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0. INTRODUCTION 

In this paper I should like to sketch some aspects of a Ramsey-type 

problem (part 2.) which arose from a geometrical problem of T. G a 11 a i 

[ 1]. Let me present the rough s~eleton of the theorems discussed later. 

If we colour the edges of a complete graph G with n colours in 

such a way that we need a sufficiently large number of one-coloured com­
plete subgraphs of G in order to cover G's vertices then for at least one 
i, ( 1 ~ i ~ n) G will contain a prescribed subgraph coloured with the 
i-th colour. 

1. NOTIONS AND NOTATIONS 

Graph G,H, ... 

Vertex and edge set V( G), E( G) 

Subgraph GCH 

finite, undirected, no loop~ and multiple 

edges 

always induced (spanned) subgraph 
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The set of n-col­
oured complete 
graphs 

.?f'(n) 

Covering number of 'a( G) 
an n-coloured com-
plete graph G 

'S· 

complete graphs the edges of which 

are coloured with n colours. It is al­
lowed to colour an edge with more 
than one colour. 

it is the .smallest k so that V( G) = 
k 

= U V( G i) and G i is a one-coloured 
i= 1 

complete graph. 

the set of all graphs 

the set of complete graphs 

denotes the Cartesian product of n 

copies of :If where ,?If is a set of 
graphs 

= {fl: HE :If} where ,Yf is a set of 
graphs 

2. THE BASIC PROBLEM AND ITS RELATION TO THE 
ORIGINAL RAMSEY PROBLEM 

2.1. According to a well-known theorem of Ramsey [2] for any 
K = (K1 , K 2 , •.• , Kn) E :J{n there exists a natural number R = R(k) 

with the property: 

If G E Jf"(n) and I V(G) I~ R 

then for at least one i, (1 ~ i ~ n) G contains a subgraph in the i-th 
colour isomorphic to Kr The smallest R with the above property is 
called the Ramsey-number belonging to K1 , K2 , ... , Kn and it is denoted 
by R

0
(K). 

Our basic problem is the following: 

2.2. To describe the set ,rt) c t§ n ·for which the following statement 
holds 
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For every H = (H1, H2 , • •. , Hn) E :Yf there .exists a natural number 
R 1 with the property: 

If G E Jf'(n) and a(G) ~ R 1 then for at least one 

subgraph in the i-th colour isomorphic to Hi" 
G contains a 

The smallest R 1 with the above property should be called the Ramsey 
covering-number belonging to H.' It is denoted by C

0 
= C

0
(H). 

In case of HE :;t·n the following trivial inequality holds between the 
Ramsey-numbers and the Ramsey covering-numbers: 

3. SOME RESULTS AND AN OPEN QUESTION 

Let H c C§ n be the set defined in 2.2. The following result was 
proved in [3]. 

Theorem 1. Let Q be the set of graphs the complements of which 
contain no adjacent edges, then 

Let us continue with the central open question: 

Question 1. Let f!li be the set of graphs the complements of which 
contain no circles and let d(n) be the set of n-tuples formed by taking 
n - 1 components from Jf. and one from ;)£. Is it true that 

d(n) c Jf'? 

(Special cases will be considered in part 4 and 5.) 

There are some degenerate elements of .It. 

(I) The n-tuples of graphs at least one component of which is the 
one-point graph or the two-point graph without edge. 

(2) The n-tuples where at most one component differs from the two­
point complete graph. 
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The n-tuples listed in ( 1) and (2) are called the degenerate elements 
of Je and we deno.te them by ~. 

Theorem 2. If H= (H1 , ... ,Hn) fl. d(n) u Qn u ~ then Hf/. £. 

Theorem 2 show~ that the affirmative answer to Question 1 would 
settle the problem in 2. 2. 

4. STRONG COLOURINGS 

Now we investigate the case when we colour the edges of the com­
plete graphs with the restriction that every edge has exactly one colour. 
We call such a colouring "strong". The set of str9ngly n-coloured com­
plete graphs will be denoted by %/n). One more notation: if H = 

= (H1 , ... , Hn) then H denotes (H1 , ... , Hn ). Let .Its be defined 
on the analogy of 2.2. if we write %/n) instead of X"(n). It is obvious 
that :If c :If s and the following theorems show that the inclusion is 
proper. 

