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MYRIAM PREISSMANN‡ , AND ANDRÁS SEBŐ‡
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Abstract. In this paper we are concerned with the so-called clique-colorations of a graph, that
is, colorations of the vertices so that no maximal clique is monochromatic. On one hand, it is known
to be NP-complete to decide whether a perfect graph is 2-clique-colorable, or whether a triangle-free
graph is 3-clique-colorable; on the other hand, there is no example of a perfect graph where more
than three colors would be necessary. We first exhibit some simple recursive methods to clique-color
graphs and then relate the chromatic number, the domination number, and the maximum cardinality
of a stable set to the clique-chromatic number. We show exact bounds and polynomial algorithms
that find the clique-chromatic number for some classes of graphs and prove NP-completeness results
for some others, trying to find the boundary between the two. For instance, while it is NP-complete
to decide whether a graph of maximum degree 3 is 2-clique-colorable, K1,3-free graphs without an
odd hole turn out to be always 2-clique-colorable by a polynomial algorithm. Finally, we show that
“almost” all perfect graphs are 3-clique-colorable.
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1. Introduction. A hypergraph H is a pair (V, E), where V is the set of vertices
of H, and E is a family of nonempty subsets of V called edges of H. In this paper
graphs are always undirected, that is, they are hypergraphs where every edge has
two elements. A k-coloration of H = (V, E) is a mapping c : V → {1, 2, . . . , k} such
that for all e ∈ E , |e| ≥ 2, there exist u, v ∈ e with c(u) 	= c(v). The chromatic
number χ(H) of H is the smallest k for which H has a k-coloration. In other words,
a k-coloration of H is a partition P of V into at most k parts such that no edge of
cardinality at least 2 is contained in some P ∈ P.

As usual, Ki,j (i, j ∈ N) denotes the complete bipartite graph with classes of
cardinality i and j; Kn is the complete graph on n vertices, and Cn is a graph on
n vertices and n edges forming a circuit. The graph K1,3 is also called a claw, and
K3 = C3 a triangle. A hole is an induced chordless cycle with at least five vertices.
A cobipartite graph is the complement of a bipartite graph.

A graph is called H-free, where H is an arbitrary fixed graph, if it does not
contain H as an induced subgraph.

In this paper we consider hypergraphs arising from graphs: for a given graph
G = (V,E), the clique-hypergraph of G is defined as H(G) = (V, E), where E = {K ⊆
V : K is a maximal clique of G}. (A set K ⊆ V of vertices is a clique if ab ∈ E holds
for all distinct a, b ∈ K, and K is a maximal clique if it is not properly contained in
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any other clique.) A hypergraph H will be called a clique-hypergraph if H = H(G) for
some graph G defined on the vertices of H.

A k-coloration of H(G) will also be called a k-clique-coloration of G, and the
chromatic number of H(G) the clique-chromatic number of G. We hope it will not be
confusing to use in parallel the usual terms k-coloration and chromatic number χ(G)
of G where c(u) 	= c(v) is required for every edge uv ∈ E. As usual, the maximum
size of a clique in G is denoted by ω = ω(G) and the maximum size of a stable set (a
set of vertices not containing any induced edge) by α = α(G)(= ω(Ḡ)). We will also
use the shorthand notations κ := κ(G) := χ(H(G)), κ̄ := κ(Ḡ), χ̄ := χ(Ḡ).

Note that what we call k-clique-coloration here is called strong k-division by
Hoàng and McDiarmid in [7]. The main objective of [7] is to find a k-coloration of the
hypergraph of maximum cliques, which leads for most part to problems of a different
nature from those studied here. However, the theorems of [7] on strong k-divisions
are related to some of our results, and we will point out the connections that we have
understood.

Before explaining some connections between colorations and clique-colorations of
graphs, let us show some essential differences concerning combinatorial properties as
well as problem complexity.

1. A basic property of graph colorations is that they also provide proper col-
orations of all the subgraphs of the colored graph. This allows us to define various
notions of “critical graphs” and is extensively used in coloring algorithms and proofs.
On the contrary, a clique-coloration of G does not necessarily induce clique-colorations
of the subgraphs of G; accordingly, the clique-chromatic number is not necessarily
smaller for induced subgraphs.

For example, if G is a (nonempty) graph and G′ is obtained from G by adding a
vertex of full degree, then χ(G′) = χ(G) + 1 while κ(G′) = 2.

However, a k-clique-coloration of a graph can be defined with the k-coloration
of a subgraph. This subgraph is not induced by a set of vertices, but arises by
deleting edges and vertices of the graph (see after 3 below). Unfortunately a proper
way of doing this depends on the clique-coloration itself: deleting or contracting
monochromatic edges in a clique coloration does lead to properly colored graphs.

2. The hereditary property of colorations involves advantageous algorithmic be-
havior as well: one can color the vertices successively by giving to each new vertex
a color different from those already assigned to its neighbors (rules can be defined
for the order in which the vertices are colored and for the choice of the color). All
vertex-colorations, including the optimal ones, can arise in this way.

A simple but very useful modification of this sequential coloring procedure is
to combine it with “bichromatic exchanges” (see, for example, [13]). Such natural
procedures do not show up for the clique-coloring number even if some sequential
procedures will produce some results in what follows.

3. Some of the most basic problems that are completely trivial for coloring become
intractable for clique-coloring: the problem of deciding whether a hypergraph given
explicitly admits a 2-coloration is known to be NP-complete [11], even for clique-
hypergraphs [10]. Furthermore, just to check whether a given set is a color class in
some clique-coloration is NP-hard; see section 2.

Clearly, any k-coloration of G is a k-clique-coloration, whence κ ≤ χ. Typically
κ is much smaller than χ. However, a graph G has a k-clique-coloration if and only
if it has a subgraph H such that
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• for every maximal clique K of G, |E(H) ∩ E(K)| ≥ 1;

• H has a k-coloration.

Indeed, a k-coloration of H can be arbitrarily extended to a k-clique-coloration
of G. Conversely, the edges whose two endpoints have different colors in a k-clique-
coloration of G define H with the claimed properties.

