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Abstract

Fix t ¿ 1, a positive integer, and a=(a1; : : : ; at) a vector of nonnegative integers. A t-coloring
of the edges of a complete graph is called a-split if there exists a partition of the vertices into
t sets V1; : : : ; Vt such that every set of ai + 1 vertices in Vi contains an edge of color i, for
i = 1; : : : ; t. We combine a theorem of Deza with Ramsey’s theorem to prove that, for any
�xed a, the family of a-split colorings is characterized by a �nite list of forbidden induced
subcolorings. A similar hypergraph version follows from our proofs. These results generalize
previous work by K%ezdy et al. (J. Combin. Theory Ser. A 73(2) (1996) 353) and Gy%arf%as
(J. Combin. Theory Ser. A 81(2) (1998) 255). We also consider other notions of splitting.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fix t¿1, a positive integer, and a=(a1; : : : ; at) a vector of nonnegative integers. A
t-coloring of the edges of a complete graph is called a-split if there exists a partition of
the vertices into t sets V1; : : : ; Vt such that every set of ai +1 vertices in Vi contains an
edge of color i, for i=1; : : : ; t. This generalizes the well known family of split graphs:
a graph is a split graph if there exists a partition of the vertices into two sets so that
one set induces a clique and the other set induces an independent set. So a graph is
a split graph if and only if the 2-coloring in which its edges are colored red and its
nonedges are colored blue de�nes a (1; 1)-split 2-coloring of a complete graph.
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A coloring of the edges of a complete graph is a-critical (or simply, critical when a
is understood) if it is not a-split, but becomes a-split after the removal of any vertex.
In the next section, we show that there is a �nite forbidden subcoloring characterization
of a-split colorings by proving that for any �xed a, there are only a �nite number of
a-critical colorings. Our proof combines a theorem of Deza with Ramsey’s theorem.
This generalizes previous work by K%ezdy et al. [7] and Gy%arf%as [6]. In the �nal section,
we mention related notions of splitting.

2. Main result

In this section we prove the main theorem and introduce a related extremal problem.
Suppose that A and B are �nite sets. Let A�B denote the symmetric di3erence

of A and B. Clearly, |A�B|= |A| + |B| − 2|A∩B|, so if |A| + |B| is even, then
so is |A�B|. Given �nite sets F1; : : : ; Fm, the degree of an element x∈ ⋃m

i=1 Fi is
d(x)= |{j: x∈Fj}|. We shall use the following result due to Deza [1] which is Prob-
lem 13.17 of the book by Lov%asz [8] (cf. Section 23.1.2 of the book by Deza and
Laurent [2]).

Lemma 1 (Deza [1]). If m¿k2+k+2 and F1; : : : ; Fm are 4nite sets satisfying |Fi �Fj|
=2k, for 16i¡j6m, then every element in

⋃m
i=1 Fi has degree 1, m − 1,

or m.

Recall that the Ramsey number Rj(i) is the smallest positive integer p such that, any
coloring of the edges of Kp with j colors contains a monochromatic Ki. The existence
of Rj(i) is guaranteed by Ramsey’s theorem; in particular, this number is �nite. Let
‖a‖= ‖a‖∞ =max{a1; : : : ; at}. Let Z denote the set of integers.

Theorem 2. For any 4xed integer t¿1 and 06a∈Zt , the number of a-critical
colorings is 4nite.

Proof. Fix t¿1 and 06a=(a1; : : : ; at)∈Zt . To prove the theorem, it suMces to prove
that if there is a critical coloring of Kn, then n is bounded by a function of t and ‖a‖.

Set M =(t − 1)Rt(‖a‖+ 1) + 1 and recursively de�ne the function

N (i)=

{
2RM ((M − 1)2 + (M − 1) + 3) if i=1;

2RM (N (i − 1)) if i¿1:

We shall prove that there is no critical coloring of Kn, if n¿N (t).
Suppose, on the contrary, that there is a critical coloring of G=Kn, for some

n¿N (t). For each vertex v∈V (G), choose and �x an a-splitting of V (G) − {v} into
t sets V v

1 ; : : : ; V
v
t .

Claim 1. For all u; v∈V (G) and i=1; : : : ; t, |Vu
i �V v

i |¡2M .
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To see this, observe that

Vu
i �V v

i =
⋃
j �=i

[(Vu
j ∩V v

i )∪ (V v
j ∩Vu

i )]∪{u; v}:

Thus, because of symmetry, it is enough to prove that |(Vu
j ∩V v

i )|¡Rt(‖a‖+ 1). This
latter statement follows from the observation that the largest monochromatic clique in
the graph induced by Vu

j ∩V v
i (i 
= j) has at most max{ai; aj} vertices since Vu

j induces
a graph with independence number at most aj in color j, and V v

i induces a graph with
independence number at most ai in color i.

