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1. INTRODUCTION

A multicoloring of the edges of a graph G is a mapping from its edge set into

the power set of an underlying set of colors, the set N of natural numbers.

A multicoloring ’:EðGÞ�!PðN Þ is proper provided ’ðeÞ \ ’ð f Þ ¼ ;, for any

two incident edges e; f 2 EðGÞ. A list multicoloring is defined by specifying

a list LðeÞ of available colors and the cardinality wðeÞ of color sets at each

edge e 2 EðGÞ. Given the list and weight assignment L :EðGÞ�!PðN Þ and

w :EðGÞ�!N an ðL;wÞ coloring of G is a proper multicoloring ’ such that

’ðeÞ� LðeÞ, and j’ðeÞj¼ wðeÞ, for all e 2 EðGÞ.
To state a necessary condition for the existence of a list multicoloring we

introduce a few notions. Let ðG;L;wÞ be a graph G with list and weight assign-

ment L and w, and let H � G (i.e., H is an induced subgraph of G). For c 2 N ,

the support Hc is the subgraph of H with edge set fe 2 EðHÞ j c 2 LðeÞg. In any

ðL;wÞ coloring ’ of G, and for each color c 2 N , the set fe j c 2 ’ðeÞg is a

matching in Gc. Let �ðHÞ denote the matching number of H, defined as the

maximum number of pairwise independent edges of H. Then we have

X
e2EðHÞ

j’ðeÞj ¼ jfðe; cÞ j c 2 ’ðeÞgj ¼
X
c2N

jfe j c 2 ’ðeÞgj �
X
c2N

�ðHcÞ:

Thus for the existence of an ðL;wÞ coloring of G, we obtain the following

necessary condition called Generalized Hall’s condition: ðG; L;wÞ satisfies GH

if and only if X
e2EðHÞ

wðeÞ �
X
c2N

�ðHcÞ ð�Þ

holds for every subgraph H � G.

We prove here that GH is also sufficient for the existence of an ðL;wÞ coloring

of G, provided G is a tree. If G is a star, and w is the unit weight assignment,

wðeÞ � 1, then any ðL;wÞ coloring of G corresponds to a family of distinct

representatives for the color lists. The first result on this now well studied concept

in transversal theory was Hall’s classical matching theorem [7]. The idea of

extending list colorings from a star to any graph G and from unit weight assign-

ment to any weight w has been introduced in Hilton et al. [4]. The context there

was vertex multicolorings, which, of course, includes edge multicolorings by the

device of taking line graphs.

If G is a star, then inequality ð�Þ becomes
P

e2EðHÞ wðeÞ � j
S

e2EðHÞ LðwÞj:
By a celebrated result, apparently first noticed by Halmos and Vaughan [2], this

inequality, required for all H � G, is sufficient to guarantee a family of disjoint

representatives with prescribed size wðeÞ, for each set LðeÞ. This family of dis-

joint representatives is clearly an ðL;wÞ coloring of the star G. A result of Hilton

and Johnson Jr. in [3] implies that GH is also sufficient for any tree G with unit
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weights. A problem proposed in Cropper et al. [1] promptly translates into the

conjecture that the claim above is true for trees with arbitrary weight assignment

w as well. The conjecture has been supported by resolving several particular

cases, paths, double stars, and small trees in Cropper et al. [1]. We prove this

for arbitrary trees in Theorem 2.1 below. This solution also settles the full con-

jecture in Cropper et al. [1] for vertex list multicolorings, in the affirmative

(see Theorem 3.2).

The problem of extending partial edge colorings of multigraphs lead Marcotte

and Seymour in [6] to a result equivalent to Theorem 2.1 here. Their proof uses

polyhedral combinatorics and totally unimodular matrices, meanwhile the proof

by induction we shall give in Section 2 is elementary.

In Section 3, we shall determine how far the class of graphs extends when one

requires the Generalized Hall’s condition to be sufficient for the existence of list

multicolorings. First we characterize the class of graphs such that Theorem 2.1

remains true. The answer in Theorem 3.1 is a family of multigraphs rather close

to trees.