If G is triangle-free, then of course κ(G) = χ(G). Since the chromatic number
of triangle-free graphs is known to be unbounded [17], we get that the same is true
for the clique-chromatic number. Let us recall for further use Mycielski’s triangle-free
graphs with unbounded chromatic number:

– G2 consists of two adjacent vertices.
– For any k > 2, the graph Gk = (Vk, Ek) is defined by the following:

– Vk = Vk−1 ∪Sk ∪{xk}, where Vk−1 = {v1, . . . , vnk−1
} and Sk = {s1, . . . ,

snk−1
};

– the subgraph induced by Vk−1 is isomorphic to Gk−1, and the subgraph
induced by Sk is a stable set;

– there exists an edge sivj if and only if there exists an edge vivj ;
– xk is adjacent to all vertices in Sk and to no other vertex.

It is easy to show by induction that Gk is triangle-free and χ(Gk) = k for all
k ≥ 2. It is also easy to check that χ(Gk \ {e}) = k − 1 for every edge e of Gk.

The clique-chromatic number is unbounded already for the line-graphs of very
particular graphs. Indeed, from the existence of Ramsey numbers we get that for
any fixed k there exists Nk ∈ N so that for all n ≥ Nk, every k-edge-coloration of
Kn contains a monocolored triangle. A triangle of Kn is a maximal clique in the
line-graph Ln of Kn. Therefore κ(Ln) ≥ k + 1 if n ≥ Nk.

However, in [4] (reported also in [8]), the following question is asked.

Question 1. Does there exist some constant C so that it is always possible to C-
color the clique-hypergraph H(G) of a perfect graph G?

Recall that a graph is perfect if, for every induced subgraph G′, χ(G′) = ω(G′);
that is, the chromatic number of G′ is equal to its maximum clique size.

Duffus et al. [4] observe that the answer to Question 1 is positive for two subclasses
of perfect graphs: the clique-chromatic number of comparability graphs is at most 2,
and that of cocomparability graphs is at most 3 by a result of Duffus, Kierstead, and
Trotter [3]. In this paper we show that the answer to Question 1 is yes in some other
cases, and again with C = 2 or C = 3. We do not have any example of a perfect
graph, and not even of an odd-hole-free graph, with clique-chromatic number greater
than 3.

Let us finally introduce some more notation and terminology. For U ⊆ V we will
use the notation N(U) := {v ∈ V : v /∈ U , and there exists u ∈ U such that uv ∈
E}, N [U ] := N(U) ∪ U . Instead of {x} we will often write x. The border B(U)
of U is N(U) ∪ N(V \ U); that is, B(U) is the set of vertices of U or V \ U that
has a neighbor in V \ U or U , respectively. (B(U) = B(V \ U)). We will say that
u ∈ U is a border-guard of U if N [u] ⊇ B(U). Borders and border-guards will be
useful for clique-colorations because of the simple fact that any Q ∈ E(H(G)) is either
entirely contained in U , in V \ U , or in B(U); in the latter case Q contains all the
border-guards of U .

Given U ⊆ V and u ∈ U it is easy to test whether u is a border-guard of U . This is
to be appreciated, because it is not as easy to exhibit a “reasonable” clique-coloration
as it is a coloration; the main difficulty is that it is NP-hard already to check whether
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a given mapping is a clique-coloration! The mentioned properties of border-guards
are helpful for achieving these tasks whenever border-guards exist.

In section 2, we analyze various aspects of the complexity of clique-coloring. In
section 3, we show some simple but general (greedy) methods to clique-color graphs.
In section 4, we exhibit connections between κ(G) and other parameters of the graph
G. In section 5, we prove that some classes of clique-hypergraphs are 2- or 3-colorable.
Finally, in section 6, we show that almost all perfect graphs are 3-clique-colorable.

2. The complexity of clique-coloring. In this section, we study several as-
pects of the complexity of clique-coloring.

It is already coNP-complete to check whether a given function c defined on the
vertices of a graph is a clique-coloration. More precisely, the following problem is
shown to be NP-complete.

Maximal clique containment.

INPUT: Graph G = (V,E) and T ⊆ V .
QUESTION: Is there a maximal clique K of G such that K ⊆ T?
Therefore deciding whether a k-clique-coloration exists is not clearly in NP nor

clearly in coNP.

Theorem 1. Maximal clique containment is NP-complete and remains
NP-complete if the complement of the input graph G is restricted to be K1,4-free.

Proof. The 3-DM (that is, three-dimensional matching; see [5]) can be very
simply reduced to this problem (a similar proof of [1] can be shortcut for this simpler
situation): let (X,Y, Z, T ) be an instance of 3-DM; that is, X, Y , Z are finite sets,
|X| = |Y | = |Z|, and T ⊆ X ∪ Y ∪ Z so that for all T ∈ T , |T ∩ X| = |T ∩ Y | =
|T ∩ Z| = 1. Let E := T ∪ {{y} : y ∈ Y }.

We let G be the intersection graph of the hypergraph (X ∪ Y ∪ Z, E), that is,
the vertex-set of G is E , and we join two vertices if they intersect. The following
statements can be easily checked: T contains a maximal stable set of G if and only
if the 3-DM problem has a solution, that is, if the family T contains a partition of
X ∪ Y ∪ Z; since the cardinality of every set in E is at most three, G is K1,4-free.

Thus the 3-DM problem for (X,Y, Z, T ) is reduced to the existence of a maximal
clique of Ḡ contained in T , where Ḡ is K1,4-free.

If the maximal cliques of a graph are given, it can of course be checked in poly-
nomial time if a coloration is a clique-coloration. So, for general algorithmic consid-
erations it is reasonable to consider the problem in a setting where H(G) is given as
part of the input.

We will in fact consider the following seemingly more general problem.

k-clique-coloring.

INPUT: A family H of maximal cliques of G, and k ∈ N.

QUESTION: Can H be k-colored?

The problem of coloring H is not really more general than that of coloring H(G).
Indeed, adding to G a vertex vK for every cliqueK ∈ H(G)\H, and joining vK exactly
to the vertices of K, we obtain a graph G′ with the property that H is k-colorable if
and only if H(G′) is k-colorable (k ≥ 2).

This does not mean that H arises as the hypergraph of all the maximal cliques
of some graph: let G be the graph consisting of a circuit on 6 vertices and 3 chords
forming a triangle T ; then H(G) \ {T} does not arise as the set of all maximal cliques
of a graph.
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Notice also that the problem of coloring clique-hypergraphs is more restrictive
than that of general hypergraph coloring: the hypergraph {1, 2}, {2, 3}, {3, 1} does
not arise as a clique-hypergraph.

