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Abstract

Let p be a positive integer and let Q be a subset of {0; 1; : : : ; p}. Call p sets A1; A2; : : : ; Ap of
a ground set X a (p;Q)-system if the number of sets Ai containing x is in Q for every x ∈ X .
In hypergraph terminology, a (p;Q)-system is a hypergraph with p edges such that each vertex
x has degree d(x) ∈ Q. A family of sets F with ground set X is called (p;Q)-free if no p
sets of F form a (p;Q)-system on X . We address the Tur%an-type problem for (p;Q)-systems:
f(n; p; Q) is de=ned as max|F| over all (p;Q)-free families on the ground set [n] = {1; 2; : : : ; n}.
We study the behavior of f(n; p; Q) when p and Q are =xed (allowing 2p+1 choices for Q)
while n tends to in=nity. The new results of this paper mostly relate to the middle zone where
2n−16f(n; p; Q)6 (1 − c)2n (in this upper bound c depends only on p). This direction was
initiated by Paul Erdős who asked about the behavior of f(n; 4; {0; 3}). In addition, we give
a brief survey on results and methods (old and recent) in the low zone (where f(n; p; Q) =
o(2n)) and in the high zone (where 2n − (2− c)n ¡f(n; p; Q)).
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1. Introduction

The starting point of this paper was a question of Paul Erdős. Unfortunately, we had
no opportunity to continue the conversations on the subject with him which started
during the Summer of 1996. Following his well-known habit, he started with a special
case: “how many subsets of [n] = {1; 2; : : : ; n} can you give if no four of them cover
their union exactly three times? Can you give more than 2n−1 or only signi=cantly
less than 2n?” He explained that it seems to be the =rst interesting special case of
f(n; p; q), the maximum number of sets of [n] such that there are no p sets covering
each element of their union exactly q times. He gave some comments as well: “we
proved with Vera (T. S%os) that f(n; 3; 2)=2n−1 + 1 and f(n; 5; 3) are related to a
number theory problem with Vera and S%ark'ozy”. Here, Paul have had referred to their
paper on product representation [13].
We shall prove here that f(n; p; q)=2n61− cp; q if p=26q and give a construction

showing that f(n; p; p− 1)¿2n−1 + cnp−3 (Section 6). Probably cp; q tends to 1=2 for
p=26q. This seems to be a diTcult problem, we could prove it only in a few special
cases (in fact by Theorem 14 this is true for most choices of q in this zone). Section
9 is related to the original question of Erdős about f(n; 4; 3).
We explore what is known and unknown about the following generalization of the

initial problem. Assume that Q is an arbitrary subset of {0; 1; : : : ; p}. Call p sets A1,
A2; : : : ; Ap of [n] a (p;Q)-system if the number of sets Ai containing x is in Q for
every, x∈ [n]. Using hypergraph terminology,

De�nition 1. A (p;Q)-system is a hypergraph with p edges such that each vertex x
has degree d(x)∈Q. A family of sets F is (p;Q)-free if it does not contain any
(p;Q)-system. Then f(n; p; Q) is de=ned as max |F| over all (p;Q)-free families F
on [n].

Notice that f(n; p; q)=f(n; p; {0; q}).
Sets with multiplicities are excluded, therefore, f(n; p; Q)62n. We study the be-

havior of f(n; p; Q), when p and Q are =xed (allowing 2p+1 choices for Q), while n
tends to in=nity. Many important results and problems of extremal set theory =t into
this general Tur%an-type question (for various choices of p and Q). Also observe that,
e.g., f(n; p; {0; 1; p}), is the maximum size of a hypergraph containing no �-system
with p edges, which is a classical (and still unsolved) problem, too. Parts of this paper
give a survey of such results and methods.

2. Summary, classi�cation of zones

In this section the 2p+1 possible choices of Q are classi=ed into three categories,
low, middle and high zones (plus some trivial cases). Also some simple but
important examples are given. The names of the zones come from the facts that
f(n; p; Q)= o(2n) in the low zone, 2n−16f(n; p; Q)6(1 − c)2n in the middle zone
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and 2n − (2 − c1)n¡f(n; p; Q)¡2n − (2 − c2)n in the high zone. Details, proofs are
subject of the following sections.
Trivial cases: We always suppose that p¿2. If Q= {0; 1; : : : ; p}, then every con-

=guration is forbidden, f(n; p; Q)=p− 1. It is easy to see (Claim 4) that in all other
cases f is exponential in n

f(n; p; Q)¿(1 + �)n for every Q with Q �= {0; 1; 2; : : : ; p}; (1)

where �¿0 depends only on p. Moreover, if p¿2n or Q is one of the sets ∅, {0},
{p}, or {0; p}, then nothing is forbidden, f(n; p; Q)= 2n. We shall exclude these
trivial cases.
Complementation: Considering the complements of a family F, denoted by FC and

de=ned as {[n]\F : F ∈F}, one can see that F is (p;Q)-free if and only if FC is
(p; UQ)-free, where UQ := {p− q : q∈Q}. This implies that

f(n; p; Q)=f(n; p; UQ): (2)

Therefore, we shall usually assume that Q has nonempty intersection with the interval
[0; p=2].
Monotonicity:

f(n; p; Q1)¿f(n; p; Q2) for Q1 ⊆Q2: (3)

