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Abstract: Weakening the notion of a strong (induced) matching of
graphs, in this paper, we introduce the notion of a semistrong matching.
A matching M of a graph G is called semistrong if each edge of M has
a vertex, which is of degree one in the induced subgraph G½M�. We
strengthen earlier results by showing that for the subset graphs and for
the Kneser graphs the sizes of the maxima of the strong and semistrong
matchings are equal and so are the strong and semistrong chromatic
indices. Similar properties are conjectured for the n-dimensional cube.
� 2005 Wiley Periodicals, Inc. J Graph Theory 49: 39–47, 2005
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1. INTRODUCTION

Assume that M is a matching in a graph G, i.e., M consists of pairwise disjoint

edges of G. A vertex covered by M is said to be strong vertex if it has degree one
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in the graph induced in G by the vertex set covered by M. A strong (or induced)

matching M is a matching in which every vertex covered by M is strong.

A semistrong matching M is defined by requiring that each edge of M has a

strong vertex. The maximal sizes of a matching, strong matching, and semistrong

matching of G are denoted by �ðGÞ, �sðGÞ, and �ssðGÞ, respectively. Clearly

�ðGÞ � �ssðGÞ � �sðGÞ for every graph G. The minimal numbers of classes

needed to partition the edge set of G into matchings, strong matchings, and

semistrong matchings are the chromatic index qðGÞ, the strong chromatic index

qsðGÞ, and the semistrong chromatic index qssðGÞ. These parameters clearly

satisfy qðGÞ � qssðGÞ � qsðGÞ. The parameters �ðGÞ and qðGÞ are among the

most extensively studied graph invariants. The study of �sðGÞ and qsðGÞ was

started by Erdó́s and Nesetřil (see [6]) and continued in [1], [4], [5], [7], [8], and

[13]; most of the results concern special graphs like cubes, subset graphs, and the

Kneser graphs (see [7], [11]).

The notion of a semistrong matching, which seems to be new, arose from a

special case of the following question. Assuming that H is a union of paths and

even cycles, determine the smallest n for which H is an induced subgraph of Qn.

Here Qn is the n-dimensional cube, the graph whose vertices are the 0–1 vectors

of length n, and in which two vertices are joined if they differ in exactly one

coordinate.

For certain graphs H (independent set, matching, union of cycles of length

four, union of cycles of length eight), this question can be answered easily, but for

the cycle, it is the Snake-in-the-box problem (see [12], [14]), which is considered

to be very difficult.

Let us draw attention to the special case of the question above, in which H

consists of several identical components F. For example, given a path or even

cycle F, determine the largest k such that kF is an induced subgraph of Qn. As a

variant of this problem, consider the maximum number k for which H ¼ kP3 is an

induced subgraph of Qn with the additional property that each component of H

has an edge in the same direction of Qn. This problem can be reduced to finding

the maximum semistrong matching of the cube by showing that k ¼ �ssðQn�1Þ
(see [9]).

It is easy to prove that, for n � 5, every induced subgraph G of Qn with more

than 2n�1 vertices has a vertex of degree at least 3. Therefore for n � 5, every

induced graph H of Qn with �ðHÞ � 2 has at most 2n�1 vertices. (A result of [4]

gives more information for large n: G must have a vertex of degree at least

ð1
2
Þ log n – ð1

2
Þ log log nþð1

2
Þ. Note, however that this gives a vertex of degree 3

only for n � 44.)

2. SUBSET GRAPHS, KNESER GRAPHS, AND CUBES

Everywhere in this paper by coloring we mean edge coloring. The size of a

matching is the number of its edges.
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For the m element ground set ½m� ¼ f1; 2; . . . ;mg and 0 � k � l � m, the

subset graph Smðk; lÞ is the bipartite graph whose vertex classes are the k- and l-

subsets of the ground set. Two vertices (subsets) are adjacent if and only if one of

them is contained in the other.

It was conjectured by Brualdi and Quinn [3] that qsðSmðk; lÞÞ ¼ m
l�k

� �
. This

conjecture was proved by Quinn and Benjamin in [11]. In this section, we shall

prove a more general result (Theorem 1).

The main tool in our proofs is the ordered version of a theorem of Bollobás for

pairs of sets [2] that was proved by Lovász [10].

Lemma 1. Let S ¼ fðAi;BiÞj1 � i � rg be a set-pair collection with jAij ¼ a,

jBij ¼ b satisfying the following conditions:

(a) Ai \ Bi ¼ ; for 1 � i � r;

(b) Ai \ Bj 6¼ ; for 1 � i < j � r.

Then r � aþb
a

� �
.

Lemma 2.

