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Abstract

For simple graphs G and H, let f(G, H) denote the least integer N such
that every coloring of the edges of KN contains either a monochromatic
copy of G or a rainbow copy of H. Here we investigate f(G, H) when
H = Pk. We show that even if the number of colors is unrestricted
when defining f(G, H), the function f(G, Pk), for k = 4 and 5, equals the
(k − 2)– coloring diagonal Ramsey number of G.

1 Introduction

For simple graphs G and H, let f(G,H) denote the least integer n such that
every coloring of the edges of the complete graph Kn contains either a monochro-
matic copy of G (all its edges have the same color) or a rainbow copy of H (no
two edges have the same color).

In [7] Jamison, Jiang, and Ling observe that as a corollary of the Erdős–
Rado Canonical Ramsey Theorem [1] f(G,H) is finite if and only if either G is
a star or H has no cycles. For the case when G and H are trees having s and t
edges, respectively, the upper bound f(G,H) ≤ (s − 1)(t2 + 3t) is proved, and
the existence of an absolute constant α is conjectured such that f(G,H) ≤ αst.
They also ask whether f(G,H) is maximized by f(Ps+1, Pt+1).

For the particular case when G is a tree with s ≥ 2 edges and H is a path
of length t ≥ 2, that is H = Pt+1, Wagner [10] proves the bound f(G,Pt) ≤
224(s− 1)2t.

Here we investigate f(G,Pk) for k = 4, 5. It turns out that these numbers
are related to the 2– and 3– coloring Ramsey numbers of G. Let R(G, G) /or
R(G, G,G)/ be the minimum N such that if the edges of KN are colored with
two /or three/ colors, then there is always a monochromatic copy of G.

We also use the concept of local k–coloring introduced in Gyárfás et al. [5].
An edge coloring of a graph (using any number of colors) is called a local k–
coloring if the set of all edges incident with any given vertex are colored by at
most k colors.

In Section 2 we show that f(G,P4) = R(G,G) for any graph G of or-
der at least 5 (Theorem 2). Section 3 deals with f(G,P5). It is shown that
f(G,P5) = R(G, G,G) if G = Pn, or G = Cn, or G is non-bipartite and con-
nected (Theorems 6, 10, and 8). In Section 4 we prove f(G,P5) = f(G,T5)
where G is one of the graphs listed above and T5 is a star K1,3 with one edge
subdivided. In Section 5 related questions are proposed for further study.

2 Rainbow P4

We need the characterization of local 2– colorings of a clique given in [5] as is
described in the following lemma. We assume that the colors in a coloring are
consecutive natural numbers, and two colorings of a graph are the same if they
differ only in a permutation of colors.
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Lemma 1. Given a local 2–coloring of a clique, let V = ∪A(i, j) be an arbitrary
partition of its vertex set, where each vertex of A(i, j) is incident with edges
colored i or j. Then the following two cases are possible.

(i) Three colors are used and none of them is present at all vertices so that
V = A(1, 2) ∪A(2, 3) ∪A(3, 1).

(ii) There exists a color, say 1, that is present at all vertices so that V =
∪jA(1, j).

Theorem 2. For every graph G of order n ≥ 5, f(G,P4) = R(G,G).

Proof. Let N = R(G, G). Any 2-coloring of KN−1 without a monochromatic
G is clearly free of a rainbow P4 requiring three distinct colors. Hence N ≤
f(G,P4). To verify the reverse inequality, f(G,P4) ≤ N , take an arbitrary
coloring of KN with any number of colors. We shall verify that if no rainbow
P4 exists then there is a monochromatic G.

First we assume that the coloring is not a local 2–coloring. Then there
exist a vertex x0 and incident edges x0x1, x0x2, and x0x3 colored with distinct
colors, say with 1, 2, and 3, respectively. Because there is no rainbow P4, the
color of x2x3, x1x3, and x1x2 must be 1, 2, and 3, respectively. Notice that
any further edge yx0 would create a rainbow P4 with two appropriate vertices
among x1, x2, x3. Hence N = 4, contradicting the condition N ≥ n ≥ 5.

Next we assume that the local 2–coloring has a rainbow triangle (x1, x2, x3),
say the color of x1x2, x2x3, and x3x1 is 3, 1, and 2, respectively. Then any further
vertex x0 would be incident with three distinct colors. Indeed, x0x1, x0x2,
and x0x3 must be colored by 1, 2, and 3, respectively, to avoid rainbow P4,
contradicting the local 2–coloring.