2.1. Low zone

The low zone is de=ned by the sets Q for which {0; p}⊆Q. (In this zone |Q|¿3
since the trivial cases are excluded.) The name comes from the facts that by Theorem 5,
we have

f(n; p; Q)= o(2n) for {0; p}⊆Q; (4)

while in all other cases f¿2n−1. Indeed, considering the family of sets containing
a =xed element x, F[x] := {F : x∈F ⊆ [n]}, or the family of the sets avoiding x,
F[x]C := {F : x =∈F ⊆ [n]} one obtains that

f(n; p; Q)¿2n−1 for {0; p} �⊂Q: (5)

2.2. Middle zone

The middle zone is de=ned by the sets Q not in the low zone (i.e., {0; p} �⊂Q) with
a Q meeting both the lower and upper halves of the interval [0; p],

[0; p=2]∩Q �= ∅ and [p=2; p]∩Q �= ∅: (6)

We shall prove (Theorem 15) that (6) implies

f(n; p; Q)6
(
1− 1

2p
+ o(1)

)
2n: (7)
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We conjecture that more is true, in the middle zone extremal families have sizes
(1 + o(1))2n−1:

Conjecture 2. In the middle zone

lim
n→∞

f(n; p; Q)
2n

=
1
2
:

In Sections 7–10 the reader can =nd several results supporting this conjecture.

2.3. High zone

In the rest of the cases Q meets only one of the open half-intervals. The high zone
is de=ned by the sets Q for which Q is contained in either the initial or the =nal open
half-interval,

Q⊆ [0; p=2) or Q⊆ (p=2; p]:

It is easy to see, that in the high zone a (p;Q)-free family may contain almost all
subsets of n. Suppose, say, that q= max Q¡p=2.

Proposition 3. If q¡p=2 then f(n; p; Q)¿f(n; p; {0; 1; 2; : : : ; q})= (1− o(1))2n.

Proof. Let Fq=p consist of all subsets of size ¿�qn=p+ 1.

Fq=p :=
{
F ⊆ [n] : |F |¿q

p
n
}
: (8)

This family is (p; {0; 1; : : : ; q})-free. Indeed, take arbitrary A1; : : : ; Ap members of F.
Since |Ai|¿qn=p, the sum of the degrees of the elements in the collection A1; : : : Ap
exceeds qn. Therefore—by the pigeonhole principle—there exists some x∈ [n] which
is contained in at least q+1 members of the collection A1; : : : Ap, which shows that F
is (p; {0; 1; : : : ; q})-free. We have that there exists an �= �(p)¿0 such that

∑
i6(q=p)n

(
n
i

)
6

∑
i=n61=2−1=2p

(
n
i

)
¡(2− �)n:

This implies

f(n; p; Q)¿2n − (2− �)n:

We shall see, that a result of Kleitman implies that there exists a c := c(Q)¿0 that

f(n; p; Q)62n − (2− c)n

holds, too.
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Details and further re=nements of the zones are given in subsequent sections. Most
of our new results (and the problem of Erdős we have started from) regard the middle
zone.

3. Low zone, exponential lower bounds from random choice

First, we show (1) that f(n; p; Q) is at least exponential in n for all nontrivial
cases.

Claim 4. Let Q⊂ [p], Q �= [p], and suppose that p¿2. Then f(n; p; Q)¿(1 + �)n

where �¿0 depends only on p.

Proof. One can obtain Claim 4 as a corollary of the estimates of the sizes of
p-independent families. A family of sets F on the set [n] is called p-independent,
if every p members F1; : : : ; Fp ∈F have 2p atoms, i.e., for every I ⊆ [p] there exists
an element x ∈ [n] such that x∈Fi holds for i∈ I , but x =∈Fj for j∈ [p]\I . Clearly, if F
is p-independent then it is (p;Q)-free for arbitrary Q= [p]\{t} (06t6p). The size of
the largest p-independent family is denoted by i(n; p). For 2-independent families, we
obtain i(n; 2)= ( n−1

�(n−2)=2�) from Milner’s [31] result on intersecting Sperner families.
In general, Kleitman and Spencer [28] showed that i(n; p) is exponential in n for every
=xed p. They proved with a simple probabilistic argument that log i(n; p)¿n=(2p2p).
(Alon [1], using algebraic geometry codes gave a weaker, but still exponential con-
structive lower bound on i(n; p).) This implies that Claim 4 with �¿1=(2p2p)
holds.

We note that a routine random choice argument, a standard example of the alteration
method gives a better � (polynomial in p) in Claim 4, namely

�¿
1

4p
√
p
:

Indeed, for Q= [p]\{t}, 0¡t¡p, one can take a random 0–1 matrix M of size 2m× n
with Prob(Mij =1)= t=p. Here the expected number of (p;Q)-subfamilies is

(
2m
p

)(
1−

(
p
t

)(
t
p

)t (p− t
p

)p−t
)n
:

This is at most m for m6(1 + �)n with

1 + �=
(
1−

(
p
t

)
t t(p− t)p−t

pp

)−1=(p−1)

¿1 +
1

4p
√
p
:
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4. Low zone, �-systems and Boolean algebras

The aim of this section is to show the upper bound (4). It is not obvious at all
that f(n; p; Q)= o(2n) holds in the low zone. However, it is easy to obtain this from
known results concerning �-systems and Boolean lattices.

Theorem 5. For =xed p and {0; p}⊆Q as n→∞ one has

f(n; p; Q)=O(2nn−1=2p)= o(2n): (9)

By monotonicity (3), it is enough to show this for Q= {0; i; p} for arbitrary
i∈[p− 1].