Theorem 3. Qn c Yf s ( Q defined in Theorem 1 ). 

Question 2. d(n) u d(n) c :Its? (d(n) defined in Question 1). 

Theorem 4. Let ff4 k be the set of complete k-partite graphs and 

T be the three-point graph with two edges. Let !Y (n) be the set of n­

tuples with one component from :?J k and the others are sub graphs of T. 

Then !T(n) c .Yes and ff(n) c Yfs. 

Theorem 5. Let 2 be the set of graphs in the form A u B where 

A n B = cp, A is a complete graph and B is an at most one-point graph. 
Then !£In c /f and i2 n c .:If" . s s 

· Proposition 1. If ~* denotes the n-tuples of graphs where at least 

two components are empty graphs, then ~* c .Yes. 

Theorem 6. If Hf/. :If U Qn U d(n) U .'Y{n) u ff(n) U ,:pn u jjn u 

U ~* then :If fl. :lf
8

• 

-804-



5. PROPERTIES OF GRAPHS WITH LARGE CHROMATIC 

NUMBER AND WITHOUT COMPLETE k-GON 

Let G be a graph. We may consider G as a strongly two-coloured 
complete graph by taking the edges of G (G) as coloured with the first 

(second) colour. In this formulation the special case n = 2 of Question 2 
is equivalent with 

Question 3. Let F be a forest and k a natural number. Is there a 
natural nun1ber l = l(F, k) with the property: if G is a graph without a 
complete k-gon and x( G) ~ l then G con taints F as a sub graph. 

J . G e r 1 i t s proved first (oral communication) that the answer is af­

firmative to Question 3 if k = 3 and F is a path. 

Let Xo = Xo (F, k) be the smallest number with the above property. 
Now we can state 

Theorem 7. 1 F~ + 1 ~ x0 (F, 3) ~I Fl- I (F is a path and 

IF!~ 4). 

L. Lovas z showed that x0 (F, k) exists if F is a path for arbi­
trary k. The existence of x

0 
(F, k) is proved otherwise only for I F I ~ 5 

and k = 3 and for the (trivial) case when F is a star. 

The upper bound in Theorem 7 follows from the following theorem. 

Theorem 8. Let G be a connected n-chromatic graph Which con­

tains no triangle and P and arbitrary point in G. There is a path of 

n + 1 points in G without diagonals. (n ~ 3). 

6. HELL Y STRUCTURES 

A pair (X, d) is called Helly structure if X is a set, d is a fami­
ly of subsets of X and there exists a natural number t with the property: 

If !A is a finite subfamily of d any two members of J4 have 

non-empty intersection then there exists a set P c X so that I Pi ~ t 
and B n P #: ¢ if B E !A. 
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Let (X 1 , d 1 ), ... , (Xn, .91 n) be Helly structures and Xi n Xj = ¢ 
n 

for i * j. We define the sum Z (X., d,) = (X, d) in the following 
.· i= 1 l 

n 
way: X= U X., .9JI = {(A 1 ,A2 , ••. , A ): A. Ed.}. 

i= 1 l · n 1 z 

The following theorem connects the Helly structures and the set 

defined in 2. 2. 

Theorem 9. Let (Xl' .91 1 ) ... (Xn, d n) be Helly structures and 

suppose that the graph Hi can not be the intersection-graph of sets of d i 
n 

(for 1 ~ i ~ n). In thi~ case (H1 , ... , Hn) E ::if implies that i~ (Xi, .9JI ;) 

is also a Helly structure. 

Examples and applications of this theorem can be found in [3]. 

7. PROOFS 

· In. this section we present the proofs of the theorems discussed above. 

Theorem 1 was proved in [ 3]. 