Using Lemma 1 we conclude that the local 2–coloring of KN obeys property
(ii). If three colors were used by that coloring, then there are edges xx′ and yy′

colored with 2 and 3, respectively, such that x ∈ A(1, 2) and y ∈ A(1, 3). Then
the color of xy is 1, and hence (x′, x, y, y′) was a rainbow P4. Thus we conclude
that the coloring of KN must use two colors, and thus contains a monochromatic
copy of G.

3 Rainbow P5

In order to extend Theorem 2 for f(G,P5) we need the following key lemma.

Lemma 3. For N ≥ 3, every edge coloring of KN with at least four colors and
without a rainbow P5 contains a locally 2–colored clique of order at least N − 2.

Proof. The claim is obvious for N ≤ 5, thus we assume N ≥ 6. Suppose
that the coloring of KN is not a local 2–coloring. Then there exists a rainbow
star K1,3, that is a vertex x0 and incident edges x0x1, x0x2, and x0x3 colored
with distinct colors, say 1, 2, and 3, respectively. Let A = {x0, x1, x2, x3} and
B = {V (KN ) \ A}. In the cases below we shall discuss the occurrence of the
fourth color, say 4.
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Case 1: Edges in A are 3-colored with colors 1, 2, and 3.
Subcase 1.1: Some edge between the sets A \ {x0} and B has a new color, say
x1y is colored 4 for some y ∈ B.

Because there is no rainbow P5 starting with edge yx1 and including the
vertices of A, it follows that the color of x2x3, x1x3, and x1x2 must be 1, 2, and
3, respectively. Then every edge yz with z ∈ B must have color 4 to avoid
rainbow P5 running into A. This immediately implies that every edge between
A\x0 and B is also colored with 4. Therefore V (KN )\{x0, x3} induces a clique
with one edge only (namely x1x2) having a color different from 4.

Subcase 1.2: yw for some y, w ∈ B is colored 4.
The colors of yx1, yx2, and yx3 must be 1, 2, and 3, respectively, to avoid a

rainbow P5. Furthermore, for the same reason, the color of x2x3, x1x3, and x1x2

must NOT be 1, 2, and 3, respectively. We assume by symmetry that x1x2 has
color 1. Then in the path (x1, x2, x3, y, w) the color of x2x3 can not be 1, 2 or
any new color. Thus x2x3 has color 3. The color of x1x3 is not new, it is either
1 or 3. In each case the path (w, y, x2) extends to a rainbow P5 by including
vertices x1 and x2 in appropriate order.

Subcase 1.3: x0y has color 4 for some y ∈ B.
We suppose that Subcases 1.1 and 1.2 do not apply, so that all edges induced

by B and between the sets A \ x0 and B are colored with colors 1, 2, or 3. Let
wy have color 1 for some w ∈ B (no loss of generality, by symmetry). Then
x2x3 must have color 1 which implies that both x1x2 and x1x3 are also have
color 1. It follows that all edges induced by B and incident with y have color
1. Thus we conclude easily that B induces a clique that is monochromatic in
color 1.

For N = 6 edge wx1 must have color 1 implying that all edges induced by
V (KN ) \ {x0, y} = {x1, x2, x3, w} have color 1.

For N ≥ 7 we choose a vertex z ∈ B\{y, w}. Because yz has color 1, all edges
between A \x0 and B \ {y} must be colored with 1. Therefore, V (KN ) \ {x0, y}
induces a clique in color 1.

Case 2: Set A induces an edge with a new color, say x2x3 has color 4.

Step 0: KN is colored with exactly four colors 1, 2, 3, and 4.
Note that any edge leading from B to A \ {x0} with a new color 5 would

be extendable with the vertices of A into a rainbow P5 . Similarly, any edge
yz of color 5, with y, z ∈ B, would result in a rainbow P5 on the vertices
{y, z, x0, x2, x3}. Thus a new color 5 might be assigned either to an edge x0y,
y ∈ B, or to an edge induced by A, say x1x2. In the first case B∪{x2, x3} must
be a clique in color 4, since otherwise there is a rainbow P5. In the second case,
for each color 1, 2, 3, or 4 assigned to yx1, one obtains a rainbow P5 in A ∪ {y}
(the obvious details are omitted).
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From now on we assume that KN is colored with 1, 2, 3, and 4. Furthermore,
for any set A ⊂ V (KN ), |A| = 4, if A contains a rainbow star K1,3, then either
all the four colors are present on the edges of A, or otherwise, Case 1 does apply.