4.1. �-systems

The (p; {0; 1; p})-systems are usually called �-systems and have been introduced in
a famous two-part paper of Erdős and Rado [12]. They showed that if D is a family
of at most k-element sets, and |D|¿k!(p−1)k , then D contains a �-system of size p,
i.e., there are members D1; : : : ; Dp ∈D such that Di ∩Dj =

⋂
16�6p D� holds for every

16i¡j6p. Thus {D1; : : : ; Dp} is a (p; {0; 1; p})-system.
The case p=3; i=1 is settled by Erdős and Szemer%edi [14]. They showed that

f(n; 3; {0; 1; 3})62n−
√
n=10 = o(2n). Improving and extending this result Deuber et al.

[9] showed that for each p and all suTciently large n the following upper bound holds:

f(n; p; {0; 1; p})¡2n−(n log log n)1=2= log log log n=o(2n): (10)

4.2. Boolean subalgebras

To show that f(n; p; {0; i; p})= o(2n) is always true, one can apply a result of R'odl
on Boolean algebras of sets. A p-dimensional Boolean algebra on the vertex set [n]
is de=ned by considering the pairwise disjoint subsets A; S1; : : : ; Sp⊆ [n] where only A
can be empty and then taking all 2p distinct sets of the form A∪ SI where I ⊆ [p] and

SI =
⋃
i∈I

Si:

Let b(n; p) denote the maximum number of subsets of [n] containing no p-dimensional
Boolean algebra with ground set X ⊆ [n]. Observe that b(n; 1)= ( n

�n=2�) is Sperner’s [35]
well-known theorem about antichains. Erdős and Kleitman [10] determined b(n; 2) up
to a constant factor

b(n; 2)=Y(2nn−1=4): (11)

Since a p-dimensional Boolean algebra obviously contains (p; {0; i; p})-systems for
every i∈ [p− 1], f(n; p; {0; i; p})6b(n; p)= o(2n) follows from the following result.
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Theorem 6 (R'odl [32]). For every =xed p, b(n; p)= o(2n).

In fact, R'odl [32] promised that the sharper result b(n; p)=O(2nn−c), where c de-
pends only on p: “: : :will appear together with other related problems elsewhere”.
He kept his promise, the following very recent result of Gunderson et al. [23] is a
strengthening of (11):

b(n; p)6c2nn−1=2p : (12)

Our =nal note here is that perhaps the low zone coincides with the very low zone
to be treated in the next section. This would follow from the aTrmative answer to the
following conjecture.

Conjecture 7. For every 16i6p − 1 one has f(n; p; {0; i; p})6(2 − c)n (where c
depends only on p).

5. Very low zone, string quartets performed by a trio

This zone is de=ned by the pairs (p;Q) for which f(n; p; Q)6(2− �)n with some
� which depends only on p. Many results here are motivated by coding theory and
handled in the language of binary strings, i.e., the edges of hypergraphs are considered
as characteristic vectors.

Theorem 8 (Lindstr'om [29]). 2n=26f(n; 4; {0; 2; 4})62(n+1)=2 + 1.

The lower bound is an explicit construction. De=ne the binary addition of two sets
as the set whose characteristic vector is obtained as mod 2 addition regarding the
characteristic vectors of the sets. One can observe that in a (4; {0; 2; 4})-free family
F, the map F1 + F2 (with binary addition) is one-to-one from the pairs F1; F2 ∈F to
subsets of [n]. Thus ( |F|

2 )62n which implies the upper bound.
If the binary addition is replaced by integer addition, then the same map can send

only disjoint pairs to the same sequence of {0; 1; 2}n. This easily implies the following.

Proposition 9. For any even p, f(n; p; {0; p=2; p})=O(3n=2).

The details are omitted because we have found the same observation in the manu-
script of Alon et al. [3] string quartets in binary. The next two results are extracted from
the same paper. The =rst result comes from a very clever application of a well-known
lemma of Sauer, Shelah-Perles, Vapnik-Chervonenkis.

Theorem 10 (Alon et al. [3]). For every 0¡i¡p, f(n; p; [p]\{i})6p20:78n.

The most spectacular application of this result is the case p=4, i=2 since it was
unknown whether Q= {0; 1; 3; 4} belongs to the very low zone (this question was asked
by Vera T. S%os in 1987).
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Finally, we mention the following result whose proof applies K'orner’s method based
on subadditivity of graph entropy. It shows that f(n; 4; {0; 2; 3; 4}) can be separated
from f(n; 4; {0; 2; 4}). In fact the exponent in the upper bound f(n; 4; {0; 2; 3; 4}¡
2(1=2−�)n by Alon et al. [3] was subsequently improved by Alon et al. [2] to 0.4968.
The best bound is due to Fachini et al. [17].

Theorem 11 (Fachini et al. [17]). For n su>ciently large f(n; 4; {0; 2; 3; 4})¡20:4561n.

6. Middle zone, lower bounds

Since either p or 0 is missing from Q in the middle zone, as we have seen in (5),
f(n; p; Q)¿2n−1 is obvious. We can improve this slightly, our best improvement is
for the case Q= {0; p− 1}, i.e., for Erdős’s original question.