Since the computation of the chromatic number is NP-hard for triangle-free graphs
[12], it is also NP-hard to compute the clique-chromatic number of triangle-free graphs,
even if all the cliques are given explicitly as part of the input.

Quite general classes of hypergraphs can be 2-colored. Using the Lovász local
lemma, McDiarmid [15] proves that all hypergraphs whose hyperedges are “large”
(in a well-defined sense), as compared to the degrees, are 2-colorable. Almost all
perfect graphs are 3-clique-colorable (see section 6), but deciding if a perfect graph of
maximum clique-size four is 2-clique-colorable is already NP-complete, by Kratochv́ıl
and Tuza [10]. On the other hand, Mohar and Škrekovski [16] have shown that
every planar graph is 3-clique-colorable, and Kratochv́ıl and Tuza [10] proposed a
polynomial algorithm to decide if a planar graph is 2-clique-colorable (the set of
cliques is given in the input).

The following result is inspired by the methods of [10].

Theorem 2. 2-clique coloring is NP-complete even if the input graph G is re-
stricted to be of maximum degree 3.

Proof. We use the not-all-equal satisfiability problem (NAE-SAT), which is known
to be NP-complete [21].

NAE-SAT.

INPUT: A set X of Boolean variables and a collection C of clauses (set of literals
over U), each clause containing three different literals.

QUESTION: Is there a truth assignment for X such that every clause contains
at least one true and at least one false literal?

Given an instance F of NAE-SAT, we build a graph G(F) as follows.

To the clauses we associate vertex disjoint triangles; each vertex corresponds to
one of the literals of the clause. For each variable x, vertex disjoint paths Px are added
to the graph as follows. Let C1, . . . , Ck be the clauses in which x or its negation occur,
the path Px is defined with vertices vx1 . . . vx2k

(in this order). The path Px and the
triangles are joined with the following rule: if Ci contains x (resp., x), we add the
edge from the vertex of the triangle representing x to vx2i−1

(resp., to vx2i
). This

construction is clearly polynomial in the size of F , and it is easy to verify that G(F)
is 2-clique-colorable if and only if F is not-all-equal satisfiable. Furthermore, G(F) is
of maximum degree 3.

Because of the nature of the clique-coloring problem, the NP-completeness of the
2-clique-coloring problem does not immediately imply the NP-completeness of the k-
clique-coloring problem (for any fixed k ≥ 2). Nevertheless it is true; here is a simple
reduction.

Corollary 1. For any fixed k ≥ 2, the k-clique-coloring problem is NP-
complete.

Proof. Let G be an instance of the k-clique-coloring problem. Add a copy of
the (k + 2)-chromatic Mycielski graph Gk+2. Remove an edge incident to xk+2 (we
use the notation given in the introduction), and replace xk+2 by |V (G)| copies of
xk+2. Pairing these copies of xk+2 with the vertices of G, we obtain a new graph G′.
Observe now that in any (k + 1)-coloration of G′, all copies of xk+2 have the same
color. Hence a (k+ 1)-clique-coloration of G′ yields a k-clique-coloration of G, which
completes the reduction.
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3. How to clique-color a graph? It is not difficult to provide clique-coloration
of a graph: just color every vertex with a different color; a coloration of the graph is
also a proper clique-coloration, etc. However, the clique-chromatic number is typically
much smaller than the chromatic number. For instance, for perfect graphs the chro-
matic number is ω and the clique-chromatic number is conjectured to be a constant,
maybe 3!

We need heuristics that may provide better estimates than the chromatic number.
Besides the difficulty of coloring with a small number of colors, it is also difficult to
realize that a procedure is good, since by Theorem 1 we cannot even check whether a
partition of the vertices is a clique-coloration.

However, certain constructions inherently guarantee that the result is a proper
coloration, and at the same time the number of occurring colors can be bounded in a
helpful way. We present in this section three such frameworks. These are meant to be
used more as frameworks than algorithms: in the realizations queues can be broken in
various ways, and this arising freedom will be exploited in the particular procedures
we will present later.

A neighborhood-coloration is any clique-coloration obtained by the following
greedy framework.

Neighborhood coloring.

INPUT: Graph G = (V,E) and H ⊆ H(G).

0. In each iteration, the algorithm updates the set D of “considered” vertices and
the set L of “colored” vertices, D ⊆ L. Initially set D := ∅, L := ∅.

While not all the vertices are colored do the following:

1. Choose v ∈ V \D, and consider v.

2. If v 	∈ L, then assign to v a color which does not occur in N(v); L := L ∪ {v}.
3. Let c be a color different from all colors occurring among the neighbors of

vertices in N(v) \ L. Assign to all vertices in N(v) \ L the color c.

4. Update: D := D ∪ {v}, L := L ∪N(v).

Lemma 1. The coloration found by the algorithm is a clique-coloration of G.

Remark. At each iteration the set of considered vertices dominates the set of
colored vertices, so that the set D obtained at the end of the algorithm is a dominating
set of G; that is, N [D] = V .

The order in which the vertices are considered, or the free choices for the colors,
for instance, for color c, will be replaced by particular rules in more specific coloring
procedures.

The next lemma shows that if a graph admits a certain partition of the vertices,
then it is k-clique-colorable. A clique-coloration obtained by the way described in the
proof of Lemma 2 will be called a partition coloration.

Lemma 2. Let G = (V,E) be a graph and k ∈ N, k ≥ 2.

If G admits a partition {V1, . . . , Vp} of V such that

– G(Vi) is k-clique-colorable, and Vi has a border-guard in G (i = 1, . . . , r ≤ p);
– G(Vi) (i = r + 1, . . . , p) does not contain a maximal clique of G;
– the graph H obtained by identifying the vertices of each Vi (denote the new
vertices by xi, i = 1, . . . , p) has χ(H) ≤ k;

then G is k-clique-colorable.