Step 1: B is locally 2–colored.
Assume to the contrary that there is a vertex y ∈ B incident with three

distinct colors a, b, and c. Let d be the color of the edge yx3. Note that d 6= 3
because of the emerging rainbow path (x1, x0, x2, x3, y).

We show that actually d = 2. W.l.o.g. we assume that among a, b, and c
the color c is different from 3 and 4. Let c be assigned to the edge yz (z ∈ B).
Then d 6= 4 because (z, y, x3, x0, xi) is a rainbow path for i = 1 or 2. Finally if
d was 1 then we have 3, 4 /∈ {a, b, c}; hence among a, b, and c one color, say c,
is different from both 1 and 2, resulting in the rainbow path (z, y, x3, x0, x2).

We conclude that the color of yx3 is 2, and similarly, the color of yx2 is 3.
Furthermore, {a, b, c} = {1, 2, 3}, say yzi has color i (zi ∈ B \{y}), for i = 1, 2, 3

If the color of x0y is e = 4, then Case 1 applies with the rainbow star on
A′ = (A \ {x1}) ∪ {y} centered at y. In any other case there is a rainbow P5:
(z2, y, x0, x3, x2) for e = 1, (z1, y, x0, x3, x2) for e = 2, and (z1, y, x0, x2, x3) for
e = 3.

Step 2: B ∪ {x2} and B ∪ {x3} are locally 2–colored. Moreover,
(i) if there exist two distinct colors incident with x2 then they are 1 and 3;
(ii) if there exist two distinct colors incident with x3 then they are 1 and 2.

By symmetry, it is enough to deal with the set B ∪ {x2}. Let y ∈ B be
a vertex incident with distinct colors {a, b, c} when including the vertex x2.
Assume that a is the color of edge yx2. Note that a 6= 2 because of the emerging
rainbow path (y, x2, x3, x0, x1).

Suppose that a = 1. Among b and c, one color is different from 3; let the
color of zy be b /∈ {1, 3} (z ∈ B). Whatever is color b there is always a rainbow
P5: (z, y, x2, x3, x0) for b = 2, and (z, y, x2, x0, x3) for b = 4.

Suppose that a = 4. Among b and c, one color is different from 2; let the
color of zy be b /∈ {4, 2} (z ∈ B). Whatever is color b there is always a rainbow
P5: (z, y, x2, x0, x1) for b = 3, and (z, y, x2, x0, x3) for b = 1.

Suppose that a = 3. Then {b, c} = {1, 2}, otherwise we find easily a rainbow
P5. Let i be the color of ziy (zi ∈ B) for i = 1, 2. If the color of z1z2 is d 6= 3,
then we always find a rainbow P5: (z1, z2, y, x2, x3) for d = 1, (z2, z1, y, x2, x3)
for d = 2, and (z2, z1, y, x2, x0) for d = 4. Thus we conclude that yx2 has
color d = 3, therefore A′ = {y, z1, z2, x2} induces a rainbow K1,3 centered at y.
Because A′ must be 4–colored and z1z2 has color 3, edge zix2 must have color
4 for i = 1 or for i = 2. In each case there is a rainbow P5: (y, z1, x2, x0, x3) or
(z1, z2, x2, x0, x1).

Therefore there are at most two distinct colors incident with y in B ∪ {x2}.
To conclude the proof of Step 2 we show that the same is true for x2.

Let z, w ∈ B such that zx2 and wx2 have distinct colors b and c, respec-
tively. We show that {b, c} = {1, 3}. Because of the paths (z, x2, x3, x0, x1) and
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(w, x2, x3, x0, x1) we have 2 /∈ {b, c}. Suppose to the contrary that 4 ∈ {b, c},
say c = 4. Note that in this case the color of zw cannot be 1 or 3, because of
the emerging rainbow paths (z, w, x2, x0, x3) or (z, w, x2, x0, x1), respectively.
If zw has color 4, then we find a rainbow P5 for the possible values of b:
(w, z, x2, x0, x3) works for b = 1, and (w, z, x2, x0, x1) works for b = 3. Thus we
obtain that the color of zw must be 2. This implies easily that b = 3. Then any
color chosen for x1x3 creates a rainbow P5. Therefore {b, c} = {1, 3}, and claim
(i) follows as well.