Theorem 12. For p¿3 there exists a c= c(p)¿0 such that

f(n; p; {0; p− 1})¿2n−1 + cnp−3:

Proof. More precisely, it will be proved that

f(n; p; {0; p− 1})¿2n−1 +
p−3∑
i=o

(
n− 1
i

)
;

from which Theorem 12 clearly follows. Let F contain all subsets of [n] containing
the element 1 plus all sets of size 6p− 3. We claim that F is (p; {0; p− 1})-free.
Assume that A1; A2; : : : ; Ap ∈F form a (p; {0; p− 1})-system. Let U =:

⋃
16i6p Ai

and Ui :=U\Ai. As every element of U is covered exactly p− 1 times we have that
Ui ⊆Aj for all j �= i. This implies that the sets U1; : : : ; Up are pairwise disjoint.
All but at most one of the Ui’s are nonempty. Indeed, U1 =U2 = ∅ implies

A1 =A2 =U , a contradiction. Each Ai is a union of p− 1 Uj’s and at least p− 2 of
those are nonempty. We obtain that |Ai|=

∑
j 	=i |Uj|¿p − 2. Thus, all Ai must con-

tain element 1, a contradiction.

Remark 13. The above construction is maximal, i.e., adding an arbitrary subset A of
[n] to it will result in a (p; {0; p− 1})-system.

Proof. Indeed, |A|¿p − 2 thus there exists a partition A=A1 ∪A2 ∪ · · · ∪Ap−2 such
that Ai �= ∅ for all i. Let Ai′ =A\Ai (i=1; : : : ; p−2). Then the p-collection A, A∪{1},
Ai′ ∪{1} (i=1; : : : ; p− 2) is a (p; {0; p− 1})-system.

7. Middle zone, asymptotics

For every p¿2 there are 2p−1 − 1 choices of Q belonging to the low zone,
(1− o(1))3× 2p−1 choices of the middle zone and Y(2p=2) choices of the high zone.
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The aim of this section is to settle Conjecture 2 for all but O(3p=2) choices of the
middle zone.

Theorem 14. Suppose that Q ⊂ {0; 1; : : : ; p} is such that {0; p} �⊂Q and there exists
a q∈Q with 16q6p=2 and (p− q)∈Q. Then f(n; p; Q)= (1 + o(1))2n−1.

Proof. The lower bound follows from (5). To prove the upper bound consider a family
F of subsets of [n] of size

|F|¿2n−1 + b(n; p)=2;

where b(n; p) is de=ned in Section 4 (cf. (12)). We show that F contains a
(p; {q; p− q})-system.
Note that F contains more than b(n; p)=2 complementary pairs {F; [n]\F}⊆F.

Apply (12) to the subsystem F′ = {F1; : : : ; Fm} containing all the members of com-
plementary pairs. Since m¿b(n; p) we obtain the pairwise disjoint, nonempty sets
S1; : : : ; Sp⊂ [n] and a set A⊆ [n]\(S1 ∪ · · · ∪ Sp) such that A

⋃
i∈I Si ∈F′ for all I ⊆ [p].

Since F′ consists of complementary pairs, B
⋃
i∈I Si ∈F′, too, where B= [n]\

(A
⋃

16i6p Si). Take q sets of the =rst kind and p − q of the second kind in such
a way that the degrees are q on S1; : : : ; Sp, then we obtain a desired (p; {q; p − q})-
system. Say, we can take the sets A∪{Si ∪ Si+1 ∪ · · · ∪ Si+q−1} for 16i6q and the
sets B∪{Si ∪ Si+1 ∪ · · · ∪ Si+q−1} for q¡i6p, where one has to take the indices of
the Si’s modulop.

8. Middle zone, upper bounds

Our aim here is to prove an upper bound (7) separating the middle zone from the
high zone.

Theorem 15. In the middle zone f(n; p; Q)6(1− 1=2p+ o(1))2n.

First, we prove a proposition which helps to reduce the general problem to the cases:
either Q= {0; q}, p=26q¡p or Q= {q; p− q}, 0¡q6p=2.

Proposition 16. Suppose that q1; q2 ∈Q ⊂ [p] such that

q16
p
2
6q2; q1 �= q2 and {q1; q2} �= {0; p}:

Let t be a positive integer t6q1, t6p− q2 but t¡max{q1; p− q2}. Then
f(n; p; Q)6f(n; p− 2t; {q1 − t; q2 − t}) + 2t: (13)

Proof. Note that p − 2t¿2. Moreover, 06q1 − t6(p − 2t)=26q2 − t6(p − 2t)
but {q1 − t; q2 − t} �= {0; p − 2t} thus f(n; p − 2t; {q1 − t; q2 − t}) belongs to the
middle zone, too. Thus the right-hand side of (13) is at least 2n−1 + 2t by (5),
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proving (13) if f(n; p; Q)¡2n−1 + t. Otherwise there is a (p;Q)-free family F
with |F|=f(n; p; Q)¿2n−1 + t. It contains at least t complementary pairs, a sub-
family P := {F1; [n]\F1; : : : ; Ft ; [n]\Ft}⊆F. Leave these t pairs out from F. Then
F\P is (p− 2t; {q1 − t; q2 − t})-free, otherwise such a subsystem R⊆F\P together
with P form a (p; {q1; q2})-system. Therefore, |F\P|=f(n; p; Q)− 2t6f(n; p− 2t;
{q1 − t; q2 − t}).

