monochromatic matchings
(Corollary ??).

We also prove that the (much) weaker condition |B| < e|A|/r
r+3 − |A| is enough to

ensure a covering of B with at most r vertex disjoint monochromatic connected sub-
graphs (Corollary ??). This result is obtained through Theorem ??, a generalization
of a result of Haxell and Kohayakawa ([?]). Notice that for |B| ≥ r one can color
K(A,B) by defining a partition of B into r nonempty parts and color all edges be-
tween A and the i-th part by color i. This coloring shows that in one sided coverings
of complete bipartite graphs at least r monochromatic subgraphs are needed.

2 One-sided covers of bipartite graphs

In certain covering or partition problems one may require that all monochromatic
objects have distinct colors, i.e. color repetition is not allowed. For example, it is not
known whether every 3-colored complete graph can be covered by three monochro-
matic paths but there are examples when there is no cover if we want paths of distinct
colors. Another example is the result of Haxell and Kohayakawa proving that every
r-colored complete graph can be partitioned into at most r monochromatic trees of
distinct colors. In this section we prove two lemmas about one-sided coverings where
the colors of the objects are all different.

2.1 Covering B by monochromatic connected matchings

Theorem 2. Assume that the edges of a complete bipartite graph K(A,B) are colored
with r colors, |A| ≥ r|B|. Then there are vertex disjoint monochromatic connected
matchings, all of different color, such that their union covers each vertex of B.

Proof: We define by iteration r-colored complete bipartite graphs Gi = K(A \
Ai, B), Gi = K(Ai, B) and sets Xi ⊆ Ai, Yi ⊆ B, such that Ai = ∪ij=0Xj. Initially
G0 = G,A0 = X0 = Y0 = ∅.

The general step is to select an arbitrary vertex a ∈ A \ Ai−1 and consider the
partition P of B by putting two vertices p, q ∈ B into the same class if and only if the
colors of ap, aq are the same and label the class by the color of ap. Let E be defined
as the set of those edges ab of Gi−1 whose color is the same as the label of the class
of P containing b. Observe that the existence of a matching of B to Ai−1 using edges
of E proves the theorem - then the procedure stops. Therefore we may assume that
such a matching does not exist. By Hall’s theorem there are sets Xi ⊆ Ai−1, Yi ⊆ B
such that |Xi| < |Yi| and all edges of E incident to Yi are incident to Xi (i.e. Xi is
the set of E-neighbors of Yi). Set Ai = Ai−1∪Xi and let Gi be the complete bipartite

3



subgraph of G spanned by [A \ Ai, B]. Notice that a ∈ Xi thus at least one new
vertex is added to Ai. This finishes the definitions for step i.

Since at each step |Ai| > |Ai−1|, the procedure terminates with Am = A (and
Gm = ∅) for some m. We show that this leads to a contradiction, thus the procedure
must terminate with finding the required cover of B.

Assume that a vertex b ∈ B in Gm is covered by k of the sets Yi, w.l.o.g by
Y1, Y2, . . . , Yk. Then there are k distinct colors such that all edges incident to b in
one of these colors go to ∪ki=1Xi. Therefore b is incident to edges of at most r − k
colors in Gk implying k ≤ r. Assuming that the procedure takes m steps, consider
the hypergraph on vertex set B with edges Yi,

r|B| ≥ ∑

x∈B
d(x) =

m∑

j=1

|Yj| ≥
m∑

j=1

(|Xj|+ 1) = |A|+m > |A| (1)

contradicting the assumption of the theorem. 2

A bipartite graph G(k, l) is γ-dense if it contains at least γkl edges. We will need
the following (1− ε)-dense version of Theorem ?? as well.

Theorem 3. For some 0 < ε < 1/4 assume that the edges of a (1−ε)-dense bipartite
graph G(A,B) are colored with r colors, |A| ≥ 2r|B|. Then there are vertex disjoint
monochromatic connected matchings, each of a different color, such that their union
covers at least (1−√ε)-fraction of the vertices of B.

Proof: First we ”trim” G(A,B), we keep only the high degree vertices. For this
purpose we use the following fact.