Claim 2. There is a set of vertices S ⊂V (G), and nonnegative integers k1; : : : ; kt6
(M −1), such that |S|¿(M −1)2+(M −1)+3, and for all i=1; : : : ; t, |Vu

i ∩V v
i |=2ki

for all u; v∈S.

We show the existence of such a set of vertices by iterating a certain procedure
that we now describe. Set S0 =V (G), so |S0|= n. Because n¿N (t)= 2RM (N (t − 1)),
there is a set S∗0 of at least n=2¿RM (N (t − 1)) of the vertices in S0 with the property
that |Vu

1 | ≡ |V v
1 |mod 2, for all u; v∈S∗0 . In particular, |Vu

1 �V v
1 | is even, for all u; v∈S∗0 .

Claim 1 guarantees that |Vu
1 �V v

1 |¡2M , for all u; v∈S∗0 . So, by considering a com-
plete graph whose vertices correspond to the sets V v

1 (v∈S∗0 ) and whose edges are
colored with the colors from {0; 1; : : : ; M − 1} according to the rule that assigns color
|Vu

1 �V v
1 |=2 to the edge Vu

1 V
v
1 , Ramsey’s theorem implies that there exists a nonneg-

ative integer k1¡M and a set S1⊂ S∗0 satisfying |S1|¿N (t − 1) and |Vu
1 �V v

1 |=2k1,
for all u; v∈S1.

Assume 16p¡t − 1 and that we have de�ned Sp⊂V (G) and nonnegative integers
k1; : : : ; kp satisfying |Sp|¿N (t − p) and, for all i=1; : : : ; p, we have |V v

i �Vu
i |=2ki,

for all u; v∈Sp. Now we describe how to de�ne kp+1 and Sp+1. Because |Sp|¿N (t −
p)= 2RM (N (t −p− 1)), there is a set S∗p of at least n=2¿RM (N (t −p− 1)) vertices
in Sp with the property that |V v

p+1 �Vu
p+1| is even, for all u; v∈S∗p . As in the previous

paragraph, Ramsey’s theorem implies that there exists a nonnegative integer kp+1¡M
and a set Sp+1 ⊂ S∗p satisfying |Sp+1|¿N (t − p − 1) and |V v

p+1 �Vu
p+1|=2kp+1, for all

u; v∈Sp+1.
In the �nal step, St−1¿N (1)= 2RM ((M−1)2+(M−1)+3), so the procedure yields

a nonnegative integer kt and a set St ⊂ St−1 satisfying |St |¿(M − 1)2 + (M − 1) + 3
and, for all i=1; : : : ; t,

|V v
i �Vu

i |=2ki; for all u; v∈St :

So the set S = St contains the desired vertices. This concludes Claim 2.
Using the set S from Claim 2, de�ne for all u∈V (G) and i=1; : : : ; t, the degrees

di(u)= |{v∈S: u∈V v
i }|:
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Because {V v
i }ti= 1 is a partition of V (G)− {v}, we obtain easily for all u∈V (G),

t∑
i=1

di(u)=

{ |S| − 1 if u∈S;
|S| if u =∈ S:

(∗)

Observe that, by choice of S, we have |S|¿(M − 1)2 + (M − 1) + 3, ki6M − 1,
and |V v

i �Vu
i |=2ki, for all u; v∈S. Applying Lemma 1 to {Vu

i : v∈S} we obtain
di(u)∈{0; 1; |S| − 1; |S|}, for all u∈V (G) and for all i=1; : : : ; t.

To complete the proof of the theorem, we obtain the following contradiction.

Claim 3. The sets Bi = {u∈V (G): di(u)¿|S| − 1} (i=1; : : : ; t) constitute an
a-splitting of G.

By (∗); ⋃t
i=1 Bi =V (G) follows because |S| is much larger than t. If u∈Bi ∩Bj

(i 
= j), then di(u)+dj(u)¿2(|S|−1), contradicting (∗). Hence the Bi’s partition V (G).
Now consider a set X ⊂Bi of cardinality ai+1. By de�nition, di(x)¿|S|−1, for all

x∈X . Hence each element of X is missing from at most one of the sets {V v
i : v∈S}.

Because |S|¿ai + 1, there exists some v∈S such that X ⊂V v
i . In particular, X cannot

be an independent set in color i. Therefore Bi induces a subgraph with independence
number at most ai in color i. It follows that the Bi’s constitute an a-splitting of G.

