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ON RAMSEY COVERING-NUMBERS

A. GYARFAS

0. INTRODUCTION

In this paper I should like to sketch some aspects of a Ramsey-type
problem (part 2.) which arose from a geometrical problem of T. Gallai
[1]. Let me present the rough skeleton of the theorems discussed later.

If we colour the edges of a complete graph G with n colours in
such a way that we need a sufficiently large number of one-coloured com-
plete subgraphs of G in order to cover G’s vertices then for at least one
i, (1<i<n) G will contain a prescribed subgraph coloured with the
i-th colour.

I. NOTIONS AND NOTATIONS

Graph G, H, ... finite, undirected, no loops and multiple
edges

Vertex and edge set | V(G), E(G)

Subgraph GCH always induced (sbanned) subgraph
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The set of n-col- A (n) complete graphs the edges of which
oured complete are coloured with n colours. It is al-
graphs lowed to colour an edge with more
than one colour.

Covering number of | a(G) it is the smallest k& so that V(G) =

-coloured com- k
an rreoloured com = U W(G,) and G, isa one-coloured
plete graph G i=1 ! !

complete graph.

2 the set of all graphs

A the set of complete graphs

a" denotes the Cartesian product of »
copies of # where # is a set of
graphs

H ={H: HE #} where # isa set of

graphs

2. THE BASIC PROBLEM AND ITS RELATION TO THE
ORIGINAL RAMSEY PROBLEM

2.1, According(to a well-known theorem of Ramsey [2] for any
K=(K,K,,...,K)€ X" there exists a natural number R = R(k)
with the property:

If Gex(n) and |V(G)I=R

then for at least one i, (1<i<n) G contains a subgraph in the i-th
colour isomorphic to K;. The smallest R with the above property is
called the Ramsey-number belonging to K, K,, ..., K, anditis denoted
by R, (K).

Our basic problem is the following:

2.2. To describe the set . C ¢" . for which the following statement
holds
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For every H = (Hl, H2, R Hn) € H there exists a natural number
R, with the property:

If Ge A (n) and q(G)> R, then for at least one i G contains a
subgraph in the I-th colour isomorphic to H,.

The smallest R, with the above property should be called the Ramsey
covering-number belonging to H." It is denoted by C, = C, ().

In case of H€ 4" the following trivial inequality holds between the
Ramsey-numbers and the Ramsey covering-numbers:

CoUH) < RyUD) < ( max | V(H)I = 1)(CyH) — 1) + 1.

3. SOME RESULTS AND AN OPEN QUESTION

Let HC %" be the set defined in 2.2. The following result was
proved in [3]. ‘

Theorem 1. Let Q be the set of graphs the complements of which
contain no adjacent edges, then

orc x.
Let us continue with the central open question:

Question 1. Let 4 be the set of graphs the complements of which
contain no circles and let «/(n) be the set of n-tuples formed by taking
n — 1 components from 4 and one from £. Is it true that

L(n)yCH?
(Special cases will be considered in part 4 and 5.)
There are some degenerate elements of .# .

(1) The n-tuples-of graphs at least one component of which is the
one-point graph or the two-point graph without edge.

(2) The n-tuples where at most one component differs from the two-
point complete graph.
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The n-tuples listed in (1) and (2) are called the degenerate elements
of # and we denote them by 2.

Theorem 2. If H=(H1,...,Hn)€£ AV O"U D then Hg .

Theorem 2 shows that the affirmative answer to Question 1 would
settle the problem in 2.2.

4. STRONG COLOURINGS

Now we investigate the case when we colour the edges of the com-
plete graphs with the restriction that every edge has exactly one colour.
We call such a colouring ’strong”. The set of strongly n-coloured com-
plete graphs will be denoted by % (n). One more notation: if H=
=(H,,...,H,) then H denotes (H,,...,H, ). Let #  be defined
on the analogy of 2.2. if we write %~ s(n) instead of #(n). It is obvious
that # C K s and the following theorems show that the inclusion is
proper.

Theorem 3. Q" C #_ (Q defined in Theorem 1).
Question 2. & (n)U & (n)C # .7 (A (n) defined in Question 1).

Theorem 4. Let 2, be the set of complete k-partite graphs and
T be the three-point graph with two edges. Let  (n) be the set of n-
tuples with one component from 2%, and the others are subgraphs of T.
Then 7 (n)C #, and T (n)C #,.