Fact 1. Let G(A,B) be a (1−ε)-dense bipartite graph. Then there is a subset A′ ⊆ A
with |A′| ≥ (1−√ε)|A| such that deg(a,B) ≥ (1−√ε)|B| for all a ∈ A′.

Indeed we get A′ by removing those vertices from A that have degree less than
(1 − √ε)|B| in G. The number of these vertices is at most

√
ε|A| from the density

condition.
The proof of Theorem ?? is similar to that of Theorem ??, but we always select the

vertex a from the set A′ and then we get a partition P of the (≥ (1−√ε)|B|) neighbors
of a in B. Then a matching covering these neighbors gives the desired covering with
monochromatic connected matchings. The contradiction in (??) is similar, since we
stop if there are no more A′ vertices in the leftover:

r|B| ≥ . . . > (1−√ε)|A|,

which is a contradiction for 0 < ε < 1/4 and |A| ≥ 2r|B|. 2
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To see that Theorem ?? can not be improved too much, let G1 = K(A,B) be
the following r-colored complete bipartite graph. Set A = [r] and each vertex of B is
associated with a permutation of [r]. Vertex i ∈ A is adjacent to a permutation in B
in the color which is the i-th element of the permutation.

Lemma 1. Assume that S = {S1, S2, . . . St} are monochromatic stars of G1 with
their centers in A and such that the union of their leaves cover B. Then t ≥ r with
equality if and only if : (i) all centers coincide and all colors are different, or (ii) all
centers are different and all colors are the same.

Proof: Suppose that Xi ⊆ [r], i ∈ [r] is the set of colors (we always color by
colors 1, 2, . . . , r) appearing on the members of S with center at i ∈ A. The sets
Xi = [r] \Xi have no distinct representatives. Indeed, the existence of such a set of
representatives is equivalent to the existence of a vertex of B uncovered by the leaves
of the stars, contradicting the assumption. Thus, by Hall’s theorem, there exists a set
A∗ ⊆ A such that |A∗| = j and |∪i∈A∗Xi| ≤ j−1 implying that |∩i∈A∗Xi| ≥ r−j+1.
Therefore

t ≥ ∑

i∈A∗
|Xi| ≥ |A∗|| ∩i∈A∗ Xi| ≥ j(r − j + 1) ≥ r

with equality in the last inequality if and only if j = 1 or j = r giving cases (i) and
(ii) in the lemma. 2

The following corollary shows that r can not be essentially lowered in the condition
|A| ≥ r|B| of Theorem ??.

Corollary 1. For every fixed r there are infinitely many r-colored complete bipartite
graphs [Am, Bm] such that |Am| = |Bm|(r− 1

m(r−1)!
) and Bm can not be covered by the

vertices of vertex disjoint connected monochromatic matchings, each having a different
color.

Proof: Consider the graph G1 = K(A,B) and replace each vertex of B by a set
of m vertices, each vertex of A by a set of mr! − 1 vertices. This gives an r-colored
complete bipartite graph Gm

1 = K(Am, Bm) with |Bm| = mr!, |Am| = r(mr! − 1) =
|Bm|(r − 1

m(r−1)!
) for every positive integer m. Since for any x ∈ B two edges of

G1 incident to x are always colored with different color, a connected monochromatic
matching in Gm corresponds (can be contracted) to a monochromatic star in G1

with center in A. Thus the required covering of Bm with disjoint monochromatic
matchings corresponds to a star-cover as in Lemma ??. Applying Lemma ??, the
only possibility to cover Bm is coming from (i), i.e. all monochromatic matchings are
using the vertices of a replacement of a single vertex of A ⊆ V (G1). Since any vertex
of A is replaced by mr! − 1 vertices there is no matching from that set to Bm since
|Bm| = mr!. 2
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If one does not require that all monochromatic connected matchings have distinct
colors we have only a weaker construction:

Corollary 2. For every fixed r there are infinitely many r-colored complete bipartite
graphs K(Am, Bm) such that |Am| = |Bm|(r− 1− r−1

mr!
) and Bm can not be covered by

the vertices of at most r vertex disjoint connected monochromatic matchings.