Step 3: B ∪ {x2, x3} is locally 2–colored.
Assume on the contrary that y ∈ B is the center of a rainbow K1,3 in a four

element set A′ ⊆ B ∪ {x2, x3}. By Step 2, A′ = {y, x2, x3, z} for some z ∈ B.
Let a, b, and c be the colors of x2y, x3y and zy, respectively,

Note that a 6= 2 and b 6= 3 follows by considering the paths (y, x2, x3, x0, x1)
and (y, x3, x2, x0, x1), respectively.

First we show that a 6= 4; then by symmetry, we will also have b 6= 4. If a was
4, then the cases c = 1 and c = 3 are immediately excluded by considering the
paths (z, y, x2, x0, x3) and (z, y, x2, x0, x1), respectively. Thus we obtain c = 2
and b = 1. Then the set A′ = {y, x2, x3, z} induces a rainbow star centered at
y. By Step 2 (i), the color of zx2 must be different from 3, and by Step 2 (ii),
the color of zx3 must be different from 3. Hence A′ is 3–colored and Case 1
applies.

Suppose a = 1. The path (z, y, x2, x0, x3) shows that c 6= 4, therefore
b = 2 and c = 3. If the color of x0z is d 6= 3, then there is a rainbow P5:
(y, z, x0, x2, x3) for d = 1, (x0, z, y, x2, x3) for d = 2, and (x1, x0, z, y, x3) for
d = 4.

Then the set A′ = {x0, x1, x2, z} induces a rainbow star centered at x0. The
color of zx2 is different from 4 because P5: (y, z, x2, x0, x1) would be rainbow.
The color of x1x2 and that of x1z cannot be 4 either because of the paths
(x1, x2, y, x3, x0) and (x0, x1, z, y, x3), respectively. Hence A′ is 3–colored and
Case 1 applies. Thus a 6= 1 and by symmetry, b 6= 1.

Suppose a = 3. The path (z, y, x2, x0, x1) shows that c 6= 4, therefore
b = 2, c = 1. Also note that in the rainbow star centered at x2 and induced by
the set {x2, x0, x3, y} the edge x0y has color 1, since otherwise the set is three
colored and Case 1 applies. If the color of x1x2 is d 6= 1, then there is a rainbow
P5: (x1, x2, x3, x0, y) for d = 2, (x1, x2, x3, y, z) for d = 3, and (x2, x1, x0, x3, y)
for d = 4. Then the set A′ = {x2, x0, x1, y} induces a rainbow star centered at
x2. The color of yx1 cannot be 4 due to the path (y, x1, x2, x0, x3). Because
x0x1 and x0y both have color 1, A′ is three colored and Case 1 applies.

It remains to show that in the subgraph induced by B ∪ {x2, x3} at most
two colors appear at x2 and at x3. By symmetry, it suffices to verify this for x2.
Assume to the contrary that a, b, c are distinct colors incident with x2. By Step
2, we may assume a = 4, b = 1, and c = 3. Let z, w ∈ B such that x2z and x2w
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have color 1 and 3, respectively. Note that zw has color different from 2 due
to the path (w, z, x2, x3, x0). Also observe that in the rainbow star centered at
x2 and induced by the set {x2, x3, z, w} the edge x3w or x3z has color 2, since
otherwise the set is three colored and Case 1 applies.

First we consider the case when x3w has color 2. The color of zw and that
of x0z is different from 4 due to the paths (z, w, x2, x0, x1) and (x0z, x2, w, x3),
respectively. If x0w is not colored 4, then the set {x2, x0, z, w} is three colored; if
x0w has color 4, then the set {x3, x0, x2, w} is three colored, and Case 1 applies.

Next we consider the case when x3z has color 2 and x3w has color 1. (No
other possibilities remain by Step 2.) The color of x0w is not 4 due to the
path (w, x0, x3, z, x2). By symmetry, the color of x0z is not 4 either. The color
of zw is also different from 4 because of the path (z, w, x2, x0, x1). Then set
{x2, x0, z, w} containing the rainbow star with center x2 is three colored and
Case 1 applies.

Let R2
loc(G) be the smallest integer n such that every local 2–coloring of a

clique Kn contains a monochromatic copy of graph G.

Lemma 4. If R2
loc(G) + 2 ≤ R(G, G,G), then

f(G,P5) = R(G,G,G) .