Proof of Lemma 2. Consider a k-coloration cH : V (H) = {x1, . . . , xp} −→
{1, . . . , k} of H and also a k-clique-coloration ci : Vi −→ {1, . . . , k} of G(Vi) (i =
1, . . . , r).
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By assumption Vi has a border-guard vi in G (i = 1, . . . , r). We can suppose
that ci(vi) = cH(xi) (otherwise we interchange two colors in the coloration of G(Vi)).
Furthermore, for i = r + 1, . . . , p we define ci(v) = cH(xi) for all v ∈ Vi. Define for
v ∈ V (G) c(v) := ci(v) if v ∈ Vi.

Now let Q be a maximal clique of G. If Q is contained in some Vi, then by the
assumption i ≤ r and c(q) = ci(q) for all q ∈ Q. Therefore, at least two colors occur
in Q. If Q is not contained in some Vi, then say Q∩ Vi 	= ∅ 	= Q∩ Vj . Let vi ∈ Q∩ Vi
(resp., vj ∈ Q ∩ Vj) be an arbitrary vertex in Q ∩ Vi (resp., Q ∩ Vj) for i ≥ r (resp.,
j ≥ r).

Clearly, vi, vj ∈ Q. Since c(vi) = cH(xi) 	= cH(xj) = c(vj) because of xixj ∈
E(H), two different colors do occur in Q.

A third simple but useful method is presented in the following lemma. A pair
(d,D) is called a dominating pair if d ∈ V , D ⊆ N(d), and any maximal clique K of
G containing d satisfies K ∩D 	= ∅. The following lemma shows that such a pair can
be useful for our coloring problem.

Lemma 3 (dominating pair lemma). Let (d,D) be a dominating pair, and let k
be a nonnegative integer with |D| < k. If H(G− d) is k-colorable, then so is H(G).

Proof. Let c be a k-coloration ofH(G−d). Since k > |D|, there exists a color i that
does not occur in D. Let c′ : V → {1, 2, . . . , k}, with c′(v) = c(v) for all v ∈ G − d
and c′(d) = i. Since c is a k-coloration of H(G − d), it is sufficient to check that
any maximal clique K which contains d is not monocolored by c′. By definition of
a dominating pair, there exists a vertex v ∈ K ∩ D. By the choice of i, we have
c′(d) = i 	= c(v) = c′(v). Thus c′ is a k-coloration of H(G).

Let G be a graph with the property that every induced subgraph contains a vertex
u whose neighborhood has at most k connected components, each of which is a clique.
A direct consequence of the dominating pair lemma is that G is k+1-clique-colorable.

4. Rough general bounds. In this section we estimate the clique-chromatic
number with some other graph parameters.

Recall that a dominating set D is a subset of V such that N [D] = V . The
domination number γ(G) of a graph G is the smallest cardinality of such a set. Note
that γ(G) is always smaller than or equal to the stability number α(G).

We assume G to be connected, leaving to the reader the trivial extension of the
following theorem to graphs with several connected components.

Theorem 3. If G = (V,E) is a connected graph, then κ(G) ≤ γ(G) + 1, and if
κ(G) = γ(G) + 1, then every dominating set D of minimum size is a stable set, and
one of the following holds:

– |D| < α(G),
– D is a set of two nonadjacent vertices of G = C5,
– |D| = 1 and G = Kn, n ≥ 2.

Proof of Theorem 3. Let D = {x1, . . . , xk} be a dominating set of G, and n :=
|V (G)|. If there exists a, b ∈ D, ab ∈ E(G), suppose xk = b. Apply a neighborhood
coloring with the following specifications: the order of considering the vertices is
x1, . . . , xk; in the ith iteration (i = 1, . . . , k), if xi is not yet colored, color it with
color 1; moreover, for i = 1, . . . , k−1, color the not yet colored vertices of N(xi) with
color i + 1; if c(xk) 	= 1, then color N(xk) \ ∪k−1

j=1N [xj ] with color 1, otherwise with
color k + 1. It can be checked immediately that the defined colors are allowed, and
the number of colors is k + 1 only if D is a stable set. More exactly, we have the
following claims.

Claim 1. If κ(G) = k + 1, then D is a maximal stable set of minimum size.
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Indeed, if there exists a maximal stable set D′ of smaller size k′ := |D′| < k, then
it is also a dominating set. Hence κ(G) ≤ k′ + 1 ≤ k, as required.

Assume now that k = α(G).

Claim 2. If κ(G) = k + 1, k = α(G) ≤ 2, then either G = C5, or G = Kn, n ≥ 2.

Indeed, if k = α = 1, then G = Kn. Let now k = α = 2. We prove by induction
on the number of vertices that κ(G) = 2, unless G = C5.

Let a and b be two nonadjacent vertices; then because of α < 3, N [a] ∪ N [b] =
V (G).

If we can 2-clique-color the subgraph Nab induced by N(a)∩N(b), then we extend
this coloration to all G: define c(v) := 1 if v ∈ {a} ∪ N(b) \ N(a), and c(v) := 2 if
v ∈ {b} ∪N(a) \N(b). If Q is a maximal clique of G and, say, c(q) = 1 for all q ∈ Q,
then all vertices of Q \ a are adjacent to b. Since c(b) = 2 it follows that a ∈ Q . But
then Q \ a is a maximal clique of Nab, and, since c is a 2-clique-coloration of Nab,
Q \ a is a single vertex, v. If {b, v} is not a maximal clique, then by giving color 2 to
v we get a 2-clique-coloration of G. Else v is adjacent only to a and b, and so, since
α = 2, V (G) \ {a, b, v} is a clique. We may assume that Nab \ {v} is empty and that
N(a)\N(b) and N(b)\N(a) are nonempty, since, else, there exists a dominating edge
in G and hence, by Claim 1, a 2-clique-coloration of G. In case a or b has at least
two neighbors distinct from v, then let w be one of those, give color 1 to a, b, and w,
and give color 2 to all the other vertices: this a 2-clique-coloration of G. The only
remaining case is when |N(a) \N(b)| = |N(b) \N(a)| = 1; then G = C5.

We now assume that Nab has no 2-clique-coloration. Thus by induction hypothe-
sis, at least one connected component ofNab induces a C5. Since α = 2, we haveNab =
C5. Label v1, . . . , v5 its vertices in the cyclic order. If N(a)\N(b) = N(b)\N(a) = ∅,
then G is 2-clique-colorable; else fix a vertex v in, say, N(a) \N(b). Since α(G) = 2,
v is adjacent either to v1 or to v3, say v1, and v is adjacent either to v2 or to v5, say
v2. Now give color 1 to a, v1, v2, v4, and all the vertices in N(b) \ N(a), and give
color 2 to all the other vertices: this a 2-clique-coloration of G.