Proof of Theorem 15. If Q∩ UQ �= ∅, (where again UQ= {p− q : q∈Q}), then limn→∞
f(n; p; Q)2−n=1=2 follows from Theorem 14. Otherwise, using the reductions of the
above Proposition 16 and taking complementation if necessary (see (2)), one can obtain
for some 0¡p′=2¡q′¡p′ that f(n; p; Q)6f(n; p′; {0; q′})+O(p). So we can reduce
the proof to the case originally proposed by Erdős, i.e., Q= {0; q}, p=2¡q¡p.
Let F be a (p; {0; q})-free family on [n] and denote by fk the size of Fk (i.e., the

size of {F ∈F: |F |= k}). Let H be a (p; {0; q})-system on [n], K = {|H |: H ∈ H},
�k = |{H ∈ H: |H |= k}|. We claim that

∑
k∈K

�kfk(
n
k

)6p− 1: (14)

Indeed, consider a permutation # of [n] and apply it to H and consider #(H)∩F. It
consists of at most p− 1 hyperedges, so we get∑

#∈Sn
|#(H)∩F|6(p− 1)n!

On the other hand, every edge E ∈H appears exactly fk |E|!(n − |E|)! times on the
left-hand side. We obtain∑

E∈H

fk |E|!(n− |E|)!=
∑
k∈K

�kfkk!(n− k)!6(p− 1)n!

Rearranging we get (14).
Now suppose that p6v6n. We explicitly construct some (p; {0; q})-system Hv on

vertex set [v] and then will apply (14) to it. The edges of Hv {E1; : : : ; Ep} are de=ned
as follows. Ei meets [p] in q vertices, Ei ∩ [p] = {i; i + 1; : : : ; i + q − 1} (we have to
take the elements here modulo p), and for p¡x6v the element x belongs to the edges
Eqx+i for 16i6q (again indices are taken modulo p). Then Hv consists of edges of
sizes �vq=p and �vq=p� only. For every k in the range q6k¡�qn=p there exists a
v such that k¡vq=p¡k + 1, therefore Hv has edges of sizes k and k + 1. It follows
from (14) that

either fk

/(
n
k

)
6(p− 1)=p or fk+1

/(
n

k + 1

)
6(p− 1)=p :

Let

I =
{
i∈ [n]: fi6

p− 1
p

(
n
i

)}
;
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we have that I has no large gap, I ∩{k; k + 1} �= ∅ for every q6k¡�qn=p. Then,

|F| =
n∑
i=0

fi6
n∑
i=0

(
n
i

)
− 1
p

∑
i∈I

(
n
i

)

6 2n − 1
p


 ∑

i is even

(
n
i

)
−
∑
i6q

(
n
i

)
−
∑

i¿nq=p

(
n
i

)

=
(
1− 1

2p
+ o(1)

)
2n:

8.1. Decomposition method

Another possible approach to prove an upper bound is the decomposition method,
i.e., to decompose all subsets of an [n] to as many (p; {0; q})-systems as it is possible,
and obtain an upper bound by deleting a set from each decomposed part. Using this
we may easily get the following, slightly weaker upper bound than (7). For arbitrary
p=2¡q¡p,

f(n; p; {0; q})6(1 + o(1))
(
1− 1

pq

)
2n: (15)

To get a desired decomposition in our case (and in many other applications) a very
useful tool is the following form of Baranyai’s theorem [4], see [5].

Theorem 17 (Baranyai [4]). Let F=(V; E) be the r-uniform complete hypergraph on
k vertices (i.e., the family containing all ( kr ) r-subsets of a k-set), and let e1; e2; : : : ; es
be nonnegative integers such that

∑s
i=1 ei =( kr ). Then the edge set E of F can be

partitioned into s sets: E=
⋃s
i=1 Ei such that |Ei|= ei and every Fi =(V; Ei) is almost

regular.

Proof sketch of (15). Let t be an arbitrary positive integer such that tp6n, and take
an arbitrary tp-subset V of [n]. Let FV be the complete tq-uniform hypergraph with
vertex set V . Choose

s=
⌈(

tp
tq

)/
p
⌉
:

If ( tptq )=p is an integer, let ∀i: 16i6s=( tptq )=p ei =p, otherwise let ∀i: 16i6s− 1
ei =p and es=( tptq )−(s−1)p. Now apply Theorem 17 to FV choosing the parameters
as above. We get a decomposition of FV into (p; {0; q})-systems. But a (p; {0; q})-
free family does not contain at least one member from every decomposed part. We
get the desired upper bound using this fact to all sets V of suitable sizes t avoiding
repetitions.
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9. Middle zone, strong (4; {0; 3})-systems

Here we demonstrate the diTculty of Conjecture 2 for the smallest unknown case,
formulating a subconjecture. A (4; {0; 3})-free family is called strong if it does not
contain two disjoint sets with their union. In particular, a strong (4; {0; 3})-free family
cannot contain the empty set. The following proposition (the easy proof is left to the
reader) shows a useful extension property for strong (4; {0; 3})-free families.

Proposition 18. Suppose that F is a strong (4; {0; 3})-free family on the vertex set
[n]. Then

2[n+1] ⊇F′ =F∪{{n+ 1}∪X : X ∈ F}
is also a strong (4; {0; 3})-free family.

Assume that there exists a strong (4; {0; 3})-free family with more than 2n0−1 sets
on [n0]. Then, using Proposition 18 repeatedly, one can construct a (strong) (4; {0; 3})-
free family with (1 + �)2n−1 sets, provided that n is large. Therefore, the following
conjecture is weaker than Conjecture 2.

Conjecture 19. A strong (4; {0; 3})-free family on [n] has at most 2n−1 sets.