For the proof of Theorem 2 we have to define some special m-col­
oured (or 2-coloured) complete graphs. The graph Uk E x·(m) looks like 

this: 

Let sk be a graph containing no triangles and the chromatic number of 
which is k. Let I V(Sn) I = nk and A be a copy of Sk. Replace the 

vertices of A by Bl'B2 , ••• ,Bnk where B is a copy of Sk. All 
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edges between Bi and Bi are coloured with colour 1 if the corresponding 
vertices of A are connected by an edge. The edges of B. are coloured 

l 

with colour 2 and all the remaining edges are coloured by 1, 2, . . . and m. 

Wk E %(2) is defined as follows: V(Wk) = {wii}~.i= 1 . The edge 

connecting the vertices wii and w
78 

is coloured with colour I if i ::/= r 
and coloured with colour 2 if j =F s. 

w: E %(2) has the points {wii}7,i= 1 . The edge between wii and 
w is coloured with 1 if j = s, otherwise it is coloured with colour 2. rs 

W3. 
1" 

2 -----------

--------- ___. 

2 .....------------ ......_......_ 

. k 
Xk E .% (2) will be defined as follows: V(Xk) = U B. where B. 

i= 1 l l 

is a copy of Sk. The edges of B; are coloured with the colour I, the 
edges between different B;'s have colour 2, the remaining edges are two­

coloured. 
k 

We define yk E .X'(2): V(Yk) = U Bi where the B.'s are again 
i= 1 l 
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copies of Sk. Let V(Bi) = {bi, ... , b~ } and the edges of Bi have 
k 

colour 1, the edge between b~ and b{ is coloured with 2 for i -=/= j and 
1 ~ t ~ nk. All the remaining edges are hi-coloured. 

Finally zk wil,l be a graph which· does not contain a circuit of length 
less than or equal to l, and the chromatic number of which is k. The 
edges of zk are coloured with 2 the complement-edges with colour 1. 

2 ,.,,.,......-------------

@/: ___ @--__ :':EJ .... 
I ---

/ 

2 

--...._ ______ ._. .... _...., 

The graphs considered above are special n-coloured complete graphs. 
If Tk denotes any one of Uk, Wk, W~, Xk, yk, zk then it has the prop­
erty: if k-+ oo then a(Tk)-+ oo so it follows that, 

involves that H. c Tk 
l 

for some k in the i-th colour. 

Now we turn to the proof of The?rem 2. Suppose that 

H = (Hl' H 2 , ••• , Hn) fl. .xl(n) u Qn u ~. 
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We prove that H fJ. J1t. We investigate two cases. 

I. More than one Hi are empty graphs. Let H 1 , H 2 , ... , Hm be 
empty graphs (m ~ 2) and Hm + 1 , ... , Hn be non-empty .. Clearly 
Hi q_ Uk for every k in the colour i, ( 1 ~ i ~ n) so we conclude that 
Ht;. :Yt by(*). 

II. We can choose H 1 , H2 so that Hi is non-empty for 3 ~ i ~ n 

and H 1 , H2 contains at least three vertices. A, B, C will denote the fol­
lowing graphs: 

0 

A: 
0 0 0 

From H fJ. d (n) u Qn follows that at least one of the following six 
possibilities holds: 

(i) ii1 contains a circuit of length l and H
2 

contains a triangle 

(ii) A c H 1 and A c H 
2 

(iii) B cH1 and B cH2 

(iv) B c H
1 and A cH2 

(v) Cc H 1 and A cH2 

(vi) CcH1 and B c H 2 

(i) is impossible because H1 , H2 (/.. zk in the first and second colour 
respectively Hi q_ zk for i ~ 3 because Hi is non-empty. 

Similar argument shows that the cases (ii) through (vi) are impossible. 
We can show that th~ graphs A, B, C which are subgraphs of H1 and 
H2 are not contained in our special graphs. In the cases (ii), (iii), (iv), (v), 

(vi) we use the graphs uk' wk' yk' xk' w~ respectively. 