Proof. Any 3-coloring of a clique without monochromatic copy of G has no
rainbow P5 that requires four distinct colors. Hence f(G,P5) ≥ R(G,G, G).
To verify the reverse inequality f(G,P5) ≤ R(G,G, G), take a coloring of a
clique of order N = R(G,G, G). If k ≤ 3 colors are used, then obviously there
is a monochromatic G. For k ≥ 4, if no rainbow P5 exists, then by Lemma
3, KN contains a locally 2-colored clique of order at least N − 2. Because
N − 2 ≥ R2

loc(G) is guaranteed by the condition, there exists a monochromatic
G, and f(G,P5) ≤ N follows.

To obtain f(G,P5) for a few graphs G we shall apply Lemma 4. The in-
equality between the Ramsey numbers stated in the lemma will be verified as a
proposition preceding the corresponding result.

Proposition 5. For n ≥ 5, R2
loc(Pn) + 2 ≤ R(Pn, Pn, Pn) .

Proof. Let A(1), A(2), B(1), and B(2) be pairwise disjoint sets. Consider the
clique on vertex set A(1) ∪ A(2) ∪ B(1) ∪ B(2) and color its edges as follows.
Edges induced by A(1) ∪A(2) and those induced by B(1) ∪B(2) are colored 1;
edges between A(1) and B(1) and those between A(2) and B(2) are colored 2;
edges between A(1) and B(2) and those between A(2) and B(1) are colored 3.

For n odd, let |A(1)| = |A(2)| = |B(1)| = |B(2)| = (n − 1)/2; for n even
let |A(1)| = |A(2)| = |B(1)| = n/2 − 1 and |B(2)| = n/2. It is easy to check
that in the first case a clique K2n−2 and in the second case a clique K2n−3 is
colored with three colors in such a way that the longest monochromatic paths
have n− 1 vertices. Therefore,

R(Pn, Pn, Pn) ≥
{

2n− 1 if n is odd
2n− 2 if n is even .
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It is proved in [5] that

R2
loc(Pn) =

{
R(Pn, Pn) + 1 if n is odd
R(Pn, Pn) if n is even .

Furthermore, it is proved in [4] that

R(Pn, Pn) =
{

(3n− 1)/2− 1 if n is odd
3n/2− 1 if n is even .

For n ≥ 5, odd in the first row, and for n ≥ 6 even in the second row, we have
the inequalities

R2
loc(Pn)+2 =

{
R(Pn, Pn) + 3 = (3n + 3)/2 ≤ 2n− 1
R(Pn, Pn) + 2 = 3n/2 + 1 ≤ 2n− 2

}
≤ R(Pn, Pn, Pn) .

Theorem 6. For n ≥ 3, f(Pn, P5) = R(Pn, Pn, Pn) .

Proof. For n = 3 and 4, one easily obtains R(P3, P3, P3) = 5 = f(P3, P5),
and R(P4, P4, P4) = 6 = f(P4, P5). For n ≥ 5 the condition R2

loc(Pn) + 2 ≤
R(Pn, Pn, Pn) is established by Proposition 5 and the claim follows from Lemma
4.

Proposition 7. If G is a connected non-bipartite graph then R2
loc(G) + 2 ≤

R(G, G,G) .

Proof. Let N = R(G, G)− 1. Consider a coloring of the clique KN with colors
1 and 2 such that no monochromatic copy of G exists. Take two disjoint copies
and add all edges between them in color 3. Because G is connected no monochro-
matic G exists in color 1 or 2; and since G is not bipartite, the coloring of K2N

has no monochromatic G in color 3. Hence R(G,G, G) ≥ 2N+1 = 2R(G,G)−1.
It is proved in [5] that 3n/2 − 1 ≤ R2

loc(G) < 3
2R(G,G) provided G is a

connected graph of order n. Because R(G, G) ≥ 6 for any non-bipartite G,

R(G,G,G) ≥ 2R(G,G)− 1 ≥ 3
2
R(G,G) + 2 > R2

loc(G) + 2 .

Theorem 8. If G is a connected non-bipartite graph then f(G,P5) = R(G,G, G).

Proof. By Proposition 7, R2
loc(G)+2 ≤ R(G, G,G) , so that the theorem follows

from Lemma 4.

Proposition 9. For n ≥ 4 even integer, R2
loc(Cn) + 2 ≤ R(Cn, Cn, Cn) .