Theorem 2 proves the existence, for any vector a, of split numbers, S(a) de�ned as
the maximum order of an a-critical coloring. Actually the proof we give also works for
hypergraphs, so Sr(a) exists for r-uniform hypergraphs. Recall that Ramsey’s theorem
guarantees, for any vector a∈Zt , a number Rt(a) such that, for any t-coloring of the
2-sets of an n-set satisfying n¿Rt(a), there exists 16i6t such that the t-coloring
contains an ai-set whose 2-sets all have color i (i.e. a monochromatic clique of order
ai). For a∈Zt , a Ramsey a-coloring is a t-coloring of the edges of a complete graph
on Rt(a) − 1 vertices such that there is no monochromatic clique of order ai for all
16i6t. An explicit description of a-critical colorings seems very diMcult, even when
r= t=2, since Gy%arf%as [6] has shown that among the (a1; a2)-critical colorings are the
Ramsey (a1 + 2; a2 + 2)-colorings. For t¿2, the argument does not generalize, though
accidentally (3; 3; 3)-Ramsey colorings are (2; 2; 2)-critical.

The next proposition shows that S(a) grows at least exponentially in ‖a‖.

Proposition 3. For any a; t∈Z+, if (a; a; 1; : : : ; 1)= a∈Zt+2, then

S(a)¿R2(a+ 2; a+ 2) + t(a+ 1)− 1:

Proof. To prove the bound we must demonstrate an a-critical (t + 2)-coloring of a
complete graph on R2(a + 2; a + 2) + t(a + 1) − 1 vertices. To this end, consider
the (t + 2)-colored complete graph G(a) de�ned as follows. The graph has t + 1
pieces. The �rst piece, R, is a Ramsey graph on R2(a + 2; a + 2) − 1 vertices that
does not contain a monochromatic complete graph Ka+2 in colors 1 and 2. The other t
pieces of G(a), S1; : : : ; St are complete graphs with a+ 1 vertices whose edges are all
colored 1. Edges between the t + 1 pieces are colored 2. Thus, G(a) is a graph with
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R2(a + 2; a + 2) + t(a + 1) − 1 vertices whose edges are colored using only colors 1
and 2. The following two claims establish that G(a) is a-critical.

Claim 1. For v∈V (G(a)), the graph G(a)− v has an a-splitting.

If v is a vertex from R, then R− v has a natural partition into two sets A= {w∈R−
v: vw has color 2} and B= {w∈R− v: vw has color 1} in which A induces a graph
in which every set of a+1 vertices contains an edge of color 1, and B induces a graph
in which every set of a + 1 vertices contains an edge of color 2. Extend B to B∗ by
adding a vertices from each Si (i=1; : : : ; t). The remaining vertices are the singleton
sets in the (a; a; 1; : : : ; 1)-splitting of G(a)− v.

On the other hand, if v∈Si, for some 16i6t, then the t singleton sets in the
(a; a; 1; : : : ; 1)-splitting of G(a) − v will consist of one vertex y from R together with
a single vertex yj from each Sj (16j 
= i6t). Now de�ne the sets A= {w∈R −
y: yw has color 2} and B= {w∈R − y: yw has color 1}, and extend B to B∗ by
adding Si − v and Sj − yj for each Sj (16j 
= i6t).

Claim 2. The graph G(a) has no a-splitting.

Suppose on the contrary that A∗, B∗, plus t singleton sets determine a partition of
V (G(a)) constituting an a-splitting of G(a), where A∗ induces a graph in which every
set of a + 1 vertices contains an edge of color 1 (i.e. �1(A∗)6a), and B∗ induces a
graph in which every set of a+1 vertices contains an edge of color 2 (i.e. �2(B∗)6a).
De�ne A=R∩A∗, B=R∩B∗, U =R − (A∪B). Since |B∗ ∩ Si|6a, for i=1; : : : ; t, it
follows that every Si intersects either A∗ or the singleton sets. Set s= |{i: A∗ ∩ Si = ∅}|.
Clearly u= |U |6t−s, since the singletons must intersect every Si satisfying Si ∩A∗ = ∅.
Also note that

�1(A∗)= �1(A) + t − s and �2(B)6a:

Create a new graph R′ with vertex set A∪B∪U ′, where |U ′|= t − s + 1¿|U |. The
edges within U ′ and between U ′ and A receive color 1 and those between U ′ and B
receive color 2. Now

�1(R′)=max{�1(A∪B); �1(A) + |U ′|}6a+ 1

and

�2(R′)=max{�2(A∪B); �2(B) + 1}6a+ 1;

contradicting that R was Ramsey. This proves the claim.