The vertex list coloring version of Theorem 2.1 is given in Theorem 3.2.

An extension of Theorem 3.2 was proposed recently by Johnson Jr. and Wantland

in [5]. Their question establishes a clever link between the results concerning the

case of unit weights in Hilton and Johnson Jr. [3] and that of arbitrary weights in

Theorem 3.2. Our last result, Theorem 3.3, answers this question as a corollary of

Theorem 3.2.

2. TREE LIST–COLORING THEOREM

Theorem 2.1. Let T be a tree with list and weight assignment L :EðTÞ�!
PðN Þ and w :EðTÞ�!N . If

P
e2EðHÞ wðeÞ �

P
c2N �ðHcÞ holds for every sub-

tree H � T, then T has an ðL;wÞ coloring.

Proof. The induction proof is based on several reductions of ðT; L;wÞ.
To keep track of the changes on both sides of inequality ð�Þ in GH, we introduce

the following terms. A subtree H � T is ðL;wÞ violating (or ðL;wÞ tight) provided

ðH; L;wÞ fails ð�Þ (or satisfies ð�Þ with equality). The main property of tightness

is: if H � T is an ðL;wÞ tight subtree, then for every ðL;wÞ coloring ’ of H and

for every color �, the color class f f 2 EðHÞj� 2 ’ð f Þg is a maximum matching

of H� .

We use reductions to define critical counterexamples as follows. Assume that

ðT; L;wÞ is a counterexample to the theorem, i.e., it satisfies GH and no ðL;wÞ
coloring of T exists. We call ðT; L;wÞ a critical counterexample if

(i) the number of edges of T is as small as possible,

(ii)
P

e2EðTÞ wðeÞ is minimum among counterexamples satisfying (i), and

(iii)
P

e2EðTÞ jLðeÞj is minimum among counterexamples satisfying (i) and (ii).
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One of the most used properties of a critical counterexample ðT ;L;wÞ is that

every proper subtree of T has an ðL;wÞ coloring.

For e2EðTÞ and c2LðeÞ, a subtree H � T is called c tight with respect to e

if H is ðL;wÞ tight and every maximum matching of Hc contains e. A crucial

property of a critical counterexample ðT ;L;wÞ is the following claim. For every

e2EðTÞ and c2LðeÞ, there exists a subtree HcðeÞ which is c tight with respect to

e. Furthermore, if HcðeÞ is a proper subtree of T , then every ðL;wÞ coloring ’ of

HcðeÞ satisfies c2’ðeÞ.
To prove the first part of the claim, define L0ðeÞ ¼ LðeÞnfcg and let L0ð f Þ ¼

Lð f Þ, for f 6¼ e. Because ðT; L0;wÞ is not a counterexample, there is an ðL0;wÞ
violating subtree H � T . Of course H is not ðL;wÞ violating which implies that

H is ðL;wÞ tight. Also e must be in every maximum matching of Hc. Thus the

existence of the required HcðeÞ follows. The second part of the claim is im-

mediate from the main property of tight subtrees.

Starting with a critical counterexample ðT; L;wÞ, the proof of the theorem

proceeds in four claims. Notice first that T must have at least two edges. Consider

a longest path ðu; v; x; . . .Þ in T . Let e be the edge vx, and let S be the set of all

edges of T incident with v and different from e.

Claim 1. wð f Þ ¼ 1, for every f 2 S.

Assume that wð f Þ > 1. Define w0ð f Þ ¼ wð f Þ � 1 and w0ðgÞ ¼ wðgÞ, for all

g 2 EðT � f Þ. Let ’ be an ðL;w0Þ coloring of T and select c 2 ’ð f Þ. Define L0 by

removing c from the lists of all edges of T incident with v, i.e., those in S [ feg.

We verify that ðT ; L0;w0Þ satisfies GH. Obviously, ’ is an ðL0;w0Þ coloring of the

tree T � f . Consequently, inequality ð�Þ holds for every subtree of T � f with L0

and w0. For any subtree H � T containing f inequality ð�Þ must hold as well,

otherwise the ðL0;w0Þ violating H would be also ðL;wÞ violating subtree of T .