Proof of Theorem 3. Let H = (H1 , H 2 , ... , Hn) E Qn that is Hi 

can be written as the union of ai points and b; disjoint edges. Let 
a= max a. and b = (n- 1) max b.+ 1. Q* denotes a graph the com-

i l i l 

plement of which consists of a disjoint vertices and, b disjoint edges. 
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Clearly (cf. Theorem 1) Q* E Qn. Let G E %/n) for which a( G)> 

> C0 (Q*, Q*, ... , Q*). In this case G will contain Q* in the i-th coi­
n times 

our for some i. It ·is obvious (by the definition of a and b) that this 

subgraph contains ~· for some j ::/= i. 

Proof of theorem 4. 

I. We prove · .:T(n) C Jf
8 

b-y induction on n. The case n = 1 is 

trivial. Assuming that !T(n) c :If we prove that !T(n + 1) c Y'f' . Let s s 

H1 = ... = Hn = /'... and Hn + 1 be the complete k-partite graph which 
has k points in its cl&sses. (It is clear that every k-partite complete graph 

is a subgraph of such a Hn + 1 for some k.) 

Let GE% (n+ 1) and s 

(i) 

a(G) > ((C0 (H2 , H 3 , ••. , Hn, Hn+ 1)- l)(k[(k- l)(n- 1) + 1]- 1) + k. 

If H; q. G in the i-th colour for i = 1, 2, ... , n then G must be 
written as the union of disjoint complete graphs coloured by the i-th col­
our (the edges not belonging to these complete graphs are not coloured 

with colour i). Let us denote these complete graphs in colour 1 by 
'i 

A 1 , A 2 , ... , A, and let V(A.) = U a1
:. 

l j= 1 l 

We can assume that I V(A;) I~ I V(Ai) I for i ~ j. The number 

l{s: lA I~ x}l is denoted by t . We define Bu 's as the "rows" of A.'s 
S X ,I 

r t 

that is B = U ai. We can write V(G) = U A. u U B and here the 
u i= t + 1 u i= 1 l u u 

A/s span complete graphs in colour 1 and the Bu 's are n-coloured complete 

graphs so Bu can be covered by at most C0 (H2 , H3 , ... , Hn, Hn + 1 ) - 1 
complete one-coloured graphs by the inductive hypothesis. We get a cover­

ing of G by at most 

(ii) tx + ( C0 (H 2 , ... , Hn + 1 ) - 1 )(x -- 1) complete graphs and com­

paring (i) and (ii) we conclude that 

. 
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(iii) ·tx ~ k if x = k[(k- 1)(n- 1) + 1] that is for 1 ~ i ~ k 

I V(A;)I ~ k[(k -.1)(n- 1) + 1]. Let us choose the points ai, ... ,a~ 
from V(A 1 ). These points are connected with at most k(n - 1) points 

of V(A.), (2 <;, j <;, k) in the colours 2, 3, ... , n. We omit these points 
J 
k 

from U V(A .). Now we oontinue by choosing af , af , ... , af from 
i= 2 l ' 1 2 k 

k 

the reduced set V(A 2 ) and remove from i~3 V(A;) the points which 

are connected with a. by edges of 2, 3, ... , n colour. The condition 
ln 

I V(A;) I~ k[(k- 1 )(n- 1) + 1], (1 <;, i <;, k) ensures that the process can 

be repeated until we have chosen k points from Ak. The graph spanned 
by the resulting vertex-set is isomorphic to Hn + 1 in the n + 1-th colour. 

II. We prove here that Y(n) c £
8

• 

(a) Y(2) c .Yt' follows from .r(2) c :It' by symmetry. s s 

(b) for n > 2 let H 1 = H 2 = ... = Hn _ 1 = T and Hn E iik. 