The claim is now proved.

To finish the proof of Theorem 3, suppose that k ≥ 3 and that D is a stable set
of cardinality k = α(G). In the above constructed neighborhood coloring, let xk−2,
xk−1, xk be the three pairwise nonadjacent vertices colored last. The neighborhood
coloring assigns colors c(xk−2) = c(xk−1) = c(xk) = 1 and new colors k − 1, k, k + 1
to the set of their not-yet-colored neighbors.

Claim 3. The graph induced by vertices of color k − 1, k, k + 1 and xk−2, xk−1,
xk can be 3-clique-colored.

The claim finishes the proof of the theorem. Indeed, choose the three colors to
be 1, k − 1, and k to get a k-clique-coloration of G. (The colors k − 1 and k do not
occur previously, and all previously colored vertices of color 1 are nonadjacent to the
vertices that are present in the claim.)

To prove Claim 3, we can suppose k = 3; then the notation is simplified, and we
only have to prove κ(G) ≤ 3.

If G−N [v] is not a C5 for some v ∈ V (G), then by Claim 2 it can be colored with
colors 1 and 2; completing this coloration with c(v) := 1 and c(x) := 3 if x ∈ N(v),
the statement is proved.

Suppose now that G − N [v] is a C5 for all v ∈ V (G). Then G is n − 6-regular.
If there is no triangle in G, then N(v) is a stable set for all v ∈ V (G), and therefore
n − 6 ≤ 3. The equality holds here, because if G is 2-regular, then G −N [v] cannot
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be a C5 for all v ∈ V (G). But if the equality holds, then the number of edges with
exactly one endpoint in N [v] is, on one hand, 2|N(v)| = 6 and, on the other hand, 5
(because there is exactly one such edge for every vertex of G−N [v]).

So G has a triangle. Let ab ∈ E(G) be one of its edges. If {a, b} is a dominating
set, then we can 2-clique-color G by Claim 1. Let us suppose that v is adjacent neither
to a nor to b. Since G−N [v] is a C5 containing the edge ab, where ab is contained in
a triangle of G, the following coloration is correct: c(v) := c(a) := c(b) := 1, c(x) := 2
if x ∈ N(v), and the remaining three vertices forming a path in the C5 can be colored
3, 1, 3.

Remark that for any integer k, a path P3k on 3k vertices has a dominating number
equal to k and κ(P3k) = 2.

On the other hand, Mycielski’s graphs provide an infinite class of triangle-free
graphs Gk for which κ(Gk) = χ(Gk) = γ(Gk) + 1 = k (for k ≥ 4 the first case of the
theorem holds, for k = 3 the second, and for k = 2 the third). Let D2 = {v}, where
v is either vertex of G2, and define Dk := Dk−1 ∪ {xk} (we use the notation given in
the introduction). By construction, Dk is a dominating set of Gk and |Dk| = k − 1.
By the theorem, and since κ(Gk) = χ(Gk) = k, we have that γ(Gk) = k − 1, and it
follows that Dk is a maximal stable set of minimum size (and not maximum as soon
as k ≥ 4).

Corollary 2. For any graph G 	= C5 with α(G) ≥ 2, we have κ(G) ≤
α(G).

This first corollary sharpens Theorem 2 in [7]. Indeed, it is stated there that
κ(G) ≤ α(G) + 1 and the strict inequality holds for C5-free noncomplete graphs.

Corollary 3. For any graph G of order n, we have κ(G) ≤ 2�√n �.
Proof. LetD = {v1, . . . , vk} be a subset of k vertices with the following properties:

– |N(v1)| ≥
√
n,

– |N(vi)− (∪j<iN [vj ])| ≥
√
n for i = 2, . . . , k,

– any vertex v ∈ V (G) satisfies |N(v)−N [D]| < √
n.

Note that D can be empty. Since D is a dominating set of N [D], and |D| < √
n,

by Theorem 3, we can clique-color the subgraph induced by N [D] with �√n � colors,
say {1, . . . , �√n �}.

On the other hand, in the subgraph induced by V \ N [D] the degree of every
vertex is strictly smaller than

√
n, so we can color this subgraph with �√n � colors,

say {�√n � + 1, . . . , 2�√n �}, by a sequential algorithm. This coloration is a clique-
coloration too.

This bound is not best possible: Kotlov [9] proved that κ(n) ≤ �√2n�. We do
not even know whether the maximum of the clique-chromatic number for graphs on
n vertices divided by

√
2n is a constant or tends to 0.

Theorem 4. Let G = (V,E) be a graph and q be an integer, q > 1. Then the

hypergraph Hq := {K ∈ H(G) : |K| ≥ q} is �χ(G)
q−1 �-colorable.

Proof. Let k := �χ(G)/(q − 1)�. Let S1, . . . , Sχ(G) be the color classes of a χ(G)-
coloration of G. For i = 1, . . . , k, we consider the union of q − 1 color-classes: Ci =⋃i(q−1)

j=(i−1)(q−1)+1 Sj if i = 1, . . . , k − 1, and Ck =
⋃χ(G)

j=(k−1)(q−1)+1 Sj .

Observe that ω(Ci) < q for every i = 1, . . . , k. Thus, the coloration c, defined by
c(x) = i if x ∈ Ci, is a k-coloration of Hq.

Corollary 4. If G is an arbitrary graph, then (κ−1)(κ̄−1) ≤ 2min{χ, χ̄}−2.

