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A RAMSEY-TYPE PROBLEM IN DIRECTED AND
BIPARTITE GRAPHS

by .
A. GYARFAS and J. LEHEL (Budapest)

Let k& and ! be natural numbers & > 1. It was pro.vezd in [1] that if the
edges of a complete graph @ of k 4 [l_; 1

} vertices are coloured with two

colours (for example with red and blue) then ¢ contains a red path of length

+1

k or a blue path of length 7, and the number k + [ } cannot be replaced

by a smaller one. The complete graph in this theorem is undirected. In the
present paper we investigate the cases when ¢ is a tournament (directed
asymmetric complete graph) or a directed symmetric complete graph 0T 8
complete (undirected) bipartite graph. o

With respect to tournaments our result is a generahza‘omn of a well-
known theorem of L. REpEI [2].

n ' .
THEOREM 1. Let T be a tournament of [[ ki + 1 vertices the edges of
i=1
which are coloured with n different colours. Then for some 1 (1 < ( i << )T con-

tains a path of length k; every edges of which are coloured: wu‘_hv‘ﬂze i-th colour.

REMARK. The following example shows that Theorem 1 is the best pos-
sible. Let the vertices of the tournament T'* be the n-tuples (Bt - - 5 t)
where the #;-s are integers satisfying the inequalities 1 < ¢; < k;. There is an
edge from (¢, . .., £.) to (], . . ., £;) coloured with the ¢-th colour if and only if

i=1

n . .
¢ < t;and ; = ¢} for j <Zi. T* has [ [ k; vertices and contains no path of
length k; coloured with the i-th colour. o
Proor of Theorem 1. We prove by induction on »n.

(i) If n.= 1 then Theorem 1 reduces to the theorem of REDEL.

(ii) Assuming that Theorem 1 holds for some n, let T be atournament of
n+1 5

I [ %+ 1 vertices the edges of Whlch is coloured W1th (n + 1) colours. Con-

suier the subgraph T of T spanned by the edges of the (n + 1)‘th celour. If the
graph T contaius no path of length k., _then accprdmg to a theorem of T.

! Now and henceforward the term path means elementary path.
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GaALLATI [3] T is knqq colourable that is the vertices of 7' can be divided into
kn4q classes so that the edges connect only the vertices from different classes.
This means that T"s vertices can be split into &, subtournaments each of them

n
coloured with the evlours 1, 2, . . ., n. There exists a class of at least [ [ k; + 1

i=1
elements, so by the inductive hypothesis it contains for some ¢ (1 << i < n) a

path of length %; coloured with the i-th colour, so the theorem follows.

TaEOREM 2. Lef G be a directed symmetric complete graph of k+1—1 (k,1>2)
vertices the edges of which are coloured with two colours. Then G contains a path of
length k or o path of length I coloured with the first or the second colour, respectively.

RemaArk. If G is a directed symmetric complete graph of £t 4+ 1 — 2
vertices, let V(G*)= A UB where ANB=0, |A|=1Fk— 1. The edge
(u, v) € B(G*) is coloured with the first (second) colour if and ouly if w¢€ 4
(v € B).

This example shows that Theorem 2 is the best possible.

Theorem 2 follows at once from the following theorem of H. Ray~aup [4].

TrerorREM R. If G is a directed symmetric complete graph the edges of which
are coloured with two colours, then G contains a Hamilfonian circuit which is the
union of fwo one-coloured paths.

G(m, n) will denote a bipartite (undirected) graph the vertices of which
are divided in two classes of m and n elements respectively. (Edges connect
only vertices from different classes.) The complement of G(m, n) is the bi-
partite graph G(m, n) defined by the vertices of G(m, n) and by the edges
which connect vertices from different classes and are not contained in G(m, n).
K(m, n) = G(m, n) U G(m, n) is a complete bipartite graph. In the formulation
of Theorem 3 we use the graph and its complement instead of the two colours.
il b

2

TrEEOREM 3. If k and ! are odd natural numbers then G .

contains a path of length k or its complement contains a path of length .

REMARK 1. Similar theorems can be stated if at least one of & and [/ is even:

kis even, |=Fk-+1 Ak, k+1)
k<1l—1; k is even, I is odd G(k_*_zlﬁl, ]H_;*lJ
if Ic<l;. k :is odd, [ is even then G(’H_;-l s k+;+1} contains
k=1 k,1 are even CGk—1,k+1)
k-1
ksl k,1 are even G(]i;i—l,—;_—J
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a path of length £ or its complement contains a path of length I. Their proofs
can be given on the analogy of Theorem 3 .so they are omitted.
ReMARK 2. Theorem 3 is the best possible (as well as the modifications
k41

described in the previous remark). This is shown by an example Ifm < o

let 4 U B and C be the ° upper and “lower” classes of G(m, n) respectively,

where IA\<%— IB]\T |AUB|=m, |C|=mn. G contains the
edges between A and C (Fig. 1). Since in K(z, n) the length of the longest
A : B‘
c
Fig. 1

path is less than or equal to 2z, G(m, n) (and G(m, n)) contains no path of
length £ (of length 7).

Proor of Theorem 3.LetG =@ [k ;_ Lk ; ZJ We say that a sequence

of distinet vertices 8§ = (Al, .4, X, B, ... By)of@is a bipath? of length
r+ sif (4;, 4i) €E(@) for i =1,...,r —1(4,, X)€ E(@); (X, B)) ¢ E@G)
and (B;, Biy,) € E(@) for i=1,...,8 — 1 (r =0 or s = 0 is permitted). 4,
and B, are the endpoints of the bipath, X is the midpoint of it. The sequences
S; =4y, .., 4, X)and S, = (X, By, ..., By are called the branches of the
bipath 8. 8§ is called Hamiltonian bipath if it contains every vertex of .

