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Hadwiger’s well known conjecture (see the survey of Toft [9]) states that any graph G has

a Kχ(G) minor, where χ(G) is the chromatic number of G. Let α(G) denote the independence

(or stability) number of G, namely the maximum number of pairwise nonadjacent vertices

in G. It was observed in [1], [4], [10] that via the inequality χ(G) � |V (G)|
α(G)

, Hadwiger’s

conjecture implies

Conjecture 1.1. Any graph G on n vertices contains a K� n
α(G) � as a minor.

A popular question over the past five years has been to consider Conjecture 1.1 for

graphs G with α(G) = 2:

Conjecture 1.2. Suppose G is a graph with n vertices and with α(G) = 2. Then G contains

K� n
2 � as a minor.
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Duchet and Meyniel [1] proved that every graph G with n vertices has a K� n
2α(G)−1 � minor,

and so the statement of Conjecture 1.2 is true if n/2 is replaced by n/3 (for follow-ups and

for some improvements see [4], [5], [2], [6]). The problem of improving n/3 is attributed

to Seymour [7]:

Conjecture 1.3. There exists ε > 0 such that every graph G with n vertices and with α(G) =

2 contains K�( 1
3 +ε)n� as a minor.

Conjecture 1.3 has a fairly interesting reformulation with some ‘Ramsey flavor’. A set

of pairwise disjoint edges e1, e2, . . . , et of G is called a connected matching of size t ([8]) if

for every 1 � i < j � t there exists at least one edge of G connecting an endpoint of ei to

an endpoint of ej .

Conjecture 1.4. There exists some constant c such that every graph G with ct vertices and

with α(G) = 2 contains a connected matching of size t.

Conjecture 1.4 has probably been discovered independently by several people working

on Conjecture 1.3. Thomassé [8] notes that Conjectures 1.4 and 1.3 are equivalent (a proof

is in [2]).

This note risks the stronger conjecture that f(t), the minimum n such that every graph

G with n vertices and α(G) = 2 must contain a connected matching of size t, is equal to

4t − 1. The lower bound f(t) � 4t − 1 is obvious, as shown by the union of two copies of

K2t−1.

Conjecture 1.5. Every graph G with 4t − 1 vertices and with α(G) = 2 contains a connected

matching of size t.

In modest support of Conjecture 1.5, we have the following.

Theorem 1.6. f(t) = 4t − 1 for 1 � t � 17.

Proof. Assume G is a graph with 4t − 1 vertices and with α(G) = 2. Suppose, first, that

the maximum degree of G is at least t − 1 and let v be a maximum degree vertex

in G. Let A ⊂ V (G) consist of t (or all if there are only t − 1) non-neighbors of v

(in G), thus t − 1 � |A| � t. Consider the bipartite subgraph H = [A,B] of G, where

B = V (G) \ (A ∪ {v}). If H contains a matching of size t then it is a connected matching,

since A induces a clique in G. Also, if |A| = t − 1 and H contains a matching of size

t − 1, it can be extended by an edge incident to v to a connected matching of size t.

If the required matching does not exist, by König’s theorem, there is a T ⊂ V (G) with

|T | � t − 1 (or |T | � t − 2 if |A| = t − 1) meeting all edges of H . As |B| � 3t − 2, this

implies that there exists a vertex in A \ T nonadjacent to at least 2t vertices of G. Thus

K2t ⊂ G which clearly contains a connected matching of size t.

Therefore the maximum degree of G is at most t − 2. Now let Av denote the set of

non-neighbors and Bv the set of neighbors of v in G. Some vertex w ∈ Bv is nonadjacent
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to at most

|Av|(t − 3)

|Bv|
� (t − 2)(t − 3)

3t
(1)

vertices of Av . The right hand side of (1) is less than 4 if t � 16. If t = 17 then, as all

vertices cannot have odd degree, v can be selected as a vertex nonadjacent to at most 14

vertices and the estimate (1) still gives a w ∈ Bv nonadjacent to at most 142/51 < 4 vertices

of Av . Thus we have found an edge vw in G such that the set C ⊂ V (G) nonadjacent to

both v and w satisfies |C| � 3. This allows us to carry out the inductive proof: removing

v, w and two further vertices (as many from C as possible) the remaining graph has a

connected matching of size t − 1 and the edge vw extends it to a connected matching of

size t. (Of course, it is trivial to start the induction with f(1) = 3.) �

An obvious upper bound for f(t) comes from the Ramsey function: f(t) � R(3, 2t)

(which has order of magnitude t2

log t
: see [3] and the references therein). Using the proof

method of Theorem 1.6 we give a better bound for g(t) � f(t) where g(t) is the minimum

n such that every graph G with n vertices and with α(G) = 2 contains a ‘2-connected

matching of size t’: a set of pairwise disjoint edges e1, e2, . . . , et of G such that for every

1 � i < j � t there exists at least two edges of G connecting an endpoint of ei to an

endpoint of ej .

Theorem 1.7. Every graph G with α(G) = 2 and with at least 23/4t3/2 + 2t + 1 vertices

contains a 2-connected matching of size t.

Proof. Set c = 25/4 which is the positive root of 4
c

= c
√

2
2

. We want to establish the recursive

bound g(t) � g(t − 1) + ct1/2 + 2, for the function g(t) (t � 2, g(1) = 3). Then (using the

inequality between the arithmetic and quadratic means)

g(t) � c

(
t∑

i=2

i1/2

)
+ 2(t − 1) + g(1) � c

(
√

2)

2
t3/2 + 2t + 1 = 23/4t3/2 + 2t + 1,

the theorem follows (for t = 1 it holds vacuously).

Using the argument of Theorem 1.6, let N be the smallest integer satisfying N �
23/4t3/2 + 2t + 1, let G be a graph with N vertices and with α(G) = 2. Assuming G has no

2-connected matching of size t, any v ∈ V (G) is nonadjacent to at most 2t − 1 vertices of

G. Using the argument from the proof of Theorem 1.6, for any v ∈ V (G) there is a w ∈ Bv

such that there are at most M = (2t− 1)(2t− 2)
N − 2t

vertices of G nonadjacent to both v and w.

Therefore, it is possible to remove at most M + 2 vertices of G so that the remaining

graph does not contain 2-connected matchings of size t − 1. Thus,

g(t) < g(t − 1) +
(2t − 1)(2t − 2)

N − 2t
+ 2. (2)

Notice that (2t− 1)(2t− 2)
N − 2t

� ct1/2 because otherwise we get

N <

(
4

c

)
t3/2 + 2t = 23/4t3/2 + 2t
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implying

23/4t3/2 + 2t + 1 � N < 23/4t3/2 + 2t,

contradiction. Thus (2) gives the claimed recursive bound for g(t). �

It is natural to conclude this note by introducing h(t), the minimum n such that every

graph G with n vertices and with α(G) = 2 contains a 3-connected matching of size t: a set

of pairwise disjoint edges e1, e2, . . . , et of G such that for every 1 � i < j � t there exists

at least three edges of G connecting an endpoint of ei to an endpoint of ej .

Problem 1.8. Separate the functions f � g � h � R(3, 2t).
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