Let G E x·/n) for which 

We prove that in this case Hi c G in the colour i for at least one 

i.e. H= (H1 , ... ,Hn)E J~8 • If there is A,B, CE V(G) so that AB 

and A C edges have different colour from the colour-set 1, 2, ... , n - 1 

then Hi c G for some i <;, n - 1. Otherwise V(G)- P =Xu Y for an 

arbitrary P ~ V( G) where the edges between P and X have colour i, 

(i <;, n - 1) and the edges between P and Y have colour n. Moreover 

the edges between X and Y have to be of colour i and the edges in 
Y have to be of colour n. The edges of X are coloured with colour i 

and n. We conclude that the set X spans a two-coloured complete graph 

and P u Y spans a one-coloured complete graph. a(X) ~ C0 (H
1

, Hn) + 1 

by condition (iv) so we can apply (a) for X which proves our statement. 

The proof of Theorem 5. 

(a) First we prove theorem for the case and when only one B is 

non-empty, that is 
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are complete graphs. 

Let G E .A''/n) and 

(i) a(G)> [R 0 (A,H2, ... ,Hn)]n- 1. 

We assert that there is · P E V( G) and a colour i for 2 < i < n so 

that at least R 0 (A, H 2 , •.• , Hn) edges starting from P have colour i. 

Supposing the contrary, the graph G is considered as a one-coloured 
graph in the colour 2. Every vertex of G has degree of at most 
R 0 (A, H 2 , ... , Hn)- 1 so G is at most R

0
(A, H 2 , .. . , Hn )-chromatic 

t 

i.e. V(G) = . U A
1
. where t < R 0 (A, H 2 , ... , Hn) and AtE ;;t'

8
(n - 1 ). 

. J= 1 
Repeating this argument we see that G can be covered by at most 
[R 0 (A, H 2,: . . , Hn )]n- 1 complete graphs of colour 1 which contradicts 
to (i). 

We can assume therefore the existence of PE V(G) and X c V(G) 

such that the edges between P and X are coloured with i, (2 < i < n) 

and I Xi~ R 0 (A, H 1 , ... , Hn). Applying Ramsey's theorem, A c X in 
colour 1 i.e. Pu A isomorphic to H 1 in colour 1 or at least one j, 

(2 < j < n), Hi c X in the j-th colour. 

(b) Let H= (H1,H2 , ... ,Hn)E !fn where Hi= Ai UBi and the 
B,.'s are one-point graphs. We prove that the existence of C0 (H1 , ... , Hn) 

follows from the existence of C0 (H 1 , A 2 , ... , An) = t 1 , 

Co(A1,H2,A3, ... ,An), ... ' Co(A1, ... ,An-2'Hn-1'Anf= tn-1' 

C0 (A 1 , ... ,An-l'Hn)= tn which was proved in (a). Let GE %/n) 
and 

n 

(ii) a( G) > Z t. + 1 . 
i= 1 l 

For any P E V(G) let 

Fi = {R: R E V( G), RP edge has colour i} . 
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We have cx.(F;) >: ti for at least one i (because of (ii)) so Hi c Fi 

in the colour i or A. c F. in the colour j for some j =I= i and P u A. 
I z I 

isomorphic to H.. Therefore HE :If and the statement !t' n (n) c £ 
I s s 

is proved. 

(c) Jin (n) c; .Yf
8 

is proved in the following way: 

let H = (H1 , ... , Hn) E };n(n) ·and Hi= A; u B;· We define H' = 
n 

= (H~, .... , If,) as follows: H~ =A' u B. where I V(A') I= Z I V(A;)I 
l l i= 1 

and A' is a complete graph. H' E .!£' 1(1) implies that H' E :lf
8 

i.e. C
0

(H') 

exists. Let G E Jf' (n) for which s 

Condition (iii) implies that H~ c G in the colour i0 for at least zo . 
one i0 , that is every edge between A' and B. has colour 1, 2, ... zo 
... , i0 - 1, i0 + 1, ... , n. The number of edges of this type is 

n 

i~ I V(A;) I so we can choose for some j =I= i0 I V(Ai) I edges from them. 

The subgraph spanned by these edges is isomorphic to Hi so our state­
ment follows. 