�sðSmðk; lÞÞ ¼ �ssðSmðk; lÞÞ ¼
m� lþ k

k

� �
:

Proof. Recall that a matching M is semistrong if every edge contains at least

one strong vertex. Fix one strong vertex on every edge of M and call the other

vertices of M weak. Denote the classes of Smðk; lÞ by

L ¼ fAi : Ai � ½m�; jAij ¼ lg and K ¼ fBj : Bj � ½m�; jBjj ¼ kg:

Let M be a semistrong matching in Smðk; lÞ and let fðA1;B1Þ; ðA2;B2Þ; . . . ;
ðAr;BrÞg be the edge set of M with Ai 2 L and Bi 2 K for 1 � i � r. Without loss

of generality, we may assume that for some index p the vertices B1;B2; . . . ;Bp

and Apþ1;Apþ2; . . . ;Ar are the weak vertices of M. Denoting Ai ¼ ½m� n Ai,

observe that

Ai \ Bi ¼ ; for 1 � i � r

and

Ai \ Bj 6¼ ; for 1 � i < j � r:

Hence, S ¼ fðAi;BiÞj1 � i � rg satisfies the conditions of Lemma 2 and

therefore, r � m�lþk
k

� �
. We have shown that

�ssðSmðk; lÞÞ �
m� lþ k

k

� �
:

To show the reverse inequality, consider the following set-pair system. Fix a set

T � ½m� of size l� k. Take all the sets Bi 2 K such that Bi \ T ¼ ;. For every
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such Bi, define Ai ¼ Bi [ T . It is clear that this set-pair system fðAi;BiÞj1 �
i � m�lþk

k

� �
g determines a strong matching in Smðk; lÞ, and thus

m� lþ k

k

� �
� �sðSmðk; lÞÞ � �ssðSmðk; lÞÞ

finishing the proof. &

Clearly,

qssðSmðk; lÞÞ � qsðSmðk; lÞÞ �
m

l� k

� �

since one can define a strong coloring on Smðk; lÞ with m
l�k

� �
colors by assigning to

every edge ðAi;BjÞ 2 EðSmðk; lÞÞ the set Ai n Bj as a color (this coloring is from

[11]). Since

�ssðSmðk; lÞÞ ¼
m� lþ k

k

� �

and

jEðSmðk; lÞÞj ¼
m

l

� � l

k

� �
¼ m� lþ k

k

� �
m

l� k

� �

we get
m

l� k

� �
� qssðSmðk; lÞÞ:

Therefore, we obtain the following result.

Theorem 1.

qsðSmðk; lÞÞ ¼ qssðSmðk; lÞÞ ¼
m

l� k

� �
:

For m > 2n, the Kneser graph KNðm; nÞ is the graph whose vertices are the

n-subsets of an m element ground set with two vertices connected if and only if the

corresponding sets are disjoint. It has been proved in [7] that qsðKNðm; nÞÞ ¼
m
2n

� �
. Using the same technique, we will show that (more generally)

qssðKNðm; nÞÞ ¼ m
2n

� �
.

Lemma 3.

�sðKNðm; nÞÞ ¼ �ssðKNðm; nÞÞ ¼
1

2

2n

n

� �
:

Proof. Take a semistrong matching M in KNðm; nÞ. Fix one strong vertex on

every edge of M and call the other vertex of the edge weak. Take two copies of M
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and assign to them a set-pair system. On the first copy of M, for every edge assign

Ai as the set corresponding to its strong vertex and assign Bi as the set

corresponding to its weak vertex. The set system constructed is denoted by

fðA1;B1Þ; . . . ; ðAr;BrÞg. On the second copy of M, consider the following set

system fðArþ1;Brþ1Þ; . . . ; ðA2r;B2rÞg. For every index r þ i, let Arþi ¼ Bi and

Brþi ¼ Ai (i.e., change the order in each ordered pair of the previous set-pair

system). It is easy to check that the system

S ¼ fðA1;B1Þ; . . . ; ðA2r;B2rÞg

satisfies the conditions of Lemma 2 and hence

2r � 2n

n

� �
and jMj ¼ r � 1

2

2n

n

� �
:

Thus,

�sðKNðm; nÞÞ �
1

2

2n

n

� �
:

Let N be a subset of size 2n of the ground set. Consider the collection of

unordered pairs

T ¼ ffAi;NnAig : Ai � N; jAij ¼ ng:

Observe that T determines a strong matching in KNðm; nÞ and

jT j ¼ 1

2

2n

n

� �
:

Thus,

1

2

2n

n

� �
� �sðKNðm; nÞÞ � �ssðKNðm; nÞÞ

finishing the proof. &

Consider the coloring of KNðm; nÞ, where to every edge ðAi;BiÞ, we assign the

set Ai [ Bi as color. Note that in this coloring, every color class determines a

strong matching, and we have used m
2n

� �
colors. Hence,

qssðKNðm; nÞÞ � qsðKNðm; nÞÞ �
m

2n

� �
:

Since

jEðKNðm; nÞÞj ¼ 1

2

m� n

n

� � m

n

� �
¼ 1

2

2n

n

� �
m

2n

� �
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and

�ssðKNðm; nÞÞ ¼
1

2

2n

n

� �
;

we get
m

2n

� �
� qssðKNðm; nÞÞ

and obtain the following.

Theorem 2.

qsðKNðm; nÞÞ ¼ qssðKNðm; nÞÞ ¼
m

2n

� �
:

Properties known for strong matchings are not always true for semistrong

matchings. For instance, a possible method of proving that qsðKNðm; nÞÞ � m
2n

� �
was to find a subgraph of size m

2n

� �
in KNðm; nÞ such that any two edges of it

must be colored with different colors in a strong coloring. Such subgraphs were

called ‘‘antimatchings’’ in [7]. An antimatching is a subset F of edges such that

between any two disjoint edges of F there is at least one further edge of G.