Theorem S. Let £ be the set of graphs in the form A U B where
ANB=¢, A isacomplete graph and B is an at most one-point graph.
Then £" C #  and Znc A

- Proposition 1. If 2* denotes the n-tuples of graphs where at least
two components are empty graphs, then %% C # .

Theorem 6. If Hg AU Q" U A (n)U I (n)U T(n)U L"U L™ U
U D% then #& K.
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5. PROPERTIES OF GRAPHS WITH LARGE CHROMATIC
NUMBER AND WITHOUT COMPLETE k-GON

Let G be a graph. We may consider G as a strongly two-coloured
complete graph by taking the edges of G (G) as coloured with the first
(second) colour. In this formulation the special case n = 2 of Question 2
is equivalent with

Question 3. Let F be a forest and & a natural number. Is there a
natural number /= I(F, k) with the property: if G is a graph without a
complete k-gon and x(G) =1 then G containts F as a subgraph.

J. Gerlits proved first (oral communication) that the answer is af-
firmative to Question 3 if k=3 and F is a path.

Let X, = Xo(F, k) be the smallest number with the above property.
Now we can state

Theorem 7. |F|2+ ) <xoF,3)<|FI—1 (F is a path and

| F| > 4)

L. Lovdsz showed that Xo ', k) exists if F is a path for arbi-
trary k. The existence of Xo (F, k) is proved otherwise only for |F|< 5
and k= 3 and for the (trivial) case when £ is a star.

The upper bound in Theorem 7 follows from the following theorem.

Theorem 8. Let G be a connected n-chromatic graph which con-
tains no triangle and P and arbitrary point in G. There is a path of
n+ 1 pointsin G without diagonals. (n= 3).

6. HELLY STRUCTURES

A pair (X, &) is called Helly structure if X isaset, « is a fami-
ly of subsets of X and there exists a natural number ¢ with the property:

If # is a finite subfamily of & any two members of # have _
non-empty intersection then there exists a set PC X so that |P|<¢
and BN P+ ¢ if BE A. ’
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Let (X, #,),...,(X,, &) be Helly structures and X, N X] = ¢
n .
for i#j. We define the sum Z; (X;, &)= (X, &) in the following
. =
n .
way: X=i91 X, ={(A,4,,...,4,) A,€ 4 ,}.
The following theorem connects the Helly structures and the set

defined in 2.2.

Theorem 9. Let (X x4 ) ( s A, ) be Helly structures and
suppose that the graph H; can not be the mtersectzon-graph of sets of o,

(for 1<i<mn). Inthiscase (H,...,H,)€ # implies that 2,1 (X;, o)
l:
is also a Helly structure.

Examples and applications of this theorem can be found in [3].

7. PROOFS
- In this section we present the proofs of the theorems discussed above.
Theorem 1 was proved in [3].

For the proof of Theorem 2 we have to define some special m-col-
oured (or 2-coloured) complete graphs. The graph Uk e A (m) looks like
this:

\‘ 2
» 1

QO
0

Let S¥ be a graph containing no triangles and the chromatic number of
which is k. Let | V(S )I=n, and A bea copy of S,. Replace the
vertices of 4 by Bl,Bz,...,Bnk where B is a copy of S,. All
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edges between B; and Bi are coloured with colour 1 if the corresponding
vertices of A4 are connected by an edge. The edges of B, are coloured

with colour 2 and all the remaining edges are coloured by 1,2,... and m.
wke #(2) is defined as follows: V(Wk) = {Wij}fj= 1 The edge

connecting the vertices Wy and W is coloured with colour 1 if i+#r
and coloured with colour 2 if j#s.

W]f € ' (2) has the points {wl.].}f."l.z 1- The edge between w; and

w . is coloured with 1 if j=s, otherwise it is coloured with colour 2.

.k
Xk e (2) will be defined as follows: V(X*)= U B, where B,
i=

is a copy of S;. The edges of B; are coloured with the colour 1, the
edges between different Bi’s have colour 2, the remaining edges are two-

coloured.

k 1
We define Y* e #(2): (Y% = _Ul B, where the Bi’s are again
= .
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copies of S,. Let V(B = {bip' .. ,b’;lk} and the edges of B; have

colour 1, the edge between b. and &/ is coloured with 2 for i #j and
1 <t<n,. Al the remaining edges are bi-coloured. '

Finally Z¥ wil{l be a graph which does not contain a circuit of length
less than or equal to I, and the chromatic number of which is k. The
edges of ZF are coloured with 2 the complement-edges with colour 1.