Proof. For n = 4, R(C4, C4, C4) = 11 and R2
loc(C4) = 6 (see [9]). For n ≥ 6

even, R2
loc(Cn) = R(Cn, Cn) = 3n/2 − 1 is proved in [5], and a lower bound

2n−2 ≤ R(Pn, Pn, Pn) ≤ R(Cn, Cn, Cn) is obvious from the proof of Proposition
5. Hence R2

loc(Cn)+2 = R(Cn, Cn)+2 = 3n/2+1 ≤ 2n−2 ≤ R(Cn, Cn, Cn).
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Theorem 10. For n ≥ 3 f(Cn, P5) = R(Cn, Cn, Cn).

Proof. For every n ≥ 3 odd, the claim is a corollary of Theorem 8. For n ≥ 4
even the claim follows from Proposition 9 and Lemma 4.

4 Rainbow T5

The method developed for rainbow P5 in Lemmas 3 and 4 can be adapted for
small rainbow trees. Here we deal with the case when P5 is replaced with T5, a
star K1,3 with one edge subdivided (two–fork on 5 vertices).

Lemma 11. For N ≥ 3, every edge coloring of KN with at least four colors and
without a rainbow T5 contains a locally 2–colored clique of order at least N − 2.

Proof. Suppose that a vertex x0 is incident with four distinct colors, say x0xi

has color i, for 1 ≤ i ≤ 4. Let y ∈ V (KN ) \ {x0, x1, x2, x3, x4}. If the color of
yx1 is different from 1, say 2, then the set {y, x1, x0, x3, x4} induces a rainbow
T5. Therefore the color of yxi is i, for every 1 ≤ i ≤ 4. Whatever is the color of
the edge yx0 we always find a rainbow T5 induced by the set {y, x1, x0, x3, x4}.
Thus the coloring of KN is a local 3–coloring.

Suppose that x0 is incident with three distinct colors, say x0xi has color i,
for 1 ≤ i ≤ 3. Let A = {x0, x1, x2, x3} and B = V (KN ) \A. Note that no edge
between A and B has a fourth new color, since otherwise we get a rainbow T5.

If yz is colored 4 for some y, z ∈ B, then let i be the color of x0y (for
some i ∈ {1, 2, 3}). Now the set {x0, x1, x2, x3, y, z} \ xi induces a rainbow T5.
Therefore every new color occurs inside A.

Suppose x2x3 has color 4. Then V ′ = V (KN ) \ {x2, x3} is colored with 1, 2,
and 3. If it is not a local 2 coloring, then a set A′ ⊆ V ′ induces a rainbow three
star. Then B′ = V (KN ) \A′ would contain a new color 4 which cannot happen
as we justified above.

Lemma 12. If R2
loc(G) + 2 ≤ R(G,G, G), then

f(G,T5) = R(G,G, G) .

Proof. Any 3-coloring of a clique without monochromatic copy of G has no
rainbow T5 that requires four distinct colors. Hence f(G,T5) ≥ R(G,G, G).
To verify the reverse inequality f(G,T5) ≤ R(G,G, G), take a coloring of a
clique of order N = R(G,G, G). If k ≤ 3 colors are used, then obviously there
is a monochromatic G. For k ≥ 4, if no rainbow T5 exists, then by Lemma
11, KN contains a locally 2-colored clique of order at least N − 2. Because
N − 2 ≥ R2

loc(G) is guaranteed by the condition, there exists a monochromatic
G, and f(G,P5) ≤ N follows.

Theorem 13. If G = Pn or Cn(n ≥ 3) or G is non-bipartite and connected,
then f(G,T5) = f(G,P5).
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Proof. One easily obtains f(P3, P5) = 5 = f(P3, T5) and f(P4, P5) = 6 =
f(P4, T5). For n ≥ 5, f(Pn, T5) = f(Pn, P5) is a corollary of Proposition 5 and
Lemma 12. If G is a connected non-bipartite graph or a cycle then Propositions
7, 9, and Lemma 12 imply f(G,T5) = f(G,P5).

5 Concluding Remarks

5.1 Values of f(G,P4) and f(G,P5)

The method and the results presented in the previous sections show how Ramsey
numbers are related to our ‘mono–multi’ function f(G,Pk), for k = 4, 5. Indeed,
the known diagonal Ramsey numbers of a graph G for two and three colors can
be used to determine f(G,P4) and f(G,P5) for particular graphs.