Let S be a bipath of G the length of which is maximal. If it is Hamiltonian
then the length of the branch S, is at least % or the length of the branch S, is at
least [ and the theorem follows. So we can assume that S is not a Hamiltonian
bipath. Logically it can belong to one of the following three types:

(i) 4, and B belong to different classes of V(@) (Fig. 2).2 Then we can

2
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1 Sometimes S is also used to denote the set of vertices of the bipath.
3 On our figures A, is always in the “upper” class.
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select a vertex P from V(G) — S in the class which does not contain X.
(X, P) € EG) S = (B, By, 1., By, 4;, 4y, .. , X, P)
If , then
(X: P) e E(G) 8" = (Ar: Ar~1: e Al’ BS, FR) Bz» B‘p X) P)

is a bipath the length of which is greater then » 4 s and this oontrddiets to the
maximality of S.

Ay X Bs
A @
S
[ B
:/’ :,’
. . ' 1 [
p
g, 3

(ii) 4,, B; and X belong to the same class of V(@) (Fig. 3). Then we can
select a vertex P from V(@) — § in the “lower” class. (P, By) € (@) (P, 4,) 4
¢ B(Q@) by the maximality of S. '

(X, P)EE@) S =4, 4, ..., 4, X, P, B, ..., B)
If then '
(X, P) ¢ EG 8" = (Bg, By, ..., B, X, P, A,..., A4,)

is a bipath the length of which is greater then » 4 s and this also contradicts
to the maximality of S.

We conclude that if S is a maximal bipath then it belongs to the type:

(iii) A4;, B, belong to the same class. X belongs to the “lower” one. In
this case the lengths of the branches of S are odd numbers. If the length of S,
is not less then % or the length of S, is not less than 7, our theorem-follows.
Otherwise the length of S (S,) is not greater than £ — 2 (! — 2) so the length
of the bipath S is at most £ + / — 4 that is S contains at most £ 4+ 7 — 3
vertices. So we can select two different vertices P, Q from the “lower’’ class of
V(@) so that P, @ ¢ S (Fig. 4). Now we assert that the graph spanned by 8, is a-
complete bipartite graph, and the graph spanned by S, contains no edges.
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(Case A andB) (Cose Cand D) . {Case Eond F)

Fig. 4
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A. (4, X) €B(@) since in ocase of (4,,X)¢ E(G) the bipath
(4,4, .. 4, X, B, ..., B) would be one of maximal length and its
midpoint A, is in the same class than its endpoints (ef. (ii)), this is a contra-
diction. (X, B,) ¢ B(@) follows in the same way.

B. (B, 4)) ¢ E(@) (I is even). If we assume that (B,, 4;) € E(G) for some
! then the maximal bipath (4; , 4; 4. ... 4, X, 4, 4, 4...., 4, By, ..., By)
has its midpoint B, in the same class than its endpoints (cf. (ii)) and that leads
to contradiction. :

C. (P, 4)) ¢ BE(G) for odd . If (P, 4;) € H(@) then the length of the
bipath (P, 4, 4, ,,.... 4, X, 4,,..., 4.1, By, ..., B;) would be greater
than » 4 s. '

D.The circuit 4, 4, ... 4, X A, contains all edges of the form (4;, 4; ;).
If for example (4, 4;,3) ¢ E(G) then the length of the bipath (4;_,, 4;_,, . ..
S Ay XS A Ar gy A5 @ 400 P Ay, Af s, By, By, ..., By) would be
greater than the length of §. ‘ :

E. Let 4; and 4; be the vertices of S; belonging to different classes of
V(G). We prove that (4;, 4;) € E(G). It is enough to consider the case when
i+ 3 <jand 4;is in the"‘upper” class. If (4;, 4;) ¢ E(G) then the maximal
bipath(4; ..., 4; o Ajiq .., Ar, A X Ay, 0 Ay, 4, P Ay, Ay, By,
B, ..., By) has its midpoint 4, , in the same class of V(G) than its end-
points (cf. (ii)) and this is a contradiction. (4;,,, 4;_,) € E(G) by D and
(P, 4;_,), (P, 4)) ¢ BE(@) by C. So we conclude that the graph spanned by §;
is a complete bipartite graph. The graph spanned by S, contains no edges,
this can be proved by the same reasoning (applying propositions analogous
to A, B, C, D, E). ,

The following assertions (included in F, G, H) can be easily checked.

F.(4;, B)) € B(@) if iis odd and j is even, (4;, B)) ¢ B(@) if i is even and
j is odd. We split the vertices of V(@) — S belonging to the same class of V(&)

as A, into two parts as follows:
P %

Pc§, if (X,P)cE@G),
Pe§, it (X,P)¢B(). (Case Gand H)
Fig. 5
G. (P, 4;) ana (P, B)CE(G) for Pc§, (¢ is even),
(P, 4;) and (P, B)) ¢ B(G) for Pc8§, (¢ is even) .

_ *Jj is considered to be equal to j’ if j = j’ (mod r +1), X = 4,,,.
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H. (P,B)¢E@) if Pc®, and RcV(@ — (SUSUS,),
(P,R)CE(@) if Pc®, and REV(@) —(SUS,UST,) .

Considering the structure of the graphs spanned by S; and 8, and applying the
propositions F, G, H, C and the proposition analogous to C ((P, B € E(G) if
lis odd and P € V(@) — 8) we conclude that G can be written as the union of
two complete bipartite graphs @y and G,. It is easy to see that G or G, has
a path of length %, or the complement of & contains a path of length /.
Theorem 3 follows.
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