Proof: It is similar to the proof of Corollary ??. The only difference is that here
we use G∗1 obtained from G1 by deleting an arbitrary vertex of A. Then, using the
same replacements as in the proof of Corollary ??, possibility (ii) of an r-covering is
eliminated from Lemma ?? and the proof follows. 2

2.2 Covering B by monochromatic cycles

In this section we prove our main result, Theorem ??. We will use the bipartite r-
color version of the Regularity Lemma (for an extensive survey on different variants
of the Regularity Lemma see [?]). For this purpose we will need some definitions. For
non-empty A and B,

dG(A,B) =
eG(A,B)

|A||B|
is the density of the graph between A and B.

Definition 1. The bipartite graph G = (A,B,E) is (ε,G)-regular if

X ⊂ A, Y ⊂ B, |X| > ε|A|, |Y | > ε|B| imply |dG(X, Y )− dG(A,B)| < ε,

otherwise it is (ε,G)-irregular. Furthermore, (A,B,E) is (ε, δ,G)-super-regular
if it is (ε,G)-regular and

degG(a) > δ|B| ∀ a ∈ A, degG(b) > δ|A| ∀ b ∈ B.

Proof of Theorem ??: Consider a r-edge coloring (G1, G2, . . . , Gr) of K(A,B).
We apply the bipartite r-color version of the Regularity Lemma with a sufficiently
small ε. By standard arguments we may assume that for each cluster that is not V0,
all vertices of the cluster belong to the same partite class. Thus we get a partition
A = V 0

A +V 1
A + . . . V lA

A , B = V 0
B +V 1

B + . . . V lB
B , where |V j1

A | = |V j2
B | = m, 1 ≤ j1 ≤ lA,

1 ≤ j2 ≤ lB and |V 0
A| ≤ ε|A|, V 0

B| ≤ ε|B|. We define the reduced graph GR: The
vertices of GR are AR = {pj1A | 1 ≤ j1 ≤ lA} and BR = {pj2B | 1 ≤ j2 ≤ lB},
and we have an edge between vertices pj1A and pj2B , if the pair {V j1

A , V
j2
B } is (ε,Gs)-

regular for s = 1, 2, . . . , r. Thus we have a one-to-one correspondence f : {pjA, pjB} →
{V j

A, V
j
B} between the vertices of GR and the non-exceptional clusters of the partition.
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Then GR = (AR, BR) is a (1 − ε)-dense bipartite graph. Define an r-edge coloring
(GR

1 , G
R
2 , . . . , G

R
r ) of GR in the following way. The edge between the clusters V j1

A and
V j2
B is colored with a color s that contains the most edges from K(V j1

A , V
j2
B ), thus

clearly ∣∣∣EGs(V j1
A , V

j2
B )
∣∣∣ ≥ 1

r
|V j1
A ||V j2

B |.

Applying Theorem ?? to GR we get at most r vertex disjoint monochromatic
connected matchings that cover at least (1−√ε)-fraction of the vertices of BR. The
clusters not covered by these monochromatic connected matchings are placed into the
exceptional set V 0

B. With standard techniques, going back to the original graph, from
these monochromatic connected matchings we can construct monochromatic cycles
that cover most of the clusters belonging to these connected matchings. Indeed, let us
take a monochromatic connected matching M , say M is in GR

1 and has size |M | = l1.
We will make this connected matching into a cycle in G1.

Denote the matching M = {e1, e2, . . . , el1} between the two sets of end points
UA ⊆ AR and UB ⊆ BR. Furthermore, let f(ei) = (V i

A, V
i
B) for 1 ≤ i ≤ l1 where V i

A

and V i
B are the clusters assigned to the endpoints of ei.

We need to do some preparations on the matching M . First we will find connecting
paths between the edges of the matching M . Since M is a connected matching in
GR

1 we can find l1 connecting paths PR
i in GR

1 from f−1(V i
B) to f−1(V i+1

A ) for every
1 ≤ i ≤ l1 (for i = l1 we go from f−1(V l1

B ) back to f−1(V 1
A)). Note that these

paths in GR
1 may not be internally vertex disjoint. From these paths PR

i in GR
1 we

can construct vertex disjoint connecting paths Pi in G1 connecting a typical vertex
viB of V i

B to a typical vertex vi+1
A of V i+1

A . More precisely we construct P1 with
the following simple greedy strategy. Denote PR