Proof. Let k be the size of a smallest maximal stable set of G. Since a maximal
stable set of G is a dominating set of G, by Theorem 3, we have that κ(G)−2 ≤ k−1.
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By the choice of k, we have that any maximal clique of G has size at least k. If

k > 1, by Theorem 4, we obtain κ(G)− 1 ≤ χ(G)−1
k−1 . Multiplying the two inequalities,

we obtain (κ− 2)(κ̄− 1) ≤ χ̄− 1.
If k = 1, then κ = 2 and trivially (κ− 2)(κ̄− 1) ≤ χ̄− 1.
In both cases we get (κ− 1)(κ̄− 1) ≤ χ̄+ κ̄− 2 ≤ 2(χ̄− 1).
Applying this again after interchanging the role of G and Ḡ, we get the

claim.
This bound can be sharpened under various assumptions. For instance, if κ or κ̄

are close to χ or χ̄, like for Mycielski graphs (see section 1), if κ = χ, then κ̄ ≤ 3.
(In fact, for Mycielski graphs the statement “κ̄ = 2 except for G3 = C5” is easy to
prove directly.) The bound can also be refined using other parameters: as Kotlov [9]
noticed, (κ− 1)(κ̄− 1) ≤ k

k−1 (χ̄− 1) if k > 1.

5. Claw-free and perfect graphs. In this section we study κ(G) and κ(Ḡ)
when G is a claw-free or a perfect graph or both.

If G is a perfect graph, then we have κ(G) ≤ χ(G) = ω(G). Applying also
Corollary 2, if G is not a complete graph, then we have κ(G) ≤ min{α(G), ω(G)}.
(This is better than the bound of Corollary 4 only if κ̄ = 2.) Moreover, when G is
perfect, α(G) and ω(G) can be computed in polynomial time [6].

Furthermore, it seems that in perfect graphs not only the maximum cliques but
also the maximal cliques behave well from the viewpoint of clique-colorations. A
consequence could be that there exists a constant C such that H(G) is C-colorable
for a perfect graph G; that is, Question 1 has a positive answer. We prove that such
a C exists for some classes of perfect graphs.

For example, the hypergraph of maximal cliques of a strongly perfect graph G
(defined by the property that every induced subgraph of G contains a stable set
intersecting all maximal cliques) is obviously 2-colorable: indeed, color a stable set
intersecting all maximal cliques of G with one color and the rest of the vertices with
another color.

Note that κ(G) can be greater than 2, even for a perfect graph G (see Figure 5.1).

Fig. 5.1. The clique-hypergraph of this perfect graph is clearly not 2-colorable since it contains
edges of C9 as hyperedges.

We saw in the introduction that the clique-chromatic number of claw-free graphs
or even of line-graphs is not bounded. The following theorem shows that triangles are
the only source of difficulty.
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We do not know the complexity of clique-coloring line-graphs of graphs optimally.
Observe that in the case of line-graphs, it is easy to check whether a given coloration
is correct since all maximal cliques of a line-graph L(G) are either stars or triangles
of G, and therefore the number of maximal cliques is small (bounded by a polynomial
of the number of vertices).

A multigraph is a graph that may contain an arbitrary number of parallel edges.

Theorem 5. Let G be a multigraph, H = (V, E) where V := E(G), and E is the
collection of stars of G. Then χ(H) ≤ 3. Moreover, χ(H) = 3 if and only if G has a
component which is an odd circuit.

Proof. Without loss of generality, assume that G is connected. Let G′ be obtained
from G by adding to it a perfect matching M of its odd-degree vertices, if any. Let T
be an Eulerian tour of G′. Color the edges of T alternatively black and white, starting
at a vertex of degree at least four (if any) or with an edge of M (if any). If there is
such a vertex or such an edge, then this coloring induces a proper 2-coloration of H.
Else, G is a cycle, and this 2-coloration of H is not proper if and only if G is an odd
cycle.

We are highly indebted to Kotlov [9] for short-cutting most of our original proof.

For complements of claw-free graphs, the following simple bound holds.

Theorem 6. Let 2 ≤ k ≤ α(G). If G is K1,k-free, then κ(Ḡ) ≤ k.
Proof. Since k ≤ α(G), there exists a stable set S ⊆ V (G), |S| = k. Since G is

K1,k-free, S induces a dominating clique (not necessarily maximal) of G. We achieve
the proof of Theorem 6 by applying Theorem 3.

Notice that the complements of Mycielski’s graphs are K1,3-free, showing that
the condition k ≤ α(G) in the preceding theorem is necessary.

We have now arrived at the most difficult result of this paper: we determine the
clique-chromatic number of claw-free perfect graphs.

Theorem 7. If G is a claw-free perfect graph, then H(G) is 2-colorable.

By Theorem 6 any graph which is the complement of a claw-free graph of stability
number at least 3 is 3-clique-colorable even if it is not perfect. On the other hand,
we saw that line-graphs (which are, of course, claw-free) may have arbitrary large
clique-chromatic number, unless they arise from triangle-free graphs.

In [7] it is proved that the hypergraph of maximum cliques of a claw-free graph
is 2-colorable if and only if it does not contain an odd hole. A common feature of the
proof of [7] and our proof below is the use of Ben Rebea’s lemma (as cited in [2]);
however, an essential difference is that the main part of our proof is the perfect case.

Corollary 5. If G is a claw-free graph without an odd hole, then κ(G) ≤ 2.

Proof of Corollary 5. Let G be claw-free without an odd hole. If α(G) ≤ 2, then
by Corollary 2, κ(G) ≤ 2.

If α(G) ≥ 3, then G is perfect because of the following: by Ben Rebea in [2] a
connected claw-free graph G with α(G) ≥ 3 containing an odd antihole also contains
an odd hole; Parthasaraty and Ravindra [18] proved that a claw-free graph with
neither an odd hole nor an odd antihole is perfect.

Since G is perfect, Theorem 7 can now be applied.

In order to prove Theorem 7, we use the structural property of claw-free graphs
explored by Chvátal and Sbihi [2] and Maffray and Reed [14].

Chvátal and Sbihi [2] defined two special classes of claw-free perfect graphs: the
elementary graphs and peculiar graphs. A graph is called elementary if its edges can be
colored with two colors such that every induced P3 (chordless path on three vertices)
has its two edges colored differently. Clearly elementary graphs are claw-free, but not
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vice versa, as C5 shows. A graph is called peculiar if it can be obtained as follows: take
three pairwise vertex-disjoint cobipartite graphs; call them (A1, B2), (A2, B3), (A3, B1),
such that each of them has at least one pair of non-adjacent vertices; add all edges
between every two of these cobipartite graphs; then add three cliques Q1, Q2, Q3 that
are pairwise disjoint and disjoint from the Ai’s and Bi’s; add all the edges between
Qi and Aj ∪ Bj for j 	= i; there is no other edge in the graph. Chvátal and Sbihi [2]
proved that every claw-free perfect graph can be decomposed via clique-cutsets into
indecomposable graphs that are either peculiar or elementary.