We know only the following =ve minimal strong (4; {0; 3})-free families on [n] with
2n−1 sets. Here minimal means that they cannot be generated through Proposition 18:

1. {1} on [1],
2. {1}; {2} on [2],
3. {1}; {1; 2}; {1; 3}; {2; 3} on [3],
4. {1}; {2}; {3}; {1; 2; 3} on [3],
5. {1}; {1; 2}; {1; 3}; {1; 4}; {2; 4}; {3; 4}; {1; 2; 3}; {2; 3; 4} on [4].

10. Middle zone, sharp results

This section is devoted to the few special choices of p and Q for which we could
determine precisely the value of f(n; p; Q). We start with an unpublished result of
Erdős and S%os.

Theorem 20 (Erdős-S%os [15]). f(n; 3; {0; 2})= 2n−1 + 1:

Proof. Let F be the family of subsets of [n] = {1; : : : ; n} containing a =xed element
plus the empty set. This F is (3; {0; 2})-free, hence f(n; 3; {0; 2})¿2n−1+1: To prove
the reverse inequality observe that a (3; {0; 2})-free family cannot contain three sets
A, B and A�B=(A\B)∪ (B\A), since they would form a (3; {0; 2})-system. Now let
F be an arbitrary (3; {0; 2})-free family and A �= ∅ be an arbitrary member of it. By
the previous observation, if B ∈ F\{A; ∅} then A� B =∈F\{A; ∅}. Therefore, to each
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B ∈ F\{A; ∅} one can assign B′ =A� B =∈F\{A; ∅}. Since symmetric diZerences of
distinct sets with a =xed set A are distinct, |F\{A; ∅}|62n−1 − 1.

The following proposition is an easy generalization of a folklore remark (in fact,
its origin is [11]): an intersecting family on [n] has at most 2n−1 sets. Notice that
an intersecting family is a (2; {0; 1})-system. In fact, the folklore proof gives more:
f(n; 2; {1})= 2n−1. An easy generalization is the following.

Proposition 21. Assume that p¿2 is even and p=2 is the largest element of Q. Then

f(n; p; Q)= 2n−1 + (p=2)− 1:

Proof. Let F be a (p; {p=2})-free family on n vertices. Considering the 2n−1 comple-
mentary pairs {X; [n]\X } one can see that at most (p=2)− 1 can be contained entirely
in F. This gives |F|62n−1 + (p=2) − 1. Adding arbitrarily (p=2) − 1 new sets to
F[x] shows that equality is possible.

Proposition 22. Assume that p is odd and (p+1)=2 is the largest element of Q and
{(p− 1)=2; (p+ 1)=2}⊆Q. Then

f(n; p; Q)= 2n−1 +
p− 3
2

:

Proof. Like in the previous proposition suppose that |F|¿2n−1 + (p − 3)=2. Then
it contains (p − 1)=2 complementary pairs. Adding one more edge to these pairs
one obtains a (p; {(p−1)=2; (p+1)=2})-system. Thus f(n; p; {(p−1)=2; (p+1)=2})6
2n−1 + (p− 3)=2. Adding arbitrarily (p− 3)=2 new sets to F[x] shows that equality is
possible.

Perhaps the folklore remark above can be also extended in another direction:

Conjecture 23. For every p, f(n; p; {1; p− 1})= 2n−1 if n is large.

We can prove this only for p64. If p=2 or 3 it is true for every n. (The former
statement is the folklore remark, and the latter is also obvious since two complemen-
tary sets with any other set form a triple with degrees in {1; 2}.) For p=4 the one
and two element sets of [3] give six sets with no four with degrees in {1; 3}, so
f(n; 4; {1; 3})= 2n−1 + 2 for n=3. Probably f(n; 4; {1; 3})= 2n−1 holds already for
n=4; 5, the next theorem proves this for n¿6.

Theorem 24. For every n¿6, f(n; 4; {1; 3})= 2n−1.

Proof. Assume that F is a family of subsets of [n] with 2n−1 + 1 members. We
show that a set H of four members of F form a (4; {1; 3})-system. Two sets of F
are called a complementary pair if they complement each other with respect to [n].
Assume =rst that F has at least 2n−2 complementary pairs. Using the upper bound
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from Theorem 8, f(n; 4; {0; 2; 4})62(n+1)=2+1¡2n−2 if n¿6. Therefore, selecting one
set from each complementary pair, we get a 2n−2-element subset of F which contains
four sets forming a (4; {0; 2; 4})-system. Then the required H is obtained by replacing
one of the four sets with its complement (which is also in F and distinct from the
other three).
On the other hand, if F has less than 2n−2 complementary pairs, we can select

two sets, A1; A2 from F, so that neither is the complement of any set in F. This
condition ensures that the map g which sends A∈F to A + A1 + A2 + [n] (where +
denotes binary addition) has the property: for every A∈ (F\{A1; A2}), the quadruple
H (A)= (A; g(A); A1; A2) has four distinct sets. Indeed, A= g(A) is equivalent to A1 =A2

and g(A)=A1 (g(A)=A2) is equivalent to A=A2 (A=A1). From the de=nition of g,
for every A∈ (F\{A1; A2}), the four distinct sets of H (A) form a (4; {1; 3})-system.
Observe that g is a one-to-one map from F to the subsets of [n] which sends A1 (A2) to
A2 =∈F (A1 =∈F). Therefore, g(A) =∈F holds for at most 2n−1−3 sets of F\{A1; A2}.
Since F\{A1; A2} has 2n−1 − 1 sets, g(A)∈F must hold for some A∈ (F\{A1; A2}).
For this A, the quadruple H (A) is the required (4; {1; 3})-system of F.