1 = (p1, . . . , pt), 2 ≤ t ≤ lA + lB,
where according to the definition f(p1) = V 1

B and f(pt) = V 2
A . Let the first vertex

u1 (= v1
B) of P1 be a vertex u1 ∈ V 1

B for which degG1(u1, f(p2)) ≥ (1/r − ε)m
and degG1(u1, V

1
A) ≥ (1/r − ε)m. By (ε,G1)-regularity most of the vertices satisfy

this in V 1
B. The second vertex u2 of P1 is a vertex u2 ∈ (f(p2) ∩ NG1(u1)) for which

degG1(u2, f(p3)) ≥ (1/r−ε)m. Again by (ε,G1)-regularity most vertices satisfy this in
f(p2)∩NG1(u1). The third vertex u3 of P1 is a vertex u3 ∈ (f(p3)∩NG1(u2)) for which
degG1(u3, f(p4)) ≥ (1/r − ε)m. We continue in this fashion, finally the last vertex ut
(= v2

A) of P1 is a vertex ut ∈ (f(pt)∩NG1(ut−1)) for which degG1(ut, V
2
B) ≥ (1/r−ε)m.

Then we move on to the next connecting path P2. Here we follow the same greedy
procedure, we pick the next vertex from the next cluster in PR

2 . However, if the
cluster has occurred already on the path PR

1 (or on any other connecting paths later
in the procedure), then we just have to make sure that we pick a vertex that has not
been used so far. Since the total number of vertices on the connecting paths will be
a constant, this is feasible.

7



We continue in this fashion and construct the vertex disjoint connecting paths Pi
in G1, 1 ≤ i ≤ l1. These will be parts of the final cycle in G1. We remove the internal
vertices of these paths from G1. Furthermore, we remove some more vertices from
each (V i

A, V
i
B), 1 ≤ i ≤ l1 to achieve super-regularity in all of these pairs. From V i

A we
remove all exceptional vertices vA for which

degG1(vA, V
i
B) <

(
1

r
− ε

)
m,

and from V i
B all exceptional vertices vB for which

degG1(vB, V
i
A) <

(
1

r
− ε

)
m.

(ε,G1)-regularity guarantees that at most εm vertices are removed from each cluster.
By doing this we may create some discrepancies in the cardinalities of the clusters
of this connected matching. We remove some more vertices from clusters V i

A and V i
B

to assure that now we have the same number of vertices left in each cluster of the
matching. For simplicity we still keep the notation f(ei) = (V i

A, V
i
B) for the modified

clusters. The removed vertices are added to the exceptional set V 0
B.

To get the final cycle in G1 will use the following property of (ε, δ,G)-super-regular
pairs.

Lemma 2. For every δ > 0 there exist an ε > 0 and m0 such that the following holds.
Let G be a bipartite graph with bipartition V (G) = V1 ∪ V2 such that |V1| = |V2| =
m ≥ m0, and let the pair (V1, V2) be (ε, δ,G)-super-regular. Then for every pair of
vertices v1 ∈ V1, v2 ∈ V2, G contains a Hamiltonian path connecting v1 and v2.

A lemma somewhat similar to Lemma ?? is used by  Luczak in [?] and by Haxell
in [?]. Lemma ?? is a special case of the much stronger Blow-up Lemma (see [?] and
[?]).

Applying Lemma ?? for 1 ≤ i ≤ l1, we get a path in G1|f(ei) connecting viA
and viB that contains all of the remaining vertices of f(ei) (in case of i = 1 we
just select a Hamiltonian path of f(e1) starting from v1

B and in case of i = l1, we
select a Hamiltonian path of f(el1) starting from vl1A). These paths together with the
connecting paths give us the desired G1 cycle.

We repeat this procedure for all the at most r monochromatic connected match-
ings. This gives us a covering of B with at most r vertex disjoint monochromatic
cycles that cover B apart from at most 2

√
ε|B| vertices. For the covering of these

remaining vertices we can apply the following lemma from [?] (Lemma 8 in [?]).

Lemma 3. There exists a constant n0 such that the following is true. Assume that the
edges of the complete bipartite graph K(A,B) are colored with r colors. If |A| ≥ n0,
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|B| ≤ |A|/(8r)8(r+1), then B can be covered by at most 2r vertex disjoint monochro-
matic cycles.