Because ðT; L0;w0Þ satisfies GH and ðT ;L;wÞ is critical, T has an ðL0;w0Þ color-

ing. Adding c to the color set of f results in an ðL;wÞ coloring of T , contradiction.

Claim 2. Lð f Þ \ LðgÞ ¼ ;, for any two distinct edges f ; g 2 S.

Assume that f0 2 S, and f1; f2 2 S [ feg are edges such that f0 =2f f1; f2g and let

c 2 Lð f0Þ \ Lð f1Þ \ Lð f2Þ. For i ¼ 1; 2, let Hcð fiÞ be a c tight subtree with respect

to fi. Note that each Hcð fiÞ is a proper subtree of T , because f0 =2Hcð fiÞ. Consider

an ðL;wÞ coloring ’ of T � f0. Clearly, ’ is an ðL;wÞ coloring for both Hcð f1Þ
and Hcð f2Þ. Because ’ uses color c at most once at vertex v, there is only one

edge among f1 and f2 which could be colored with c. Therefore f1 ¼ f2 and

jðS [ fegÞ \ Tcj � 2 follows.

Now assume that f0 and f1 are two distinct edges of S \ EðTcÞ for some c.

Define ðT � f0; L0;w0Þ by modifying L and w only for f1 as follows: L0ð f1Þ ¼
Lð f0Þ [ Lð f1Þ and w0ð f1Þ ¼ wð f0Þ þ wð f1Þ ¼ 2. By the previous paragraph,

among the L0 lists of ðS [ fegÞnf f0g, the only list containing c is L0ð f1Þ.
Because ðT � f0; L0;w0Þ satisfies GH and T is critical, T � f0 has an ðL0;w0Þ
coloring ’. Let c0 2 ’ðf1Þ. If c0 =2 Lð f0Þ, then color f0 with c and f1 with c0. If
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c0 2 Lð f0Þ, then color f0 with c0 and f1 with c. In either case keep ’ unchanged.

Thus we would obtain an ðL;wÞ coloring of T , contradiction.

Claim 3.
S

f2S Lð f Þ � LðeÞ, and
P

f2SðjLð f Þj � 1Þ < wðeÞ:

Notice that f 2 S and c 2 Lð f Þ imply that c 2 LðeÞ. Otherwise, by Claims 1

and 2, an ðL;wÞ coloring of T � f is extendable to an ðL;wÞ coloring of T . To

verify the second part of the claim, select an edge f 2 S, and for every c 2 Lð f Þ,
consider a subtree HcðeÞ � T which is c tight with respect to e. Note that f is not

an edge of HcðeÞ.
Assume that for some g 2 Snf fg, g is not an edge of [fHcðeÞ j c 2 Lð f Þg.

Clearly any ðL;wÞ coloring of T � g is an ðL;wÞ coloring of the graph [fHcðeÞ j
c 2 Lð f Þg þ f . Because c tightness of HcðeÞ with respect to e implies that

c 2 ’ðeÞ holds, for every c 2 Lð f Þ, we obtain that ’ð f Þ \ ’ðeÞ 6¼ ;. This con-

tradiction shows that g must be an edge of [fHcðeÞ j c 2 Lð f Þg, for every

g 2 Snf fg.

Now consider an ðL;wÞ coloring ’ of T � f . Because each edge g 2 Snf fg
belongs to a tight subtree HcðeÞ, for some c 2 Lð f Þ, every color � 2 LðgÞ is used

in a maximum matching of Hc
�ðeÞ. Hence either � 2 ’ðgÞ or � 2 ’ðeÞ. By Claim 1,

j’ðgÞj ¼ wðgÞ ¼ 1, hence at least jLðgÞj � 1 colors of LðgÞ are used in ’ðeÞ, for

every g 2 Snf fg. For distinct edges g 6¼ h in Snf fg, we have LðgÞ \ LðhÞ ¼ ;,

by Claim 2. Furthermore, Lð f Þ � ’ðeÞ is a set of further jLð f Þj colors in ’ðeÞ and

different from those mentioned earlier. Thus wðeÞ >
P

f2SðjLð f Þj � 1Þ follows.