Theorem 8 (see [2]). If G is a claw-free perfect graph without a clique cutset,
then G is either elementary or peculiar.

The structure of elementary graphs was determined by Maffray and Reed in [14]
as follows. An edge is called flat if it does not lie in a triangle. Let xy be a flat edge
of a graph G and (X,Y ;F ) be a cobipartite graph disjoint from G and containing
at least one edge with one extremity in X and the other in Y . We obtain a new
graph from G−{x, y} and (X,Y ;F ) by making the union of their sets of vertices and
edges and adding all possible edges between X and NG(x) \ {y} and between Y and
NG(y) \ {x}. This is called augmenting the flat edge xy with the cobipartite graph
(X,Y ;F ). The result of augmenting a set of pairwise independent (nonincident) flat
edges e1, . . . , eh successively is called an augmentation of G.

Theorem 9 (see [14]). A graph G is elementary if and only if it is an augmen-
tation of the line-graph of a bipartite multigraph.

Proof of Theorem 7. We now prove Theorem 7 through several lemmas.

Lemma 4. If G is an elementary graph, then H(G) is 2-colorable.

Proof of Lemma 4. For line-graphs of bipartite multigraphs the statement follows
from Theorem 5. Furthermore, if G has a 2-clique coloration, the graph obtained by
augmenting a flat edge xy with B = (X,Y ;F ) still has a 2-clique-coloration: keep
the same color for all vertices of G− {x, y}; choose an edge ab of B with a ∈ X and
b ∈ Y ; and give color 1 to a and to all vertices in Y \ {b} and color 2 to b and to all
vertices in X \ {a}.

Using previous results, it is also not difficult to check the following.

Lemma 5. If G is a peculiar graph, then H(G) is 2-colorable.

Proof of Lemma 5. Let G = (V,E) be a peculiar graph composed of (A1, B2),
(A2, B3), (A3, B1), Q1, Q2, Q3 as in the definition of a peculiar graph. Let a ∈ A1

and let b ∈ B3 (by definition all the Ai’s, Bi’s are nonempty). It is easy to verify
that the edge ab is dominant, and hence by Theorem 3 we obtain that H(G) is
2-colorable.

Lemma 6. If G is a claw-free graph and Q is a clique which is a minimal cutset,
then G −Q has two components; denote their set of vertices V1 and V2, and at least
one of the following holds:

(a) Either for i = 1 or for i = 2 both Vi and V \ Vi have a border-guard.

(b) Both V1 and V2 have a border-guard.

(c) Both V1 ∪Q and V2 ∪Q have two border-guards.

Proof of Lemma 6. Since Q is a minimal cutset, every q ∈ Q has a neighbor in all
the components. Since G is claw-free, G−Q has two components, and N(q)∩ Vi is a
clique for all i = 1, 2 and all q ∈ Q.

Claim 1. For all a, b ∈ Q, either N(a)∩V1 ⊆ N(b)∩V1 or N(a)∩V2 ⊆ N(b)∩V2.

Indeed, if not, let ai ∈ N(a)∩Vi \ (N(b)∩Vi) (i = 1, 2). Clearly, a, b, a1, a2 induce
a claw, a contradiction.
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Claim 2. Either there exists a border-guard in V1, or there exist two distinct
border-guards in V1 ∪Q.

Indeed, suppose the first possibility does not hold. Then there are a 	= b ∈ Q so
that N [a] ∩ V1 and N [b] ∩ V1 are not equal, and they are both inclusionwise minimal
among N [q] ∩ V1 (q ∈ Q). (If there were a unique inclusionwise minimal N [q] ∩ V1

(q ∈ Q), then any v1 ∈ N [q] ∩ V1 would be a border-guard of V1.)

Since neither N [a]∩ V1 nor N [b]∩ V1 contains the other, by Claim 1 both N [a]∩
V2 ⊆ N [b] ∩ V2 and N [b] ∩ V2 ⊆ N [a] ∩ V2 hold; that is, N [a] ∩ V2 = N [b] ∩ V2 =: N2.

Now by the minimal choice of N [a]∩V1 and of N [b]∩V1, N [q]∩V1 for any q ∈ Q
cannot be a subset of both. So by Claim 1, N [q] ∩ V2 ⊆ N2 for all q ∈ Q. Since
B(V1 ∪ Q) = Q ∪N2, we proved that both a and b are border-guards of V1 ∪ Q and
the claim is proved.

To finish the proof of Lemma 6, note that by symmetry, Claim 2 also holds if we
replace 1 by 2. From these two variants of Claim 2 we get that one of the following
cases holds:

– Both V1 and V2 have a border-guard, and then each of these is adjacent with
every vertex in Q. So Q is not a maximal clique, and “b” of the lemma holds.

– Both V1 ∪Q and V2 ∪Q have two border-guards, and then we have “c.”

– V1 and V2 ∪Q have border-guards or V2 and V1 ∪Q have border-guards. This
is just “a.”

The proof of Theorem 7 works by induction on |V |. Let G = (V,E) be a claw-free
perfect graph. If G has one, two, or three vertices, then clearly H(G) is 2-colorable.
Suppose now that G has n vertices and that the theorem has been proved for any
claw-free perfect graph with less than n vertices. If G is either elementary or peculiar,
then, by Lemmas 4 and 5, H(G) is 2-colorable. So by Theorem 8, we may assume
that G has a clique cutset.

We can now finish the proof of Theorem 7 by applying the idea of Lemma 2 in a
very simple special case.

If Lemma 6(a) holds for say i = 1, by the induction hypothesis, we can 2-clique-
color G(V1) and G(V \ V1). Without loss of generality, we may assume that the
border-guard of V1 has a different color from that of V \ V1. Every maximal clique of
G is contained either in V1 or in V \ V1, or contains both border-guards. In any case,
both colors occur in it.

If Lemma 6(b) holds, then by the induction hypothesis, we can 2-clique-color
G(V1) and G(V2). Without loss of generality, we may assume that both their border-
guards have color 1. Color all vertices of Q with color 2. Since every maximal clique
of G is contained in V1 or V2 or contains a border-guard and a vertex of Q, we defined
a 2-clique-coloration.

