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LARGE CLIQUES IN C4-FREE GRAPHS
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A graph is called C4-free if it contains no cycle of length four as an induced subgraph.
We prove that if a C4-free graph has n vertices and at least c1n

2 edges then it has a
complete subgraph of c2n vertices, where c2 depends only on c1. We also give estimates on
c2 and show that a similar result does not hold for H-free graphs—unless H is an induced
subgraph of C4. The best value of c2 is determined for chordal graphs.

Graphs are understood to be simple, i.e. without loops or multiple edges
and this is essential. The order of the largest complete subgraph of G is
denoted by ω(G) and the order of the largest independent set of G is denoted
by α(G). A graph is called C4-free if it contains no cycle of length four as
an induced subgraph. The following question has been asked by Paul Erdős:
is it true that C4-free graphs with n vertices and at least c1n

2 edges must
contain complete subgraphs of c2n vertices, where c2 depends only on c1?
We give the affirmative answer (Corollary 1) with c2=0.4c2

1. In fact, we shall
prove a more general result, Theorem 1: A C4-free graph with n vertices and
average degree at least a must contain a complete subgraph of order at least
0.1a2n−1. The role of C4 is very important, similar results are not true for
H-free graphs as the next proposition shows.

Proposition 1. Suppose that H is a graph which is not an induced sub-
graph of C4. There are H-free graphs Gn with n vertices and at least n2/4
edges with ω(G)=o(n).
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Proof. If H contains three independent vertices then define Gn as a ’Ram-
sey graph’, i.e. a graph on n vertices in which no three vertices form an
independent set and ω(Gn) is as small as possible. It is well known that Gn

has n2/2−o(n2) edges and ω(Gn)≤c(nlogn)1/2 =o(n) ([4]). If α(H)≤2 then
one can define Gn as a balanced complete bipartite graph, in this case it has
�n2/4� edges and ω(Gn)= 2. Since the induced subgraphs of Gn satisfying
α(H)≤2 are precisely the induced subgraphs of C4, the proof is finished.

Theorem 1. Suppose that G is a C4-free graph on n vertices with average
degree at least a. Then

ω(G) ≥ 0.1a2n−1.

Applying Theorem 1 for graphs with at least c1n
2 edges we obtain the

affirmative answer to the question of Erdős.

Corollary 1. Let G be a C4-free graph on n vertices with at least c1n
2

edges for some 0<c1 < 1
2 . Then

ω(G) ≥ 0.4c2
1n.

The lower bound of ω(G) in Corollary 1 is paralleled by two upper
bounds. The first construction is better if c1 is close to zero and the second
is better if c1 is close to 1/2.

Construction 1. It is easy to check that clique substitutions into vertices
of a graph which does not contain C4 (not necessarily induced) yields C4-free
graphs. It is well known that there are graphs on k vertices with approxi-
mately (1/2)k3/2 edges which do not contain C4. These graphs are the so
called ‘polarity graphs’ ([1], [3]). Substituting cliques into vertices of polarity
graphs yields graphs on n vertices, at least c1n

2 edges and with no cliques
larger than 12c2

1n.

Construction 2. For two graphs, A and B, we denote by A+B the graph
C with vertex set V (C)=V (A)∪V (B) and edge set that consists of E(A),
E(B) and all possible edges between V (A) and V (B).

Now consider a graph of form A+B where A is a complete graph and
B is a cycle with all chords of length less than |B|/4. When 1/4≤ c1 <1/2,
with suitable sizes of A,B one can get C4-free graphs G with n vertices and
at least c1n

2 edges satisfying

ω(G) ≤ n

(
1 − 3

√
2

4
√

1 − 2c1

)
.
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Perhaps Construction 2 is best possible for c1 ≥ 1/4. However we could
not even decide the case c1 = 1/4: is it true that a C4-free graph with n
vertices and at least n2/4 edges contains a clique of size n/4? (The best
estimate we know is n/6, it comes by a special argument not shown in the
paper.) A very special case we could not answer: assume that G is a 2k-
regular C4-free graph with 4k+1 vertices, is it true that ω(G)>k? If true, it
is best possible shown by the cycle C4k+1 with chords of length at most k.

Proof of Theorem 1. It is enough to prove Theorem 1 for the case when
the minimum degree of G is at least a/2. Indeed, it is well known that
every graph G with average degree a contains an induced subgraph G∗ with
average degree a∗≥a such that the minimum degree in G∗ is at least a∗/2
(see for example [2], Proposition 1.2.2). So if we know the theorem for G∗,
we get

ω(G) ≥ ω(G∗) ≥ 0.1(a∗)2

|V (G∗)| ≥
0.1a2

n
.