To prepare the last step of the proof, we will modify ðT; L;wÞ and create an

associated tree ðT�; L�;w�Þ. Let S ¼ f f1; . . . ; fpg, define ‘i ¼ jLð fiÞj, i ¼ 1; . . . ; p,

and set s ¼
Pp

i¼1 ‘i. By Claims 2 and 3, LðeÞ ¼ ð[p
i¼1Lð fiÞÞ [ K, where

Lð f1Þ; . . . ; Lð fpÞ, and K are pairwise disjoint sets. By Claim 3, wðeÞ ¼ s þ t,

for some integer t > �p. Define T� as a tree obtained from T by removing all

edges f1; . . . ; fp incident with v and adding new pendant edges e1; . . . ; ep incident

with the other vertex x of e. Define L�ðeÞ ¼ K;w�ðeÞ ¼ p þ t; L�ðeiÞ ¼ Lð fiÞ [
K;w�ðeiÞ¼ ‘i � 1, for 1 � i � p, and L�ðgÞ ¼ LðgÞ;w�ðgÞ ¼ wðgÞ for g 2 T �
ðS [ fegÞ.

Claim 4. ðT�; L�;w�Þ satisfies GH.

Let H� be an ðL�;w�Þ violating subtree of T�, i.e., inequality ð�Þ is not true:

X
f2EðH�Þ

w�ð f Þ >
X
c2N

�ðH�
c Þ :

Observe that H� must contain at least one edge among e1; . . . ; ep and e, thus

every color from K contributes to the right hand side of the inequality above.

Note also that, by Claim 3, w�ðeÞ ¼ p þ t > 0. Thus we obtain that the subtree

H� þ e is ðL�;w�Þ violating as well. So we assume that e 2 EðH�Þ. We also

assume w.l.o.g. that, for some q � 0, ei 2 EðH�Þ if and only if 1 � i � q.
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Removing edges e1; . . . ; eq from H� and adding the edges fqþ1; . . . ; fp we get a

subtree H � T . Concerning inequality ð�Þ for ðH;L;wÞ we have

X
f2EðHÞ

wð f Þ �
X

f2EðH�Þ
w�ð f Þ ¼ wðeÞ þ

Xp

i¼qþ1

wð fiÞ
" #

� w�ðeÞ þ
Xq

i¼1

w�ðeiÞ
" #

¼ ðs þ t þ p � qÞ � p þ t þ
Xq

i¼1

ðli � 1Þ
 !

¼ s �
Xq

i¼1

li ¼
Xp

i¼qþ1

li:

To see that

X
c2N

�ðHcÞ �
X
c2N

�ðH�
c Þ �

Xp

i¼qþ1

li;

note that when passing from H� to H the matching number cannot increase for

any color of the set ð[q
i¼1LðeiÞÞ [ K. Thus we obtain thatX

f2EðHÞ
wð f Þ >

X
c2N

�ðHcÞ:

Hence H is ðL;wÞ violating, contradiction.

Now the proof of the theorem is concluded as follows. Note that

Xp

i¼1

w�ðeiÞ þ w�ðeÞ ¼
Xp

i¼1

ð‘i � 1Þ þ p þ t ¼ s þ t ;

and

wðeÞ þ
Xp

i¼1

wð fiÞ ¼ s þ t þ p:

We have w�ðgÞ¼ wðgÞ, for every other edge g, henceX
g2EðT�Þ

w�ðgÞ <
X

g2EðTÞ
wðgÞ :

Because ðT ;L;wÞ is a critical counterexample, Claim 4 ensures that T� has an

ðL�;w�Þ coloring ’�. Define ’ðeÞ ¼ ð[p
i¼1’