The graphs considered above are special n-coloured complete graphs.
If 7% denotes any one of Uk , wk , Wi‘ , Xk, Yk, Z* then it has the prop-
erty: if k- o then a(T*)-> o s0 it follows that,
H=(H,,H,,...,H)E # involves that H, C T*
()
for some k in the i-th colour.
Now we turn to the proof of Theorem 2. Suppose that

H=H,H,,...,H)& 4V Q"V 9.
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We prove that H & #. We investigate two cases.

I. More than one H; are empty graphs. Let H,,H,,...,H  be

m
empty graphs (m > 2) and H ,....,H be non-empty Clearly

H q U*  for every k in the colour i (1 <z n) so we conclude that
HQ H by (%).

II. We can choose H ,H, " so that H; is non-empty for 3<i<n
and H ,H, contains at least three vertices. 4, B, C will denote the fol-
lowing graphs:

°
A: B: / C: /\
o o °

From H¢& «(n)U Q" follows that at least one of the following six
possibilities holds:
(i) ﬁl contains a circuit of length ! and H, contains a triangle
(i) ACH, and ACH,
(i) BCH, and B CH,
(iv) B CH1 and A CH2
(v) C’CH1 and ACH2
(vi) CCH1 .and B CH2

(i) is impossible because H1 , H ¢ Z* in the first and second colour
respectively H, ¢ Zk for i>3 because H; is non-empty.

Similar argument shows that the cases (ii) through (vi) are impossible.
We can show that the graphs A, B, C which are subgraphs of H, and
H2 are not contained in our special graphs. In the cases (ii), (iii), (iv), (v),
(vi) we use the graphs U*, Wk Yk x*, W;‘ respectively.

Proof of Theorem 3. Let H=(H,,H,,...,H)€ Q" thatis H,
can be written as the union of a; points and b, disjoint edges. Let

a=maxa; and b= (n—1)maxb,+ 1. Q% denotes a graph the com-
i ; i
plement of which consists of @ disjoint vertices and b disjoint edges.
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Clearly (cf. Theorem 1) Q*€ Q". let Ge€ A (n) for which o(G)>

> CO(Q*, Q% ...,0%). In this case G will contain Q* in the i-th col-
n times :

our for some i. It is obvious (by the definition of ¢ and 5) that this

subgraph contains H] for some j+# i.

Proof of theorem 4.

I. We prove 7 (n)C # by induction on n. The case n=1 is
trivial. Assuming that 7 (n) C #_  we prove that J(n+ 1)C # . Let

H =...=H = /\ and H,, , be the complete k-partite graph which
has k& points in its classes. (It is clear that every k-partite complete graph

is a subgraph of sucha H, for some k.)

+1
let Ge %S(nJr 1) and

(i
G)> (Cy(Hy, Hy,y .., H L H L )~ DK —D(n— D+ 11— D+ k.

If H ¢ G inthe i-th colour for i=1,2,...,n then G must be
written as the union of disjoint complete graphs coloured by the i-th col-
our (the edges not belonging to these complete graphs are not coloured
with colour i). Let us denote these complete graphs in colour 1 by

Ti

A,A,,..., A, and let V(A,.)=_U1a;1.
]’:

129722 r

We can assume that | V(Ai)l > | V(A].)l for i>j. The number

I{s: |A;| > x}| is denoted by ¢ . We define B ’sas the “rows” of A,’s
r

t
that is B, = U a{l. We can write V(G) = 'Ul A; U U B, and here the
= u

j=t+1
A,;’s span complete graphs in colour 1 and the B, ’s are n-coloured complete
graphs so B, can be covered by at most CoHy,Hyy ... H H  )—1

complete one-coloured graphs by the inductive hypothesis. We get a cover-
ing of G by at most