Assuming that the minimum degree of G is at least a/2, fix an independent
set S with |S| = t. Set S = {x1,x2, . . . ,xt}. Let Ai be the set of neighbors
of xi in G and set m=max

i�=j
|Ai ∩Aj |. Since G is C4-free, all the subgraphs

G[Ai ∩Aj] are complete graphs, and thus m≤ω(G). Using that |Ai| ≥ a/2
we get

ta/2−
(

t

2

)
m ≤

∑
1≤i≤t

|Ai| −
∑

1≤i<j≤t

|Ai ∩ Aj| ≤ |
⋃

1≤i≤t

Ai| ≤ n

implying that

ω(G) ≥ m ≥ ta/2 − n(t
2

) .

If α(G)≥4n/a then set t=�4n/a
 and we get

ω(G) ≥ �4n/a
a/2 − n(�4n/a�
2

) ≥ n(�4n/a�+1
2

) .
If α(G)≤ 4n/a then of course α(G)≤�4n/a� as well. Now we shall use the
following claim: ω(G) ≥ n

(α(G)+1
2 )

. This follows by selecting an independent

set S with |S|=α(G)=α. Using the notation introduced above, the
(α
2

)
sets

Ai∩Aj and the α sets {xi}∪Bi cover the vertex set of G where Bi denotes
the set of vertices whose only neighbor in S is xi. All of these sets span
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complete subgraphs because G is C4-free and from the choice of S. Now we
have

ω(G) ≥ n(α(G)+1
2

) ≥ n(�4n/a�+1
2

) .
Therefore, in both cases we have

ω(G) ≥ n(�4n/a�+1
2

) ≥ n(4n/a+1
2

) =
a2

8n + 2a
≥ 0.1a2/n

where in the last step, the trivial inequality a≤n was used for simple graphs.
This finishes the proof.

Our next result shows that if c1 tends to zero then Corollary 1 can be
improved by a factor of ten.

Theorem 2. Assume that G is a C4-free graph with at least c1n
2 edges.

Then ω(G)≥c2
2n where c2 tends to 4c2

1 if c1 tends to zero.

Proof. Let A denote the set of vertices in G whose degree is at least
10(c1/c)2n where c will be fixed later. Then

2c1n
2 ≤ 2e(G) =

∑
x∈V

d(x) =
∑
x∈A

d(x)+
∑

x∈V −A

d(x) ≤
∑
x∈A

d(x)+10n2(c1/c)2

which gives ∑
x∈A

d(x) ≥ (2c1 − 10(c1/c)2)n2.

Case 1. There exists x∈A whose neighborhood N in G span at least c|N |2
edges. Now Corollary 1 can be applied to G[N ] which gives a complete
subgraph of at least 0.4c2|N | ≥ 0.4c210(c1/c)2n =4c2

1n vertices proving the
theorem.

Case 2. For every x ∈ A, the neighborhood of x, Nx, span at most c|Nx|2
edges. This means that at least

(d(x)
2

)
−cd(x)2 edges are missing from G[Nx].

Let us denote by e the number of edges in G. Then one can estimate p, the
number of induced paths with three vertices in G as

p ≥
∑
x∈A

((
d(x)
2

)
− cd(x)2

)
=
∑
x∈A

(
d(x)(d(x) − 1)

2
− cd(x)2

)
=

= (1/2 − c)
∑
x∈A

d(x)2 − e ≥ (1/2 − c)n−1
(∑

x∈A

d(x)
)2

− e ≥

≥ (1/2 − c)n3
(
2c1 − 10(c1/c)2

)
− e.
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Since the p paths connect at most
(n
2

)
pairs there are at least p

(n
2

)−1 paths
connecting the same vertex pair and the midpoints of these paths must form
a complete graph since G is C4-free. Therefore

ω(G) ≥ (1 − 2c)(2c1 − 10(c1/c)2)2n − 1

which proves the theorem if c is selected so that both c and c1/c tends to
zero with c1.

A graph is called chordal if every cycle of length at least four contains
a chord. Chordal graphs are clearly induced C4-free, thus Theorem 1 and
Corollary 1 are valid for them. For chordal graphs we get (asymptotically)
the best result.

Theorem 3. Suppose that G is a chordal graph on n vertices with at least
�c1n

2
 edges, then
�(1 −

√
1 − 2c1)n� ≤ ω(G).

Moreover, the the chordal graph which is the sum of an independent set of
order t=�n

√
1−2c1
 and a complete graph Kn−t shows that the inequality

asymptotically is best possible.

Proof. It is well known that chordal graphs are perfect. See [2] Proposition
5.5.2. Thus the vertices of a chordal graph G can be partitioned into ω=ω(G)
independent sets X1,X2, . . .,Xω. Since G is chordal, the edges between Xi

and Xj form an acyclic subgraph of G. Thus, we obtain

c1n
2 ≤ �c1n

2
 ≤
∑
i<j

(|V (Xi)|+ |V (Xj)|−1) = (ω − 1)n−
(

ω

2

)
≤ ωn−ω2/2.

Thus ω2−2ωn+2c1n
2≤0 from which the stated lower bound follows.

To check that the inequality is asymptotically sharp for the chordal graph
defined in the theorem is routine so it is omitted.
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