�ðeiÞÞ [ ’�ðeÞ, and for i ¼ 1; . . . ; p,

let ’ð fiÞ ¼ ci, where ci 2 Lð fiÞn’�ðeiÞ. Note that j’ðeÞj ¼
Pp

i¼1ð‘i � 1Þþ
p þ t ¼ s þ t ¼ wðeÞ; and Lð fiÞn’�ðeiÞ 6¼ ;, because jLð fiÞj ¼ ‘i and j’�ðeiÞj ¼
‘i � 1. Setting ’ðgÞ ¼ ’�ðgÞ for every g 2 T � ðS [ fegÞ, we obtain that ’ is an

ðL;wÞ coloring of T , contradiction. &
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3. EXTENSIONS

We start with remarks on the proof of Theorem 2.1. Claims 1 and 2 of the proof

are merely reproductions of Lemmas 5 and 7 in Cropper et al. [1]. It is worth

noting that the proof does not use Hall’s theorem on distinct representatives of

sets. Actually, when T is a star with w � 1, Claim 2 does prove it. When T is a

star with arbitrary w, Claims 1 and 2 together (applied twice for different e) prove

the Halmos, Vaughan generalization of Hall’s theorem in [2]. It is natural to ask

whether Theorem 2.1 extends from trees to more general multigraphs. The

possibilities are rather restricted as the counterexamples below indicate (see [3]).

Figure 1 shows ðG; L;wÞ satisfying GH and admitting no ðL;wÞ coloring for G.

In each case w � 1 is the unit weight, the graphs indicated together with the

corresponding list assignments in Figure 1 are: (a) triangle with a pendant edge,

(b) even cycles, (c) odd cycles, and (d) 4 path with a double edge in the middle.

Assume that G is connected and for every list and weight assignment L and w,

GH is sufficient for G to posess an ðL;wÞ coloring. One learns from Figure 1a that

if G has a triangle, then it has no more vertices. If G has more than three vertices,

then Figures 1b,c show that G has no cycles of length more than two. Further-

FIGURE 1. Graphs with GH and no list coloring.
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more, as Figure 1d indicates, G is obtained from a tree by replacing any number

of pendant edges with multiple edges.

Since triangle components can be replaced with stars, and multiple pendant

edges of a tree can be ‘‘pulled apart’’ into simple endstars, we obtain easily the

following slight extension of the tree list–coloring theorem.

Theorem 3.1. The Generalized Hall’s condition is sufficient (and necessary)

for the existence of an ðL;wÞ coloring of G, for every list and weight assignment

L and w, if and only if each connected component of G is a triangle with possible

multiple edges or a tree with possible multiple pendant edges. &

Next we show how the tree list-coloring theorem solves the list vertex multi-

coloring problem investigated in Cropper et al. [1] and Hilton et al. [4]. Given a

simple graph G with vertex list and weight assignment L :VðGÞ�!PðN Þ and

w :VðGÞ�!N a vertex ðL;wÞ coloring of G is a vertex multicoloring ’ such

that ’ðvÞ � LðvÞ, j’ðvÞj ¼ wðvÞ, for all v 2 VðGÞ, and ’ðvÞ \ ’ðuÞ ¼ ; provided

uv 2 EðGÞ. The vertex version of the Generalized Hall’s condition uses the

inequality X
v2VðHÞ

wðvÞ �
X
c2N

�ðHcÞ ð��Þ

where � is the independence number. A graph G with vertex list and weight

assignment L and w satisfies Vertex GH (vertex version of the Generalized Hall’s

condition) if and only if inequality ð��Þ holds for every induced subgraph H � G.

Clearly, any proper edge list multicoloring of a graph G is a proper vertex

list multicoloring of its line graph. Furthermore, the Generalized Hall’s condi-

tion on G translates into Vertex GH on its line graph. This means that the line

graph of each counterexample in Figure 1 is a counterexample in the vertex

multicoloring version. These line graphs are the induced cycles of length at

least four and the diamond (clique K4 minus one edge). A counterexample which

is not derived as a line graph is the claw itself (see [1]). Consider a 3 star (claw)

with leaves a; b; c and center d, and define LðaÞ ¼ f1; 2g, LðbÞ ¼ f1; 3g, LðcÞ ¼
f2; 3g, LðdÞ ¼ f1; 2; 3g, wðaÞ ¼ wðbÞ ¼ wðcÞ ¼ 1, and wðdÞ ¼ 2. The claw with

these list and weight assignment satisfies Vertex GH and has no vertex list

multicoloring.