3. Variations

In this section we mention observations concerning some of the myriad variations on
the theme of “split” partitions. The original split graph recognition problem could be
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stated this way: Given a 2-coloring (using colors 1 and 2) of the edges of a complete
graph, does there exist a partition of the vertices into two sets, V1 and V2 so that Vi
induces a subgraph with no edge with color i (i=1; 2)? There are many ways one
could generalize this notion. One way to generalize is to bound independence number
in each part as we have done earlier in this paper.

Another way to generalize is to bound the clique number in each part, as follows.
Given a 3-coloring (using colors 1, 2 and 3) of the edges of a complete graph, an
(r; s)-fracture is a partition of the vertices into two sets, V1, and V2 so that there exist
16i 
= j63, such that V1 induces a subgraph with clique number at most r in color i,
and V2 induces a subgraph with clique number at most s in color j. We say that a
3-edge coloring of a complete graph is (r; s)-fracturable if it admits an (r; s)-fracture.

We do not know the complexity of recognizing (r; s)-fracturable 3-edge colorings for
general �xed values of r and s. However, for the special case r= s=1, one can reduce
the problem quite easily to the 2-colors graph partition problem (2-CGP) introduced
by Gavril [5].

2-CGP. Instance: A graph G(V; E) and two sets X; Y ⊆E such that E⊆X ∪Y .
Question: Does there exist a partition of V into two sets A and B so that the graph

induced by A has no edges from X , and the graph induced by B has no edges from Y ?
Note that the sets X and Y need not be disjoint. Indeed an interesting case is when

X =Y =E, in which case a partition exists if and only if G is bipartite. Gavril [5]
shows that a linear time sequential algorithm for 2-CGP can be derived from the well
known linear time sequential algorithms for 2-CNF satis�ability.

Proposition 4. The (1; 1)-fracturable 3-edge colorings of complete graphs can be rec-
ognized in linear time.

Proof. Let G=Kn be a complete graph whose edges are colored with colors 1; 2, and 3.
Let Gi denote the graph with vertex set V (G) and edge set consisting of those edges
of G of color diSerent from i. Let Ci denote the edges of color i in G. Observe that G
has a (1; 1)-fracture if and only if at least one of (G1; X =C2; Y =C3); (G2; X =C1; Y =
C3); or (G3; X =C1; Y =C2) admits a partition such as the one in the 2-CGP
problem.

It is worth mentioning that the family of (1; 1)-fracturable 3-edge colorings is not
characterized by a �nite list of forbidden subcolorings. Indeed, the following describes
an in�nite family of critical 3-edge colorings. Color the edges of two vertex disjoint
odd cycles of the same size, say size 2k + 1, with color 1, and color the edges of a
perfect matching between them with color 2; color the remaining edges with color 3.
One can check that any set of vertices that avoids edges of color 1 (respectively 2)
has cardinality at most 2k (respectively, 2k + 1), whereas any set of three vertices
induces an edge of color 3. Since there are 4k + 2 vertices, it follows that there
is no (1; 1)-fracture of this coloring. It is straightforward to show that the removal
of any vertex admits a (1; 1)-fracture. So this is an in�nite family of critical 3-edge
colorings.
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Finally, we mention brieTy one more variation on the split theme. Given a 3-coloring
(using colors 1–3) of the edges of a complete graph, does there exist a partition of
the vertices into three sets V1, V2, and V3 so that Vi induces a subgraph with no edge
of color i (i=1–3)? We do not know whether there is a polynomial algorithm to
recognize 3-edge colorings that can be split in this way. This variation on the split
theme has been studied by Erdős and Gy%arf%as [3]. They were concerned with estimating
the minimum number of vertices in a critical coloring of this sort. Here we describe
an in�nite list of critical colorings.

Connect the three vertices of a triangle of color 1 to the three vertices of a triangle
of color 2 using three pairwise vertex disjoint alternating 2-1 paths; we assume that
the alternating paths contain an even number of edges and each end edge has a color
diSerent from that of the incident triangle. Call this 2-colored graph an even stretcher.
Observe that an even stretcher must have an odd number, 2k + 1, of vertices (k¿4).
For every i=1; 2, the 2k+1 vertices of an even stretcher Hk are partitioned into k−1
edges and one triangle of color i. Therefore, the vertex set of Hk has no partition
V1 ∪V2 (where Vi induces a subgraph with no edge of color i, i=1; 2). Note that any
even stretcher is also vertex-minimal with respect to this property, i.e., V (Hk − v) has
a split partition V1 ∪V2, for each vertex v.

Take two disjoint copies of an arbitrary even stretcher Hk and color all uncolored
edges induced in their union with color 3. Based on the properties above of an even
stretcher, it is straightforward to verify that in the obtained 3-coloring there is no split
partition V1 ∪V2 ∪V3, furthermore, this coloring is critical.
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