Corollary 25. Assume that p¿4 is even, n¿6, p=2 + 1 is the largest element of Q
and {p=2− 1; p=2 + 1}⊆Q. Then f(n; p; Q)= 2n−1 + p=2− 2.

Proof. All sets through a =xed element plus p=2 − 2 other sets show that
equality is possible. The upper bound follows by induction, the case p=4 is
Theorem 24. Selecting a complementary pair from F of 2n−1+p=2−1 sets the remain-
ing 2n−1+(p−2)=2−2 contains by induction p−2 sets with degrees in {(p−2)=2−1;
(p− 2)=2 + 1}. Adding the complementary pairs we have the required p sets.

We conclude this section with the summary of cases when exact results are known
to us for p64. The trivial cases are omitted and from complementary pairs of subsets
of [2,3,4] only one is mentioned (the smaller in lexicographic order).

10.1. Half is the best

The statement f(n; p; Q)= 2n−1 holds for p=2, Q= {1} or Q= {0; 1}; for p=3,
Q= {1; 2} or Q= {0; 1; 2}; for p=4, Q= {1; 2; 3} or Q= {0; 1; 2; 3} or Q= {1; 3}
(here n¿6). In these cases p =∈Q, therefore sets through a =xed vertex show that
equality is possible. The upper bounds follow either directly or immediately from
previous results. There is one further case:

Proposition 26. For n¿n0, f(n; 4; {0; 2; 3})= 2n−1.

Proof. Assume that F is a family of subsets of [n] with 2n−1 +1 members. We show
that a set H of four members of F forms a (4; {0; 2; 3})-system. If F has more than
one complementary pair then two such pairs give H . Otherwise F contains precisely
one complementary pair A; B and all other complementary pairs are split by F.
Case 1. ∅ =∈F. This implies that [n]∈F. Then take the four sets H = {A; B; [n]; C}

with an arbitrary C ∈F (distinct from the other three).
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Case 2. A0 = ∅∈F. Then, using (10), f(n; 3; {0; 2; 3})=f(n; 3; {0; 1; 3})= o(2n)6
2n−1 if n is large enough. Thus, H can be de=ned as three sets forming a (3; {0; 2; 3})-
system together with the empty set.

10.2. Half plus one is the best

The statement f(n; p; Q)= 2n−1 + 1 holds for p=3, Q= {0; 2}; for p=4, Q= {2}
or {0; 2} or {1; 2}. In these cases neither p, nor p − 1 is in Q therefore the empty
set plus all sets through a =xed vertex show equality. The upper bounds follow from
previously stated results.

11. High zone, Kleitman-type results

We have seen (Proposition 3) that in the high zone, a maximal (p;Q)-free family
contains almost all subsets of [n]. In this section we review some results of Kleitman
and others yielding sharper bounds.

11.1. No p pairwise disjoint sets, Q= {0; 1}

The family F1; : : : ; Fp is a (p; {0; 1})-system if and only if its members are pairwise
disjoint. To avoid trivialities, we deal with the case p¿3 only. If each Fi is a subset
of [n], then one of them has size at most n=p. Thus

F1
p := {F ⊆ [n]: |F |¿n=p}

provides a (p; {0; 1})-free family. For p¿3 this construction contains almost all sets,
|F1

p |=(1− o(1))2n. Kleitman proved that

Theorem 27 (Kleitman [25]). For n≡ − 1 (modp) f(n; p; {0; 1})= |F1
p |.

However, in the case n �≡ −1 (modp), F1
p is not maximal, one can add a few more

sets. Kleitman also solved the case n=mp, the other cases are still open.

11.2. No partition into p parts, Q= {1}

A family A1; A2; : : : ; Ap is a (p; {1})-system if and only if they form a partition on
[n]. Here f(n; p; {1}) can be estimated by applying results on d(n; p), the maximum
size of a family which does not contain p − 1 pairwise disjoint sets and their union.
Such families are called (p− 1)-disjoint-union free. For p¿3 such a family is

F2
p :=

{
F ⊆ [n]: n=p¡|F |¡p− 1

p
n
}
;

and it contains almost all sets, |F2
p |=(1− o(1))2n.
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Theorem 28 (Kleitman [26] (for p=3), Frankl [18] (for all p¿3)). If n≡ −1 (mod
p) then d(n; p)= |F2

p |.

The cases n �=mp − 1 are unsolved. There are slightly larger families than F2
p , it

is not even maximal, one can add a few more sets. Theorem 28 has the following
consequence.

Corollary 29. Suppose that n≡ − 1 (modp) and p¿3. Then

f(n; p; {1})= |F1
p |=2n − (1 + o(1))

p− 1
p− 2

(
n

�n=p
)
:

Proof. Suppose that F is a maximal (p; {1})-free family, we have |F|¿|F1
p |. Then

F∩FC (i.e, the sets having complements in F) is (p− 1)-disjoint-union free. Thus

|F1
p |6|F|= 1

2(2
n + |F∩FC|)6 1

2 (2
n + |F2

p |)= |F1
p |:

Similarly, f(n; p; {0; 1})6f(n; p; {1})6 1
2 (2

n + d(n; p)), and very likely equality
holds here.

11.3. An estimate for the general case

Conjecture 30. The construction Fq=p de=ned in Section 2.3 is (almost) optimal.