(ii) ¢, + (Co(Hz’ ...,H, )= D(x —1) complete graphs and com-
paring (i) and (ii) we conclude that
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(iii) ¢, =k if x=k[(k—-1)(n—-1)+ 1] thatisfor 1<i<k
| V(4)1> k[(k — 1)(n — 1) + 1]. Let us choose the points a},...,ad*
from V(Al). These points are connected with at most k(n — 1) points
of V(A].), (2<j<k) in the colours 2,3,...,n. We omit these points
k
from U2 V(Ai). Now we continue by choosing ai21 , a ..., a*

; ; from
i= 2 k

k
the reduced set V(Az) and remove from _U3 V(Ai) the points which
1=

are connected with a; by edges of 2,3,...,n colour. The condition
n

| V(A1 =2 k[(k —1)(n— 1)+ 1], (1 <i< k) ensures that the process can
be repeated until we have chosen k points from A4, . The graph spanned

by the resulting vertex-set is isomorphic to Hn +1 In the n + 1-th colour.

II. We prove here that J (n) C H .
() F(2cC #, follows from 7 (2)C A by symmetry.

(b) for n>2 let H =H,=...=H, _, =T and Hne.@k..

Let G€ 4 (n) for which
(iv) &«(G)> Cy(H,, H,)+ 1.

We prove that in this case H;C G in the colour i for at least one
i ie. H=(H,,...,H )€ # . Ifthereis A,B,C€ V(G) so that 4B
and AC edges have different colour from the colour-set 1,2,...,n—1
then Hl C G forsome i<n—1. Otherwise V(G)—P=XUY foran
arbitrary P& V(G) where the edges between P and X have colour i,
(i< n—1) and the edges between P and Y have colour n. Moreover
the edges between X and Y have to be of colour [ and the edges in
Y have to be of colour n. The edges of X are coloured with colour i
and n. We conclude that the set X spans a two-coloured complete graph
and PUY spansa one-coloured complete graph. o(X) > C, (H1 , H )+ 1
by condition (iv) so we can apply (a) for X which proves our statement.

The proof of Theorem 5.

(a) First we prove theorem for the case and when only one B is
non-empty, that is
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n

H =AUB, HZ,H3,..'.,H
are complete graphs.
Let Ge Jf‘s(n) and
(i) «G)>[RyA,H,y,... ., H)I"" 1,

We assert that there is P€ V(G) and a colour i for 2<i<n so
that at least R, (4, Hz, ey Hn) edges starting from P have colour i.

Supposing the contrary, the graph G is considered as a one-coloured
graph in the colour 2, Every vertex of G has degree of at most
RO(A,HZ, e ,Hn) —1 so G isat most RO(A,Hz, ..., H )-chromatic

t
ie. V(G)= ‘Ul A]. where t<R0(A,H ,...,H,) and A, € A (n—1).
]:

Repeaﬁng’ this argument we see that ¢ can be covered by at most
(R4, H,, .., H)1" — 1 complete graphs of colour 1 which contradicts
to (i).

We can assume therefore the existence of P€ V(G) and X C V(G)
such that the edges between P and X are coloured with i, (2<i<n)
and |X|>Ry(4,H,,...,H,). Applying Ramsey’s theorem, 4 C X in
colour 1 ie. PU A isomorphic to H, in colour 1 or at least one j,
2<j<n), Hj C X in the j-th colour.

(b) Let H=(H,,H,,...,H)E £" where H = A, U B, and the
B/’s are one-point graphs. We prove that the existence of Cy(H,,...,H,)
follows from the existence of CO(Hl,Az, A= £y,
ColA , Hy, Aqy ooy AD, G4y, .. A H, _,A)=t _,,

>"n—-2°""n
CO(AI, e ,An_l,Hn)z t  which was proved in (a). Let G & A (n)

n
and

(i) o«G)> _21 L+ 1.

For any P€ V(G) let

F,={R: RE V(G), RP edge has colour i} .
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We have a(F) t for at least one i (because of (ii)) so H C F
in the colour i or A CF in the colour j for some j+# i and PUA
isomorphic to H Therefore He #  and the statement Z*(n)C K,
is proved.

(¢) #"(n)cC # is proved in the following way:
let H= Hy,...,H)e Z™(n)- and H,=A;U B, We define H =

n
=(Hy,....,H,) asfollows: H,=A'UB, where lV(A')|=_ZI | V(4)1
I=

and A’ isa complete graph. H' € #1(1) impliesthat H' € H ie. Cy(H')
exists. Let G &€ A (n) for which

(iii) (G)> C, ).