Proof of Proposition 1. Let H 1 = (H1 , ... , Hn) E ~* and suppose 

that H1 and H2 are empty graphs. Let G E %/n) and H' be a 
complete graph so that I V(H') I = max (I V(H1 ) I, I V(H2 ) 1). If a( G)> 
> R 0 (If, H, ... , H') then G will contain H in the colour i for at 

n times 
least one i. Because of i =I= 1 or i =I= 2 we have H1 c G or H 2 c G 

in the colour 1 or 2 respectively. 

Note that ~* makes Jt
8 

asymmetric. 

Proof of Theorem 6. Let us suppose that H = (H 1 , H 2 , ... , H n) E 

E .Yt
8

• We can assume that H2 , •.• , Hn are not empty graphs (cf. Prop­
osition 1 ). Let X k be the complete k-partite graph containing k2 evenly 
ditributed points and let Y£ be a k-chromatic graph in which every cir­
cuit has length > l, (l >: 3). We will consider Xk a~d Yi as elements 
of x· (n) where the edges of the graph have colour I and the edges of s 
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the complement have colour 2. a(Xk)-+ oo if k-+ oo so HE £
8 

implies 
that H1 c Xk or H2 c Xk in colour 1 and 2 respectively for k?;;!: k0 
i.e. 

have 

(i) H1 or ii.2 is a complete k-partite graph. 

Similarly a(Xk)-+ oo if k-+ oo hence 

(ii) H1 or H2 is the complement of a complete k partite graph. 

By the same argument (a( Yk) -+ oo and a( Yk) -+ oo if k -+ oo) we 

(iii) H1 or fi2 : contains no circuit. 

(iv) H1 or H2 is a grapli the complement of which contains no 
circuit. 

Let us analize which possibilities hold for H 1 : 

(a) (i), (ii), (iii), (iv) hold for H1 or none of these - that is in this 
case (H1 , H2 ) E ~-

(b) The following four possibilities 

i~) :: ::: l 
(i) is false 

for H 1 implies that (H1 , H2 ) E 5""(2) u $-(2). 

(ii) is false 

(c) If (i) and (iii) or (ii) and (iv) hold for H 1 then 

2 -2 (H1,H2)E.P U.P. 

(d) If (i) and (iv) or (ii) and (iii) hold for H1 then 

2 -2 (H1,H2)EQ UQ. 

(e) All the remaining cases implies that· (H1 , H 2 ) E d(2) u d (2). 

The cases (a)- (e) show that HE. :Yf
8 

- 2)* involves (Hi, Hj) E 

E ~ u 5""(2) u S"(2) u 2 2 u !1 2 u Q2 u Q2 u d(2) u d(2) for any 
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1 ~ i, j ~ n. From this the theorem easily follows. 

Proof of Theorem 7. The upper bound follows from Theorem 8. The 
lower bound can be derived by examining a special k-chromatic graph 
without triangle, namely the Mycielski-graph. [ 4] 

Proof of Theorem 8. We prove by induction on n. 

(a) n = 3. Let P E V( G), we denote the set of points connected 
t 

with P by A and B = V(G)- (Au P). Let B = U B. where the 
i= 1 l 

B;-s are the components of B. If for every Bi, I V(B;) I= 1 then G 

would be 2-chromatic. Hence there is a B
1
• so that I V(B. ) 1 ~ 2. The 
0 10 

connectivity of G implies the existence of a P E A and an R E V(B i ) 
0 

so that PR E E( G). Finally we can choose an S from V(B; ) so that 
0 

(R, S) E E(G). The path [P, Q, R, S] has the required property. 

(b) The induction is similar to step (a): let P be an arbitrary point 
in a n + 1-chromatic connected graph which contains no triangle and A 

and B are defined as in part (a). Let B' be an n-chromatic component 
of B. (There exists such a component because G is n + 1 chromatic). 
There is a point Q E V(A) so that Q is connected with some point of 
B' because G is connected. Let us consider the subgraph Q u B' in G. 

It is n-chr01natic at least, connected and contains no triangle - hence 
there is a path of n + 1 points in it starting from Q by the inductive 
hypothesis. The edge PQ extends this path to length of n + 1 which 
proves our statement. 

Proof -of Theorem 9. See [3]. 
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