The smallest open case is p=5, max Q=2. The following result, based on Corollary
29, shows this at least for the case q|p.

Theorem 31. If max Q= q¡p=2 then f(n; p; Q})6f(n; �p=q�; {1}) + p− �p=q�.

Proof. It is suTcient to show that f(n; p; {q})6f(n; �p=q�; {1})+p−�p=q�. Take a
family F of size larger than the right-hand side here. Write p in the form p= a1 +a2
+ · · ·+aq where �p=q6a16a26 · · ·6aq6�p=q�. Then |F|¿f(n; a1; {1}), thus one
can =nd a subfamily A1 of size a1 forming a partition (i.e., a (a1; {1})-family). Repeat
this for F\A1 and =nd a subfamily of size a2, and so on. The obtained partitions
A1 ∪ · · · ∪Aq cover each vertex exactly q times.

Corollary 32.

2n − O
((

n
�n=(p=q)

))
6|Fq=p|6f(n; p; Q)62n −Y

((
n

n=�p=q�
))

12. Conclusion

We think—and hope the reader agrees—that many (old and new) problems, results
and conjectures relate immediately to the initial question of Erdős on f(n; 4; {0; 3}).
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We conclude this paper by returning to its origin for the k-uniform case, i.e., when
only k-element sets are allowed. Let f(n; k; 4; {0; 3}) denote the maximum size of a
k-uniform (4; {0; 3})-free family. For convenience we shall assume that k|n. Obviously,
for k �≡ 0 (mod 3) (4; {0; 3})-systems do not exist, so in this case f(n; k; 4; {0; 3})= ( nk ).
On the other hand, the case k ≡ 0 (mod 3) is certainly diTcult, f(n; 3; 4; {0; 3})=
ex(n; K4

3 ) is a famous Tur%an number. For history of Tur%an numbers see [7] and
for general Tur%an-type problems [22]. In the following theorem the magnitude of
f(n; k; 4; {0; 3})(k ≡ 0 (mod 3)) is determined. Let K4

3 denote the complete 3-uniform
hypergraph on 4 vertices and

#(K4
3 )= lim

n→∞
ex(n; K4

3 )(
n
3

) ;

where ex(n; K4
3 ) is the maximum number of edges of a 3-uniform hypergraph contain-

ing no K4
3 . This limit is known to exist (see [24]), but is not determined yet. The

construction of Tur%an gives 5=96#(K4
3 ), which is conjectured to be optimal. The best

upper bound, due to Chung and Lu [8] yields #(K4
3 )6(3 +

√
17)=12.

Theorem 33. For k ≡ 0 (mod 3)

(1− o(1))
1
e
6
f(n; k; 4; {0; 3})(

n
k

) 6#(K4
3 )6

3 +
√
17

12
=0:59359 : : : :

Proof. The upper bound follows from the fact that

f(n; k; 4; {0; 3})(
n
k

) 6#(K4
3 ):

This follows from a well-known blow-up technique of Sidorenko [33,34] and Frankl
[20] (also see [21]).
To see the lower bound, take a partition of [n] into parts X and [n]\X of size n=k

and n − n=k, respectively. Let F consist of all k-subsets of [n] containing exactly
one element from X . We claim that F is (4; {0; 3})-free. Indeed, take an arbitrary
collection of four sets from F. Then the chosen four sets either contain the same
element from X , or at least two diZerent ones. In the =rst case the given element is
covered four times while in the second case there is an element (in the union of the
chosen four sets) which is covered at most twice. Hence F is (4; {0; 3})-free. We
obtain |F|=(n=k)( n−n=k

k−1 ), from which the desired result follows by a straightforward
computation.

Remark 34. One can get a somewhat larger constant in the lower bound than 1=e
de=ning F= {F ∈ ( [n]k ): |F ∩X | ≡ 1 (mod 3)}. But since this improvement probably
does not give a tight result, we omit the detailed computation.



402 Z. F6uredi et al. / Discrete Mathematics 257 (2002) 385–403

Acknowledgements

We appreciate the fruitful discussions with J%anos K'orner, G%abor Simonyi and Vera
S%os. We also thank the referees for their careful work.

References

[1] N. Alon, Explicit constructions of exponential sized families of k-independent sets, Discrete Math. 58
(1986) 191–193.

[2] N. Alon, E. Fachini, J. K'orner, Locally thin set families, Combin. Probab. Comput. 9 (2000) 481–488.
[3] N. Alon, J. K'orner, A. Monti, String quartets in binary, Combin. Probab. Comput. 9 (2000) 381–390.
[4] Zs. Baranyai, On the factorization of the complete uniform hypergraph, in: A. Hajnal, R. Rado,

V.T. S%os (Eds.), In=nite and Finite Sets, North-Holland, Amsterdam, pp. 91–108.
[5] B. Bollob%as, Combinatorics, Cambridge University Press, Cambridge, 1986.
[6] T.C. Brown, J.P. Buhler. Lines imply spaces in density Ramsey theory, J. Combin. Theory Ser. A 36

(1984) 214–220.
[7] D. de Caen, The current status of Tur%an’s problem on hypergraphs, in: Extremal Problems for Finite Sets,

Bolyai Society of Mathematical Studies, Vol. 3, Visegr%ad, 1991, J%anos Bolyai Math. Soc., Budapest,
1994, pp. 187–197.

[8] Fan Chung, Linyuan Lu, An upper bound for the Tur%an number t3(n; 4), J. Combin. Theory Ser. A 87
(1999) 381–389.
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