Condition (iii) implies that H’ C G in the colour 10 for at least
one iy, that is every edge between A’ and /}Z‘i0 has colour 1,2,...

.yig — 1, iy + 1,...,n. The number of edges of this type is

n
Z; | V(A4;)| so we can choose for some j# iy | V(A].)l edges from them.
l:

The subgraph spanned by these edges is isomorphic to H] SO our state-
ment follows.

Proof of Proposition 1. Let H =(H,,...,H)€P" and suppose
that H, and H, are empty graphs. Let G€ A'(n) and H bea
complete graph so that | V(H')| = max (| V(H])I, | V(Hz)!). If a(G)>
>Ry, H,...,H) then G will contain H' in the colour i for at

n times
least one i. Because of i# 1 or i# 2 we have H1 CcG or H2 cCG

in the colour 1 or 2 respectively.
Note that %* makes A, asymmetric.

Proof of Theorem 6. Let us suppose that H = (H,, st . ,Hn) €
€ #,. We can assume that H,,...,H, are not empty graphs (cf. Prop-
osition 1). Let X , be the complete k-partite graph containing k? evenly
ditributed points and let Y,i be a k-chromatic graph in which every cir-
cuit has length >/, (/> 3). We will consider X, and Y,ﬁ as elements

of A (n) where the edges of the graph have colour 1 and the edges of
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the complement have colour 2. o(X k) - o if k> so HE #, implies
that H, C X, or ﬁz C X, in colour I and 2 respectively for k> k,
ie.

(i) H1 or ﬁz is a complete k-partite graph.
Similarly o(X,)~ e if k- hence
(i) H, or ﬁz is the complement of a complete % partite graph.

By the same argument (a(Y}) > e and a(¥1)> o if k->) we
have ‘

(iii) H, or H,‘ contains no circuit.

(iv) H1 or ﬁz is a graph the complement of which contains no
circuit.

Let us analize which possibilities hold for H,:

(a) (1), (i), (i), (iv) hold for H1 or none of these — that is in this
case (Hl, H,)€ 9.

(b) The following four possibilities
(1) is true
(ii) 1is true . . —
for H, implies that (H;,H,)€ T(2)V 7(2).
(i) is false ,
(ii) is false
(c¢) If (i) and (iii) or (i) and (iv) hold for H, then
(H,,H)e £2u 27,
(d) If (i) and (iv) or (ii) and (iii) hold for H, then
(Hy,Hy)€ Qv Q%
(e) All the remaining cases implies that - (H,, H,) € & (2) U Z(2).
The cases (a)-(e) show that He H, — 2* involves (Hi:Hj)E ‘
EFUTQUIRQU £2U 22U Q?uQ*uU F (U #(2) for any
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1 <i, j<n. From this the theorem easily follows.

Proof of Theorem 7. The upper bound follows from Theorem 8. The
lower bound can be derived by examining a special k-chromatic graph
without triangle, namely the Mycielski-graph. [4]

Proof of Theorem 8. We prove by induction on n.
(a) n=3. Let P& V(G), we denote the set of points connected

t
with P by 4 and B=V(G)—(AUP). Let B= _U1 B, where the
=

B-s are the components of B. If for every B, I?/(Bi)l =1 then G
would be 2-chromatic. Hence there is a B"o so that | V(Bi0)| = 2. The

connectivity of G implies the existence of a P€ 4 and an R € V(Bio)
so that PR € FE(G). Finally we can choose an S from V(Bio) so that
(R,S) € E(G). The path [P, Q, R, S] has the required property.

(b) The induction is similar to step (a): let P be an arbitrary point
in a »n+ l-chromatic connected graph which contains no triangle and 4
and B are defined as in part (a). Let B’ be an n-chromatic component
of B. (There exists such a component because G is n+ 1 chromatic).
There is a point Q € V(A) so that @ is connected with some point of
B’ because G is connected. Let us consider the subgraph QU B' in G.
It is n-chromatic at least, connected and contains no triangle — hence
there is a path of n+ 1 points in it starting from @ by the inductive
hypothesis. The edge PQ extends this path to length of n+ 1 which
proves our statement.

Proof of Theorem 9. See [3].
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