For the sake of examples we are going to mention a few here. The electronic
survey by Radziszowski [9] contains an updated list of further Ramsey results
and all references we did not include here. The two color Ramsey numbers are
known for paths and cycles resulting in the following values of f(G,P4).

Proposition 14. f(P3, P4) = 5, and for n ≥ 4, f(Pn, P4) = n+ bn/2c− 1.

Proposition 15. f(C3, P4) = f(C4, P4) = 6, and for n ≥ 5,

f(Cn, P4) =
{

2n− 1 for n odd
3n/2− 1 for n even .

Not too much is known about the three color Ramsey numbers. Even deter-
mining R(K4−e, K4−e,K4−e) is a seemingly hard open problem. The Ramsey
number R(G, G,G) is known for every other graph G containing at most 5 edges
and no isolated vertices. Thus we obtain the values f(G,P5) for any connected
non-bipartite G among them different from a diamond (also called a 2–book).

5.2 Discussing f(G,Pk), for k ≥ 5

Let Rc(G) be the diagonal c-color Ramsey number of graph G, that is the
minimum integer such that in every c–coloring of a clique of that order there is
always a monochromatic copy of G. Let N = Rk−2(G)). Any (k−2)-coloring of
KN−1 without monochromatic G is clearly free of rainbow Pk that requires k−1
distinct colors. Hence N = Rk−2(G) ≤ f(G,Pk) follows. As we proved here
we actually have Rk−2(G) = f(G,Pk), for k = 4 and for k = 5 with particular
instances of G (see Theorems 2, 6, 8, and 10).

It is a natural question whether the reverse inequality, f(G,Pk) ≤ Rk−2(G),
remains true in general for k ≥ 6. Even more generally one might ask for which
trees Tk with k vertices is f(G,Tk) ≤ Rk−2(G). Our method of obtaining the
results for k = 4, 5 uses the structure of local 2-colorings (see Lemmas 1, 3, and
4). Unfortunately, no concise characterization of local c-colorings is known for
c > 2.
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5.3 The maximum of f(S,T) and the 3-color Ramsey num-
ber of paths

In [7] Jamison, Jiang and Ling ask the following question:
Among all pairs of trees S, T with s and t edges, respectively, is f(S, T )

maximized by f(Ps+1, Pt+1)?
The answer is negative. It was generally believed that R(Pn, Pn, Pn) =

(2 + o(1))n, in fact its exact value was conjectured in [2] (2n − 1 for odd n,
2n−2 for even n). ÃLuczak [8] conjectured that even R(Cn, Cn, Cn) = (2+o(1))n
holds true for even n. Recently this conjecture have been proved, [3]. In fact,
for large enough n, the conjectured exact value of R(Pn, Pn, Pn) have been
proved recently [6]. We show how to use these results to demonstrate that
f(Pn,K1,4)− f(Pn, P5) tends to infinity with n.

To see this, set N = 7k and consider the partition of the vertices of a
clique KN into the k element sets V (i), i = 0, . . . , 6. First we color all edges
of the clique induced by V (i) with color i, for every i = 0, . . . , 6. To color the
remaining edges of KN we shall use the lines of a Fano plane defined on the
point set {V (i) : 0 ≤ i ≤ 6}. Let L` = {V (`), V (` + 1), V (` + 3)}, ` = 0, . . . , 6,
be those seven lines (modular addition in Z7). For any edge of KN between two
distinct V (i) and V (j) we assign the color ` where L` is the unique line of the
Fano plane containing both V (i) and V (j).

Because each point V (i) of the Fano plane is incident with three lines, the
7-coloring obtained from the Fano plane is a local 3-coloring of KN , that is every
vertex in each V (i) is incident with edges of three distinct colors. In particular,
this coloring of KN contains no rainbow star K1,4. The largest monochromatic
path is obviously P3k, thus we conclude f(P3k+1, K1,4) > N = 7k.

On the other hand, Theorem 6 and R(Pn, Pn, Pn) = (2 + o(1))n imply

f(P3k+1, P5) = R(P3k+1, P3k+1, P3k+1) ≤ (6 + ε)k

for any fixed positive ε and k ≥ k0(ε). To get just one small counterexample,
one might take k = 2, and verify that R(P7, P7, P7) ≤ 14 (a non-trivial exercise,
the details are omitted).
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