Because every block (i.e., maximal 2 connected component or a single edge)

of a diamond free chordal graph is a clique, as an immediate corollary of

Theorem 2.1 we obtain the following theorem.

Theorem 3.2. The vertex version of the Generalized Hall’s condition is suffi-

cient (and necessary) for the existence of a vertex ðL;wÞ coloring of G, for every

L and w, if and only if G is claw free and every block of G is a clique. &

As mentioned in the Introduction, Theorem 3.2 was motivated by the following

result.
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Theorem (Hilton and Johnson Jr. [3]). The vertex version of the Generalized

Hall’s condition is sufficient (and necessary) for the existence of a vertex ðL;w � 1Þ
coloring of G for every L if and only if every block of G is a clique. &

We conclude the paper with the common extension of this result and Theorem

3.2 as conjectured very recently by Johnson Jr. and Wantland in [5].

Theorem 3.3. The vertex version of the Generalized Hall’s condition is suffi-

cient (and necessary) for the existence of a vertex ðL;wÞ coloring of G, for every

L and w such that wðxÞ ¼ 1 whenever x is the center vertex of a claw in G, if and

only if every block of G is a clique.

Proof. To show the sufficiency of Vertex GH let ðG;L;wÞ be a minimal

counterexample complying the required properties and having no ðL;wÞ coloring.

We claim that G is claw free. Then we are done, because no claw free counter-

example exists by Theorem 3.2.

Suppose on the contrary that x is a center vertex of some claw in G. By

minimality, G is connected, and because each block of G is a clique, x is a cut

vertex of G. Hence x belongs to t � 3 blocks of G. Consider the t connected

components of G � x and extend each component with x. Let Gi; i ¼ 1; . . . ; t, be

these subgraphs of G. Let Li and wi be the restriction of L and w to VðGiÞ,
respectively.

Because G has no ðL;wÞ coloring, for each color c 2 LðxÞ, there exists at least

one graph Gk (k depends on c) such that Gk has no ðLk;wkÞ coloring with x

colored c. Without the loss of generality, we will assume that LðxÞ is partitioned

as �1 [ � � � [ �s with some s (1 � s � t), where c 2 �k implies that Gk has no

ðLk;wkÞ coloring with x colored c, for every c 2 LðxÞ and 1 � k � s.

For k ¼ 1; . . . ; s, define L0
kðxÞ ¼ �k and L0

kðvÞ ¼ LkðvÞ provided v 6¼ x.

Observe that, by definition, Gk has no ðL0
k;wkÞ coloring. Hence, by the minimality

of ðG;L;wÞ; there is a subgraph H0
k in ðGk;L

0
k;wkÞ violating ð��Þ:

X
v2VðH0

k
Þ
wkðvÞ >

X
c2N

�ððH0
kÞcÞ k ¼ 1; . . . ; s:

Let H be the union of the subgraphs H0
k, k ¼ 1; . . . ; s. Notice that x 2 VðH0

kÞ, and

wkðxÞ ¼ 1, for every k ¼ 1; . . . ; s. Because L0
1 [ � � � [ L0

s is a partition of LðxÞ,
we obtain

X
c2N

�ðHcÞ ¼
Xs

k¼1

X
c2N

�ððH0
kÞcÞ

�
Xs

k¼1

X
v2VðH0

k
Þ
wkðvÞ

0
@

1
A� 1

2
4

3
5 ¼

X
v2VðHÞnfxg

wðvÞ <
X

v2VðHÞ
wðvÞ:
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Thus the subgraph H in ðG; L;wÞ violates ð��Þ, a contradiction. This implies that

G has no claw, and concludes the proof. &
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