Finally, if Lemma 6(c) holds, then color Q so that the two border-guards of V1∪Q,
and also those of V2∪Q, have different colors, and otherwise arbitrarily. We complete
this coloration by a 2-clique-coloration of G(V1) and G(V2). Now every maximal clique
of G is contained in V1 or in V2, or for some i ∈ {1, 2} it contains both border-guards
of Vi ∪Q. .

Note that the proof of Theorem 5 is algorithmic; moreover, either it reduces the
clique-coloration of G into the clique-coloration of two smaller graphs or the graph
itself is easy to color.

Using the following ingredients, the proof provides a way of 2-clique-coloring an
arbitrary claw-free perfect graph G in polynomial time:

– Whitesides’s algorithm [23] that finds a clique cutset;
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– Chvátal and Sbihi’s Theorem 8 [2];
– Maffray and Reed’s canonical decomposition algorithm of an elementary graph
into a line-graph of a bipartite graph and some augmentations [14];

– checking for border-guards is polynomial (obvious);
– the number of graphs occurring through the decomposition can be bounded
by a polynomial of the number of vertices of the input graph. (These graphs
are not the same as in Chvátal and Sbihi’s algorithm for recognizing claw-
free perfect graphs, since the clique-cutset is not left in both two decomposing
graphs.)

Furthermore, this algorithm uses only the graph G and not a list of its maximal
cliques.

Diamond-free perfect graphs constitute another interesting class of perfect graphs
(a diamond is a K4 minus an edge). It is known [22, 19] that a diamond-free graph is
perfect if and only if it does not contain an odd hole. Unfortunately we cannot prove
κ ≤ 3 for this class. This is somewhat frustrating, because Tucker [22] proved that a
diamond-free perfect graph has a vertex which is contained in at most two maximal
cliques of size at least 3, which implies the following.

Proposition 1. The hypergraph of maximal cliques of size at least 3 of a
diamond-free perfect graph is 3-colorable. In particular, if G is a diamond-free perfect
graph without flat edges, then κ(G) ≤ 3.

The conjecture κ ≤ 3 for diamond-free perfect graphs (equivalently diamond- and
odd-hole-free graphs) could contain many of the difficulties of coping with odd-hole-
free graphs in general. We wonder whether the clique-chromatic number of odd-hole-
free graphs could be bounded as well: we also do not know of any odd-hole-free graph
with clique-chromatic number greater than three.

6. Generalized split graphs. A graph G is a generalized split graph if either
G or the complement of G has a vertex partitioned into sets A, Bi (1 ≤ i ≤ k) so that
A and all Bi’s span complete graphs and there are no edges between Bi and Bj if
i 	= j. Generalized split graphs are perfect and have been introduced in the paper of
Prömel and Steger [20]; this class plays a crucial role in their proof of the asymptotic
version of the strong perfect graph conjecture: almost all Berge graphs are perfect.
In fact, they proved in [20] that almost all C5-free graphs are generalized split graphs.
(“Almost all” means here that the ratio of the number of labelled n-vertex C5-free
graphs to the number of n-vertex generalized split graphs tends to one if n tends
to infinity.) Therefore any property of generalized split graphs holds for almost all
perfect graphs. In our case the property in question is the chromatic number of the
clique hypergraph.

Theorem 10. The clique-hypergraph of a generalized split graph is 3-colorable.
Proof. Assume that G is a generalized split graph. If the complement of G has

the required partition into A, Bi’s, then a proper coloration for the maximal cliques
of G is trivial: the vertices of A are colored with color 1, the vertices of B1 are colored
with color 2, and the vertices in all other Bi’s (if there are any) are colored with
color 3.

If G has the required partition, then two cases are considered. If |A| ≤ 1, then we
color the Bi’s with colors 1 and 2 so that each of them with at least two vertices gets
both color 1 and color 2, and if A is nonempty, we color it with color 3. Finally, if
|A| > 1, a fixed vertex x ∈ A is colored by color 2, all other vertices of A are colored
with color 3, the sets Bi with one vertex are colored with color 1, and any set Bi with
at least two vertices is colored using the same rule: if x is adjacent to all vertices of
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Bi, then color all vertices of Bi with color 1; otherwise, a fixed vertex of Bi which is
not adjacent to x is colored with color 2 and all other vertices of Bi are colored with
color 1. It is straightforward to check that under this coloration every maximal clique
of G gets at least two colors.

It is worth noting that the theorem is sharp in the sense that there are generalized
split graphs with 3-chromatic clique-hypergraphs, for instance, the graph in Figure
5.1.

The result of Prömel and Steger [20] mentioned above yields the following corol-
lary, which is an asymptotic answer to Question 1.

Corollary 6. Almost all perfect graphs are 3-clique-colorable.

7. Open problems. In Theorem 1, we proved that Maximal clique con-
tainment is NP-complete for the complements of K1,4-free graphs. It is therefore
natural to first ask the following question.

Question 2. Is Maximal clique containment polynomially solvable for the
complements of K1,3-free graphs?

Since it is NP-complete to compute the chromatic number of a triangle-free graph
[12], it is NP-complete to compute the clique-chromatic number of a complement of
a K1,3-free graph. Nevertheless, we know by Theorem 6 that χ(H(Ḡ)) ≤ 3 when G
is K1,3-free and α(G) ≥ 3. Hence we should ask the next question.

Question 3. Is it NP-complete to determine whether Ḡ is 2-clique colorable when
G is K1,3-free?

We saw that it is NP-complete to determine whether a graph of maximum degree
3 is 2-clique-colorable. Moreover, Corollary 5 gives that any K1,3-free graph with no
odd hole is 2-clique colorable.

Question 4. Is it NP-complete to determine whether G is 2-clique colorable when
G is K1,3-free?

Most of our results concern classes of graphs defined by forbidden configurations.
Thus it would be interesting to study hereditary properties of the clique-chromatic
number of a graph. Hoàng and McDiarmid in [7] studied such questions. Concerning
the complexity aspect, we ask the following.

Question 5. What is the complexity of deciding whether a graph and all its
induced subgraphs can be 2-clique-colored?
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