Indeed we can apply this lemma as ε is sufficiently small. Thus altogether we
covered B with at most r + 2r = 3r vertex disjoint monochromatic cycles, and thus
finishing the proof of Theorem ??. 2

2.3 Covering B by monochromatic connected subgraphs

We show here that a covering of B with vertex disjoint connected monochromatic
subgraphs is possible if |B| is not too large compared to |A|. To achieve that, we
need a generalization of the following result.

Theorem 4. (Haxell, Kohayakawa, [?]) Let r ≥ 1 and n ≥ 3r4r!(1− 1/r)3(1−r) log r
be integers, and suppose the edges of Kn are colored with r colors. Then Kn contains
t ≤ r monochromatic trees T1, . . . , Tt of radius at most 2, each of different color, such
that their vertex sets V (Ti) (1 ≤ i ≤ t) partition the vertex set of Kn.

We shall prove that Theorem ?? remains true even if there is a not too large ”hole”
in Kn. More precisely, let H = H(A,B) be the graph whose vertex set is partitioned
into A and B and contains all edges except the ones inside B.

Theorem 5. Let r ≥ 1 and suppose the edges of H = H(A,B) are colored with r
colors, where |A| = n, |B| < en/5r

r+3 − n (in particular, n sufficiently large). Then
H contains t ≤ r vertex disjoint monochromatic trees T1, . . . , Tt of radius at most
2, each of different color, such that their vertex sets V (Ti) (1 ≤ i ≤ t) partition the
vertex set of H.

Corollary 3. Let r ≥ 1 and suppose the edges of the complete bipartite graph K(A,B)
are colored with r colors, |A| = n. If |B| < en/5r

r+3 − n (in particular, n sufficiently
large) then B can be covered by the vertices of vertex disjoint monochromatic trees
{T1, . . . , Tt}, t ≤ r, of radius at most 2, each of different color.

Proof: Consider an arbitrary coloring of edges of K(A,B) with r colors and color

all
(
n
2

)
edges inside A with a new color, say, r + 1. This is an (r + 1)-coloring of the

edges of H(A,B). Thus, by Theorem ?? it contains t ≤ r + 1 monochromatic trees
T1, . . . , Tt of radius at most 2, each of different color such that their vertex sets V (Ti)
(1 ≤ i ≤ t) partition the vertex set of H. But color r + 1 can be used only to cover
some subset of vertices in A. Therefore the trees whose color is not r + 1 have the
required property. 2
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Proof of Theorem ??: We may assume r ≥ 2, otherwise the statement is
trivial. We tailor the proof of Haxell and Kohayakawa [?] to our needs. For some
k, 1 ≤ k ≤ r, k-anchor is a k-edge colored complete bipartite graph [X, Y ] with
|X| = k, |Y | ≥ sk such that for xi ∈ X all edges of the form [xi, Y ] are colored with
color i (i = 1, . . . , k). Let si = n/ri, for 1 ≤ i ≤ r and si = 0 for i > r. Clearly,
the sequence si is non-increasing. Let Γi(v, V ) be the neighborhood of the vertex v
in color i in some subset of vertices V , di(v, V ) = |Γi(v, V )|.

Consider an arbitrary r-edge coloring of H(A,B), |A| = n, and a t-anchor [X, Y ]
such that X ⊆ A∪B, Y ⊆ A and maximal in the sense that no t+ 1-anchor [X1, Y1]
with Y1 ⊆ A exists in this coloring. Set |X| = {x1, . . . , xt} and assume {1, . . . , t}, are
the colors of the t-anchor. Since a 1-anchor can be defined by selecting x1 ∈ B and
defining color 1 as the majority color on [x1, A], t is well defined.