A semistrong antimatching is a subset F of edges such that between any two

disjoint edges of F, there are at least two further edges of G.

Let amsðGÞ and amssðGÞ denote the largest numbers of edges in a strong and

semistrong antimatching of G, respectively. In contrast with antimatchings,

the size of semistrong antimatching cannot achieve qssðKNðm; nÞÞ, in fact

amssðKNðm; nÞÞ � m�1
2n�1

� �
. We do not prove this, but show a better upper bound

due to Oleg Pikhurko.

Lemma 4.

amssðKNðm; nÞÞ � 2
bm

2
c

n

� �
dm

2
e

n

� �
:

Proof. Let E ¼ fðAi;BiÞg be the set of edges in a semistrong antimatching of

KNðm; nÞ, where Ai and Bi (for every i) are disjoint n-subsets of the m element

ground set S. For every x 2 S and y 2 S, x 6¼ y define

Vxy ¼ [fAi n fxg : ðAi;BiÞ 2 E; x 2 Ai; y 2 Big:

Suppose that z 2 Vxy \ Vyx. Then there exist edges ei ¼ ðAi;BiÞ and ej ¼ ðAj;BjÞ
such that x 2 Ai \ Bj, y 2 Aj \ Bi, z 2 Ai \ Aj. Therefore, at most, one edge is

spanned between ei and ej, namely ðBi;BjÞ. This contradicts the definition of the

semistrong antimatching. Thus Vxy \ Vyx ¼ ; implying that

jfðAi;BiÞ 2 E : x 2 Ai; y 2 Bigj �
Vxy

n� 1

� �
Vyx

n� 1

� �
� bm�2

2
c

n� 1

� �
dm�2

2
e

n� 1

� �
:
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Hence,

n2jEj �
X
x;y

Vxy

n� 1

� �
Vyx

n� 1

� �
� m

2

� � bm�2
2
c

n� 1

� �
dm�2

2
e

n� 1

� �
:

Therefore,

jEj � 2
bm

2
c

n

� �
dm

2
e

n

� �
: &

A maximal complete bipartite subgraph is obviously a semistrong antimatch-

ing in KNðm; nÞ and gives a lower bound bm
2
c

n

� �
dm

2
e

n

� �
for amssðKNðm; nÞÞ. By

adding edges of maximal complete bipartite graphs M1 and M2 to each of its

partite classes, respectively, one can increase the number of edges preserving the

antimatching property. This procedure can be iterated by adding edges of a

maximal complete bipartite graphs to partite classes of M1 and M2 and so on. The

number of edges in the resulting graph G is at least

bm
2
c

n

� �
dm

2
e

n

� �
þ 2

bm
4
c

n

� �2

þ 4
bm

8
c

n

� �2

þ � � �

and at most

bm
2
c

n

� �
dm

2
e
n

� �
þ 2

dm
4
e

n

� �2

þ 4
dm

8
e
n

� �2

þ � � � :

Thus, the number of edges in G is ð1 þ "Þ bm
2
c

n

� �
dm

2
e

n

� �
for some small positive ".

This with Lemma 2 yields the following.

Theorem 3.

ð1 þ "Þ bm
2
c

n

� �
dm

2
e
n

� �
� amssðKNðm; nÞÞ � 2

bm
2
c

n

� �
dm

2
e

n

� �
:

Observe that semistrong antimatchings in bipartite graphs must be complete

bipartite subgraphs. Thus, for bipartite graphs, a largest complete bipartite

subgraph is a largest semistrong antimatching. With this observation, it is easy to

verify that amssðSmðk; lÞÞ ¼ m�k
l�k

� �
. Recall that qssðSmðk; lÞÞ ¼ m

l�k

� �
. So the size of

the maximal semistrong antimatching of ðSmðk; lÞÞ is smaller than qssðSmðk; lÞÞ.
It was proved in [7] that �sðQnÞ ¼ 2n�2, qsðQnÞ ¼ 2n, and amsðQnÞ ¼ 2n. Note

that amssðQnÞ ¼ n, since Qn is bipartite and the n-star is its maximum complete

bipartite subgraph.

Claim. 2n � qssðQnÞ � ð5=4Þn.

Proof. For a semistrong coloring of Qn, consider the subgraph that is formed

by two of its color classes. Observe that each component of this subgraph is an
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alternating path of order at most 5. Therefore, any two color classes together have

at most 4
5

2n edges, and hence qssðQnÞ � ð5=4Þn. The upper bound comes from

the fact that qsðQnÞ � qssðQnÞ. &

We do not know whether a semistrong matching of Qn can exceed the size

of 2n�2 when n is large. However, it is proved in [9] that �ssðQnÞ ¼ 2n�2 for

2 � n � 12. We conjecture that it is true for all n � 2.

Conjecture 1. �ssðQnÞ ¼ 2n�2.
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