Now we proceed to prove that the vertices of Z ′0 = (A ∪ B) \ (X ∪ Y ) can be
covered by vertex disjoint monochromatic stars with centers in Y . In fact we achieve
this by applying the following greedy procedure in less than

bsr/2rc ≤ sr/2r ≤ st/2r ≤ |Y | (2)

steps.
Let y1 ∈ Y be the vertex which is adjacent to the most vertices in Z ′0 in some color

i1 ∈ [t] (i.e., we pick a monochromatic star centered in Y containing the most leaves
in Z ′0). Let Z1 ⊆ Z ′0 be the set of the leaves just chosen, Z ′1 = Z ′0 \ Z1. In general,
assume that vertices y1, . . . , yq ∈ Y , not necessarily different colors i1, . . . , iq ∈ [t],
pairwise disjoint sets Z1, . . . , Zq and sets Z ′1, . . . , Z

′
q are already defined. Let Yq =

Y \ {y1, . . . , yq}. Select yq+1 ∈ Yq and iq+1 ∈ [t] such that diq+1(yq+1, Z
′
q) is maximal,

Zq+1 = Γiq+1(yq+1, Z
′
q), Z

′
q+1 = Z ′q \ Zq+1 = Z ′0 \ (∪qi=1Zi).

Consider the edges between the (yet uncovered) vertices in Z ′q and the (yet not
used) vertices in Yq (Yq is nonempty because of (??)). We have

∑

z∈Z′q

∑

1≤i≤t
di(z, Yq) > |Z ′q| (|Y | − q − (r − t)st+1) .

Indeed, |Yq| = |Y | − q, and a vertex z ∈ Z ′q is adjacent to less then st+1 vertices of
Y in each color j, t + 1 ≤ j ≤ r. Else, if z ∈ Z ′q, Y

∗ ⊂ Y , |Y ∗| ≥ st+1 exist such
that all edges in [z, Y ∗] colored j, t + 1 ≤ j ≤ r, then {z} ∪X with Y ∗ would form
a (t + 1)-anchor, contradicting the choice of t. Therefore, by a standard averaging
argument

diq+1(yq+1, Z
′
q) ≥

1

t

1

|Y | − q |Z
′
q| (|Y | − q − (r − t)st+1)

=
1

t
|Z ′q|

(
1− (r − t)st+1

|Y | − q

)
.
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Using (??) we have

|Z ′q+1| = |Z ′q| − |Zq+1| ≤ |Z ′q|
(

1− 1

t

(
1− (r − t)st+1

|Y | − q

))
(3)

≤ |Z ′q| exp

{
−1

t

(
1− (r − t)st+1

|Y | − q

)}
(4)

≤ |Z ′q| exp

{
−1

t

(
1− (r − 1)st+1

st − st/(2r)

)}
(5)

= |Z ′q| exp

{
− 1

(2r − 1)t

}
≤ |Z ′q| exp

{
− 1

2rt

}
≤ |Z ′q| exp

{
− 1

2r2

}
. (6)

To obtain (??) we utilized |Y | ≥ st and (??), and (??) follows from (??) by st = rst+1.
Summarizing,

|Z ′q+1| ≤ |Z ′q| exp
{
− 1

2r2

}
,

and we let our algorithm run for at most bsr/2rc steps. Therefore we shall cover all
vertices in Z ′0 if

|Z ′0|
(
e−

1
2r2

)b sr2rc ≤ |Z ′0|
(
e−

1
2r2

)( sr2r−1)
= |Z ′0|

(
e−

1
2r2

)( n
2rr+1−1) ≤ |Z ′0|e−

n
5rr+3 < 1,

which is satisfied by
|Z ′0| < |V (H)| < en/5r

r+3

. (7)

Assume that we covered Z ′0 with monochromatic stars with centers y1, . . . , yq0 ,
colors i1, . . . , iq0 and sets of leaves Z1, . . . , Zq0 . The partitioning trees T1, . . . , Tt of
colors 1, . . . , t are defined as follows.

V (Ti) = {xi} ∪
⋃

k∈[q0]: ik=i

({yk} ∪ Zk) ,

and
E(Ti) =

⋃

k∈[q0]: ik=i

({(xi, yk)} ∪ {(yk, z) : z ∈ Zk}) .

Clearly, the vertices of Yq0 = Y \ {y1, . . . yq0} can be added to, say, T1. 2
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up Lemma, Random Structures and Algorithms 12 (1998), pp. 297-312.

[12] J. Komlós, M. Simonovits, Szemerédi’s Regularity Lemma and its applications in
graph theory, in Combinatorics, Paul Erdős is Eighty (D. Miklós, V.T. Sós, and
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